

Geometric Modeling

 in Graphics
Part 3: Mesh simplification

Mesh simplification

- Reducing number of vertices, edges, polygons
- Mesh decimation, mesh reduction, ...
- Creating levels of detail (LOD) meshes, several versions of same mesh with different number of polygons
- Lots of algorithms, lots of similar approaches
- Comparing versions using distance (Hausdorff, ...)

1.000 triangles

2.760 triangles

4.626 triangles

7.950 triangles

13.802 triangles

24.149 triangles

Geometric Modeling in Graphics

Mesh simplification

- Preserving topology (number of holes) vs reducing topology
- Static
- Creating several levels of detail in preprocess stage
- Almost no processing on the fly
, Visualization-ready preparation of levels
- Dynamic
- Level of details is created on the fly
- Encoding continuous spectrum of details
- Progressive transmission
- View-dependent
- Dynamic selection of LOD based on view criteria

Geometric Modeling in Graphics

Simplification algorithms

- Sampling
- Sample mesh surface with points or voxels
- Use smoothing on sampled points
, Triangulate processed sampled points
- For smooth objects

- Adaptive subdivision
- Find base mesh as simplest level of detail
- Levels are created from base mesh using subdivision
- For models where base mesh is easy to find (terrain, ...)

Geometric Modeling in Graphics

Simplification algorithms

- Decimation
- Iteratively removing vertices or faces

- Retriangulating hole after each step
- Which vertex, face to remove at each step?
, Usually simple and topology preserving
- Vertex merging
- Iteratively collapsing two or more vertices into one
- Which vertices to merge et each step?
- What is new position of merged vertex?
- Edge-collapse - merging two connected vertices
- Can modify topology

Edge Collapse
Geometric Modeling in Graphics

Triangle mesh decimation

- Schroeder, Zarge, Lorenson: Decimation of Triangle Meshes
- https://webdocs.cs.ualberta.ca/~lin/ABProject/papers/4.pdf
- Deleting chosen vertex at each step of decimation and triangulating resulting hole
- I.Characterizing local topology for each vertex
- Feature edges defined by feature threshold angle

Simple

Complex

Boundary

Interior Edge

Corner

Geometric Modeling in Graphics

Triangle mesh decimation

- 2. Evaluating decimation criteria
- Simple vertex \mathbf{v} - distance to average plane d, P_{i} is area of triangle

$$
\mathbf{N}=\frac{\sum_{m} \mathbf{n}_{i} P_{i}}{\sum_{m} P_{i}}, \mathbf{n}=\frac{\mathbf{N}}{|\mathbf{N}|}, \quad \mathbf{x}=\frac{\sum_{m} \mathbf{x}_{i} P_{i}}{\sum_{m} P_{i}} \quad d=|\mathbf{n}(\mathbf{v}-\mathbf{x})| .
$$

- Boundary and interior edge vertex - distance to line created by other two boundary vertices
boundary

- Corner or complex vertex - usually not removed
- 3. Pick vertex with lowest criteria an remove it together with incident triangles
- Using priority queue
- Preserve feature edges

Geometric Modeling in Graphics

Triangle mesh decimation

- 4.Triangulate resulting hole
- Non planar triangulation of vertices loop
- Triangulate one (removed simple, boundary vertex) or two loops (removed interior edge vertex)
- Generate non-intersecting, non-degenerated triangulation
- If triangulation can not be performed, do not remove vertex and triangles
- Use triangulation schemes based on recursive loop splitting
-5. Finish vertex removal loop when some criterion is reached
- Number of vertices is below threshold
- Number of vertices is below percentage
- Removal of any vertex will cause in non-manifold or degenerated situation

Geometric Modeling in Graphics

Triangle mesh decimation

 Implementation
http://www.vtk.org/doc/nightly/html/classvtkDecimatePro.html

Full Resolution
(569 K Gouraud shaded triangles)

(142K flat shaded triangles)

75% decimated
(142 K Gouraud shaded triangles)

Geometric Modeling in Graphics

Simplification envelopes

- Cohen, ...: Simplification Envelopes
- http://gamma.cs.unc.edu/ENVELOPES/
- Envelope - two offset surfaces, outer envelope displaces each vertex of the original mesh along its normal by ε, inner envelope displaces each vertex by $-\varepsilon$
- For orientable manifold triangle meshes
- Iteratively remove triangles or vertices and retriangulate the resulting holes, keeping the simplified surface within the envelopes
- Strict preservation of topology

Geometric Modeling in Graphics

Vertex clustering 1

- Rossignac, Borrel: Multi-Resolution 3D Approximations for Rendering Complex Scenes
- Vertex merging algorithm over uniform grid
- http://www.cc.gatech.edu/~jarek/papers/VertexClustering. pdf
- Not requiring manifold topology, not preserving topology
- I.Assign importance for each vertex, based on sum of areas of incident triangles and „curvature" of vertex
- 2. Triangulate faces and put 3D uniform grid over model
- 3. Merge all vertices of one cell into one with highest importance
- 4.Remove all degenerated triangles

Vertex clustering 2

, Low,Tan: Model Simplification Using Vertex Clustering

- https://www.comp.nus.edu.sg/~tants/Paper/simplify.pdf
- Floating-cell clustering, working at one vertex at a time
- Paper works in real time environment, using viewdependent LOD mesh creation
- I.Grade each vertex, compute weight using 2 factors
- Factorl - Cosine of inverse of the maximum angle between all pairs of incident edges on the vertex
- Factor 2 - Length of the longest among all of the edges incident upon the vertex
- Sort vertices based on weight
- 2.Triangulate each face

Geometric Modeling in Graphics

Vertex clustering 2

- 3. Put box with user defined size at vertex with highest weight
- Vertex is at the center of box
- 4. Merge all vertices that are inside box to one vertex with highest weight
- Remove merged vertices from list
- Remove degenerated triangles
- 5. Repeat merging process for next highest weighted vertex
- 6. Repeat process until some threshold is reached
- Worse control over number of vertices in simplified mesh
- Because of sorting, time complexity is $\mathrm{O}(\mathrm{nlog}(\mathrm{n})$)

Geometric Modeling in Graphics

Voxel-based simplification

- He, Hong, ...:Voxel Based Object Simplification
- https://www.cs.umd.edu/gvil/papers/he_voxel.pdf
- Requiring well-defined, closed-mesh, manifold mesh
- Superimposing a 3D uniform grid of voxels over the polygonal geometry
- Sampling mesh by assigning each voxel a value of 0 orl according to whether the sample point of that voxel lies inside or outside the object
- Applying low-pass filter on voxel values - Gauss, ...
- Using Marching cubes to generate polygonal mesh from filtered values in uniform grid using isovalue 0.5
- Good for meshes without very sharp vertices or edges

Geometric Modeling in Graphics

Voxel-based simplification

Geometric Modeling in Graphics

QEM simplification

- Garland, Heckbert: Surface Simplification Using Quadric Error Metrics
- http://cseweb.ucsd.edu/~ravir/I90/2016/garland97.pdf
- Iterative contraction of vertex pairs, possible connection of two unconnected vertices that are close enough
- New computation of vertex-merge error
- For triangular meshes
- No requirement for manifold topology
- No topology preservation
- Probably best combination of efficiency, fidelity, and generality

QEM pair selection

- Picking valid vertex pair $\left(\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}\right)$ for contraction at initialization time
- $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$ is an edge
- $\left|\mathbf{v}_{\mathbf{1}}-\mathbf{v}_{\mathbf{2}}\right|<\mathrm{T}, \mathrm{T}$ is user defined threshold
- ThresholdT=0 gives simple edge contracting algorithm
- Positive T gives algorithm ability to connect unconnected parts and to change genus of mesh
- With bigger T, we can move to $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs, slowing algorithm significantly
- When pair $\left(\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}\right)$ is contracted into vertex \mathbf{v}, all candidate pairs containing $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$ are updated with \mathbf{v}

QEM error approximation

- Introducing cost of contraction to select one best pair to contract during a given iteration
- Associating 4×4 matrix $\mathbf{Q}_{\mathbf{v}}$ with each vertex \mathbf{v}
- Construct plane p: $a x+b y+c z+d=0, a^{2}+b^{2}+c^{2}=1$ for each triangle incident to vertex \mathbf{v}

- $\mathbf{Q}_{\mathbf{v}}$ is then sum of all \mathbf{K}_{p}
- Error (cost) at vertex \mathbf{v} is $\Delta(\mathbf{v})=\mathbf{v}^{\top} \mathbf{Q}_{\mathbf{v}} \mathbf{v}$
- After contraction $\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \rightarrow \mathbf{v}$, the new error matrix is $\mathbf{Q}_{\mathrm{v}}=\mathbf{Q}_{\mathrm{v}_{1}}+\mathbf{Q}_{\mathrm{v}_{2}}$
- After contraction $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right) \rightarrow \mathbf{v}$, the position of v is such that it minimizes $\Delta(\mathbf{v})$, e.g. $\mathbf{v}=\mathbf{Q}_{\mathbf{v}}{ }^{-1} \mathbf{0}^{\top}$
- Cost of contraction $\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right) \rightarrow \mathbf{v}$ is $\Delta(\mathbf{v})=\mathbf{v}^{\top} \mathbf{Q}_{\mathbf{v}} \mathbf{v}$

Geometric Modeling in Graphics

QEM sum

- I. Compute the Q matrices for all the initial vertices.
- 2. Select all valid pairs.
- 3. Compute the optimal contraction target v for each valid pair $\left(\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}\right)$. The error $\mathbf{v}^{\top}\left(\mathbf{Q}_{\mathbf{v}_{1}}+\mathbf{Q}_{\mathbf{v}_{2}}\right) \mathbf{v}$ of this target vertex becomes the cost of contracting that pair.
- 4. Place all the pairs in a heap keyed on cost with the minimum cost pair at the top.
- 5. Iteratively remove the pair $\left(\mathbf{v}_{1}, \mathbf{v}_{\mathbf{2}}\right)$ of least cost from the heap, contract this pair, and update the costs of all valid pairs involving $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$. Remove also all collapsed triangles.

Geometric Modeling in Graphics

QEM

Implementation

http://www.cs.cmu.edu/~./garland/quadrics/qslim.htm|

Figure 14: Original. Bones of a human's left foot (4,204 faces). Note the many separate bone segments.

Figure 15: Uniform Vertex Clustering. 262 face approximation (11 $\times 4 \times 4$ grid). Indiscriminate joining destroys approximation quality.

Figure 16: Edge Contractions. 250 face approximation. Bone segments at the ends of the toes have disappeared; the toes appear to be receding back into the foot.

Figure 17: Pair Contractions. 250 face approximation ($t=0.318$). Toes are being merged into larger solid components. No receding artifacts. This model now contains 61 non-manifold edges.

Geometric Modeling in Graphics

Progressive meshes

- Hoppe
- http://research.microsoft.com/enus/um/people/hoppe/proj/pm/

- Edge-collapse simplification scheme on triangular meshes
- Requiring manifold topology, preserving topology
- Introducing energy function for mesh
- Algorithm evaluates all edges that can be collapsed according to their effect on energy function and sorts them into a priority queue
- After collapse of edge with lowest energy, energy reevaluates and resorts nearby edges into the queue

Geometric Modeling in Graphics

Progressive meshes

- Position of new vertex vs after $\left(\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{t}}\right)$ collapse can be $\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{t}}$ or $\left(0.5 v_{s}+0.5 v_{t}\right)$
- Process repeats until topological constraints prevent further simplification - base mesh
- Vertex split(vsplit) - inverse to edge collapse (ecol)
- Progressive mesh - from base mesh to any level of details using several consecutive vsplits
- Using in mesh compression, progressive transmission

Geometric Modeling in Graphics

Progressive meshes

Geometric Modeling in Graphics

Quad mesh simplification

- Tarini, ...: Practical quad mesh simplification
- http://vcg.isti.cnr.it/Publications/20I0/TPCPPIO/
- Requiring regularity over quad mesh
- Composing all iterations of quad mesh simplification to be as regular (as homeometry) as possible
- Edges has same length I
- Diagonals of faces has same length I.sqrt(2)

- How far is mesh M from being homeometric - objective function
- e spans over all edges of mesh
- d spans over all edges of mesh

$$
\begin{gathered}
\mu=\sqrt{\operatorname{lraca}(M) / M \mid,} \\
\sum_{r \in \mathbb{N}^{e}}(|l|-\mu)^{(}+\sum_{d \in \mathbb{N}^{N}}(|\alpha|-\sqrt{2} \mu)^{2}
\end{gathered}
$$

Geometric Modeling in Graphics

Quad mesh simplification

- 0. [Convert input mesh into quad mesh M_{0}]
- I. Initial global smoothing of mesh M_{0} (minimizing function)
- 2. Iteratively process mesh M_{i} to produce mesh M_{i+1} until user-defined criterion is met. In each loop:
| a. for a fixed number of times:
- i. choose shortest edge or diagonal
b ii. perform any profitable local optimizing-operation, until none is available
- iii. select and perform a local coarsening-operation and cleaning operation on chosen elements such that operations minimizes objective function as best as possible
b b. local smoothing
- 3. Final global smoothing of mesh M_{n}

Geometric Modeling in Graphics

Quad mesh local operations

Quad mesh simplification

Geometric Modeling in Graphics

Terrain visualization

- View above terrain surface - some parts are close, some away - using LOD (Level Of Detail), each part of terrain is rendered in some detail based on distance from camera
- Needed structure for storing all levels of detail for each part of terrain
- Terrain
- Height field

Geometric Modeling in Graphics

Terrain visualization

- Creating complete quadtree over height filed
- Traversing tree during rendering - based on distance of camera and node area, the traverse is stopped or continued
- View-dependent, subdivision based, dynamic LOD creation

Geometric Modeling in Graphics

Terrain visualization

- Problems with the edge between areas on different levels in quadtree
- Solution using triangulation= connection of two consecutive quadtrees

Geometric Modeling in Graphics

Terrain visualization

Geometric Modeling in Graphics

The End for today

