Collision Detection

Lecture 05 Outline

* Problem definition and motivations
* Generic Bounding Volume Hierarchy (BVH)
\rightarrow BVH construction, fitting, overlapping
\rightarrow Metrics and Tandem traversal
* Several bounding volume strategies
\rightarrow OBBs, kDOPs, SSVs
* Proximity evaluation of primitive geometries
- Sphere \times Capsule collisions
* Approximate convex decomposition

Mid-Phase Collision Detection

* Input: List of pairs of potentially colliding objects.
* Problem: Refine this list based on more accurate geometrical properties of objects - prune out pairs of objects surely no colliding.
* Output: Refined (smaller) list of pairs of potentially colliding objects.
* Solutions:
\rightarrow Simplify complex geometry with simpler convex bounding volumes arranged into inclusive hierarchy
\rightarrow Decompose complex geometry into convex sub-parts. Calculate narrow phase using this sub-parts only.

Bounding Volume
 Hierarchy

Bounding Volume Hierarchy

* Definition: A Bounding Volume Hierarchy (BHV) also known as Bounding Volume Tree (BVT) is generally an m-ary tree $T=\left\{T_{1}, \cdots, T_{m}, B V, G\right\}$, whose nodes $\left(T_{i}\right)$ contain a specific bounding volume (BV) which must cover some part of object's geometry (G).

Binary Sphere BVH - construction stages

BVH - Properties

*Each lower level of the hierarchy should represent better approximation of the geometry.

* Child nodes should cover together the same part of geometry as their parent node.
* The BVH construction should be automatic, with only a few user defined parameters.
* To speed up the update process BVs should be invariant to rigid motion
*BVs should tightly fit object's geometry and minimize their volume, surface or other measure.

BVH - Choice of Bounding Volume

* Bounding Volume should
\rightarrow Be simple (usually) convex well defined geometry
\rightarrow Fit the non-spherical geometry as good as possible
\rightarrow Have fast and efficient overlap test
\rightarrow Rotate and translate with the geometry
\Rightarrow...

Sphere

AABB

OBB

kDop

Convex hull

BVH - Hierarchy Construction

* Problem
\rightarrow Given a complex (rigid) geometry define a strategy how to create appropriate fitting BVT
* Properties
\rightarrow Hierarchy is usually created before simulation
\Rightarrow Construction should be as automatic as possible
\rightarrow Transformation update must be fast
*Strategies
\rightarrow Top-down BVT construction strategies
\rightarrow Bottom-up BVT construction strategies

BVH - Hierarchy Construction

* Top-Down vs. Bottom-up construction strategies

Top-Down

\lln". \lln"." <n"..

BVH - Construction: Bottom-Up

*Define the clustering factor "m" (+ other params)

* Cover smallest geometry sub-parts with Bvs
*Find "m" closest BVs
\rightarrow Compute distance of BV centroids for clustering
\rightarrow Compute BV surface distances for clustering
* Merge them into parent BV
\rightarrow Fit vertices of child BVs or original geometry
*Repeat this process until one root is found
* Pros/Cons:
\rightarrow Spatial locality provides usually optimally balanced BVT
\rightarrow Clustering can be very time consuming

BVH - Construction: Bottom-Up

```
In: Objects geometry \(G\)
Out: A corresponding Bounding Volume Tree \(\mathcal{T}\)
function CreateBottom \(\operatorname{Up}(G): \mathcal{T}\)
1: \(\quad P \leftarrow\) DecomposePrimitives \((G)\)
2: \(\quad\{n, k\} \leftarrow\{|P|, 1\}\)
3: for \(i \leftarrow 1\) to \(n\) do \(\mathcal{T}_{i}^{0} \leftarrow \operatorname{FitBV}\left(P_{i}\right)\)
4: \(\quad\) while \(n>1\) do
5: \(\quad \mathcal{L} \leftarrow \mathcal{T}^{k} \quad / *\) save current hierarchy level */
6: \(\quad\{i, n, k\} \leftarrow\{1, n / m, k+1\}\)
    7: \(\quad\) while \(i \leq n\) do
        \(C \leftarrow \operatorname{FindClosestBVs}(\mathcal{L}, m)\)
        \(\mathcal{T}_{i}^{k} \leftarrow \operatorname{MergeBVs}(C)\)
        \(\mathcal{L} \leftarrow \mathcal{L} \backslash C \quad / *\) remove merged BV from level */
        \(i \leftarrow i+1\)
        end
    end
    14: return \(\mathcal{T}\)
    end
```


BVH - Construction: Top-Down

* Define the branching factor "m" (+ other params)
* Cover the whole geometry with root BV
* Split the geometry into "m" child parts
\rightarrow Split along largest vertex variance
\rightarrow Sub-parts should have similar volume
* Proceed recursively until stop criterion (volume of part is small ...
*Pros/cons
\rightarrow Very simple idea (implementation of the overall algorithm)
\rightarrow Sensitive to branching factor and stop condition

BVH - Construction: Top-Down

```
In: Objects geometry G
Out: A corresponding Bounding Volume Tree \mathcal{T}
function CreateTopDown}(G):\mathcal{T
1: }\quad\mathcal{T}\leftarrow\operatorname{FitBV}(G
2: if IsPrimitive( }G)\mathrm{ then return }\mathcal{T
3: }\quadG\leftarrow\operatorname{SplitGEom}(G,m
4: for }i\leftarrow1\mathrm{ to }m\mathrm{ do
5: }\quad\mp@subsup{\mathcal{T}}{i}{}\leftarrow\mathrm{ CreateTopDown (G}\mp@subsup{G}{i}{
6: end
7: return }\mathcal{T
end
```

Algorithm 2: Top-Down construction of the BVT

BVH - Tandem Traversal

* Given nodes T_{A} and T_{B} from geometries A and B
\rightarrow Test T_{0} and T_{B} for overlap - report false if no overlap
$\rightarrow T_{\text {a }}$ and T_{B} overlap we have to solve 3 cases
* T_{A} and T_{B} are leaf nodes - Report A and B overlap
* Only T_{A} or T_{B} is a leaf node
\Rightarrow Take all child nodes of the non-leaf node and do recursively tandem traversal between leaf node and child nodes.
* Both T_{A} and T_{B} are not leaf nodes
\rightarrow Choose which node (T_{A} or T_{B}) has larger geometry
\rightarrow Do tandem traversal of all child nodes of the larger node with the smaller node.

In: The BVT \mathcal{T}_{A} and \mathcal{T}_{B} for both objects

Out: List of primitive pairs in close proximity \mathcal{L}
function TandemTraversal $\left(\mathcal{T}_{A}, \mathcal{T}_{B}\right): \mathcal{L}$
1: if not $\operatorname{Overlap}\left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)$ then return \emptyset
2: $\quad \mathcal{L} \leftarrow \emptyset$
3: if $\operatorname{IsLeaf}\left(\mathcal{T}_{A}\right)$ then
4: if $\operatorname{IsLeaf}\left(\mathcal{T}_{B}\right)$ then

```
5: \(\quad \mathcal{L} \leftarrow\left(\mathcal{T}_{A}, \mathcal{T}_{B}\right) \quad / *\) primitive pair in close proximity \(* /\)
```

6: else
7: \quad foreach \mathcal{T}_{B}^{i} in $\operatorname{Children}\left(\mathcal{T}_{B}\right)$ do $\mathcal{L} \leftarrow \mathcal{L} \cup \operatorname{TandemTraversal}\left(\mathcal{T}_{A}, \mathcal{T}_{B}^{i}\right)$
end
else
if $\operatorname{IsLeaf}\left(\mathcal{T}_{B}\right)$ then
foreach \mathcal{T}_{A}^{i} in Children $\left(\mathcal{T}_{A}\right)$ do $\mathcal{L} \leftarrow \mathcal{L} \cup$ TandemTraversal $\left(\mathcal{T}_{A}^{i}, \mathcal{T}_{B}\right)$
else
if Larger $\left(\mathcal{T}_{A}, \mathcal{T}_{B}\right)$ then
foreach \mathcal{T}_{A}^{i} in Children $\left(\mathcal{T}_{A}\right)$ do $\mathcal{L} \leftarrow \mathcal{L} \cup$ TandemTraversal $\left(\mathcal{T}_{A}^{i}, \mathcal{T}_{B}\right)$
else
foreach \mathcal{T}_{B}^{i} in Children $\left(\mathcal{T}_{B}\right)$ do $\mathcal{L} \leftarrow \mathcal{L} \cup$ TandemTraversal $\left(\mathcal{T}_{A}, \mathcal{T}_{B}^{i}\right)$
end
end
end
20: return \mathcal{L}
end

Algorithm 3: Tandem Traversal algorithm

BVH - Cost Function

* Cost Function: $T_{A B}=N_{b} \times T_{b}+N_{u} \times T_{u}+N_{\rho} \times T_{\rho}$
$\rightarrow \mathrm{T}_{A B}$: is total time spent for interference detection between two objects A and B.
$\rightarrow N_{b} \times T_{b}$: is the time spent on the overlop tests between all N_{b} BV pairs.
$\Rightarrow N_{u} \times T_{U}$: is the time spent on the update of all $N_{u} B V s$.
$\rightarrow N_{\rho} \times T_{\rho}$: is the time spent on the exact collision tests between all N_{ρ} primitive pairs.
$\rightarrow \mathrm{N}_{\mathrm{b}}, \mathrm{N}_{\mathrm{u}}$ and N_{ρ} : Number of operations
$\rightarrow T_{b}, T_{u}$ and T_{ρ} : Time spent on one operation

Bounding Volumes

k-Discrete Orientation Polytopes (kDOP)

* Definition: k-Discrete Orientation Polytope (KDOP) is a convex polyhedron formed by the intersection of negative half-spaces of planes whose normals come from a small set of k fixed orientations di and have distances λi to the center c of $k D O P$.
* $\mathrm{KDOP}=\left\{\rho\right.$ in $R^{3} \mid d_{i}^{\top}(\rho-c) \leq \lambda_{i}$ and $\left.1 \leq i \leq k\right\}$
*Axis Aligned Bounding Box (AABB) is 6DOP with 6 directions
$\rightarrow(+1,0,0) ;(-1,0,0) ;(0,+1,0) ;(0,-1,0) ;(0,0,+1) ;(0,0,-1)$;

kDOP - Overlap Test and Fitting

kDOP - Hierarchy Construction

* Create binary BVT using Top-Down approach
* Split G into G1 and G2 by a cutting plane with normal being one of k directions
* Assuming geometry is a mesh - choose planes origin as one of triangles centroid
* Splitting strategies (choice of origin and normal)
\rightarrow Min Sum: Minimize the sum of volumes of G1 and G2
\rightarrow Min Max: Minimize the larger volume of G1 and G2
\rightarrow Splatter or Longes Side: We choose the direction that yields the largest variance and the reference point being the mean (or median) centroid along such direction.

kDOP - Overlap Test and Update

* Overlap Test
\rightarrow Since kDOPs are convex polytopes we can use SAT for overlop test
\rightarrow Since normals of all faces comes from k orientations we can use conservative SAT \rightarrow just test all ID interval overlaps
* Hierarchy Update
\rightarrow kDOPs are not transformation invariant \rightarrow we must refit geometry when the transformation changes
\rightarrow Full fitting is expensive \rightarrow We must use approximate refitting
\rightarrow Hill Climbing: Precompute convex hulls, during simulation use local search to find new interval limits
\rightarrow Approximate Refitting: Similar to hill Climbing just precompute kDOP vertices instead of convex hull

Oriented Bounding Boxes (OBB)

* Definition: Oriented Bounding Box (OBB) is a set of points $p \in R^{3}$ inside a box defined with a center point c and 3 mutually orthogonal unit direction vectors d_{1}, d_{2}, d_{3} and their extents $\lambda_{1}, \lambda_{2}, \lambda_{3}$
*OBB $=\left\{c+s_{1} d_{1}+s_{2} d_{2}+s_{3} d_{3}| | s_{i}\left|\leq\left|\lambda_{1}\right|\right\}\right.$
* Similar to AABB but can be freely rotated with the geometry
* Suitable for fast overlap test using SAT

OBB - Overlap test

Edge sub-sampling

OBB - Hierarchy Construction

* Again Top-Down splitting
\rightarrow Fit geometry with optimal OBB
\rightarrow Split in halves along longest axis
\rightarrow Use similar rules as for KDOPs
*Fitting OBB
\rightarrow Optimal fit $\mathrm{O}\left(\mathrm{n}^{3}\right)$ - slow
\rightarrow Approximate "Core set" algorithm: reduce vertices, use optimal algo.
\rightarrow Approximate "Principal direction": Use PCA to find principal directions and variance along them.
* Update OBB: just rotate directions and move center

Separating Axis Theorem for Polytopes

* Polytope SAT: Any two convex polytopes are disjoint iff there exists a separating axis which is either perpendicular to some face of the polytopes or to any two edges each taken from one polytope

Vertex - Vertex Case

Vertex - Edge Case

No swing

Edge - Edge Case

OBB - Overlop Test

* General SAT for polytopes needs C axis checks
* $C=\left|F_{A}\right|+\left|F_{B}\right|+\left|E_{A}\right| \cdot\left|E_{B}\right|$
$\rightarrow\left|F_{A}\right|$ and $\left|F_{B}\right|=$ number of faces of A and B
$\rightarrow\left|E_{A}\right|$ and $\left|E_{B}\right|=$ number of edges of A and B
*For OBB all faces and edges have only 3 principal directions: $C=3+3+3 \times 3=15$ checks
$\rightarrow s_{A B}=\left|V \cdot r_{A B}\right|$ (projected distance of centers onto v)
$\rightarrow h_{A}=\left|v \cdot d_{1}{ }^{\hat{A}}\right|+\left|v \cdot d_{2}{ }^{\wedge}\right|+\left|v \cdot d_{3}{ }^{\hat{A}}\right|$ (projection of A onto v)
$\rightarrow h_{B}=\left|v \cdot d_{1}^{B}\right|+\left|v \cdot d_{2}^{B}\right|+\left|v \cdot d_{3}^{B}\right|$ (projection of B onto v)
* 15 Directions \vee are: $d_{1}^{A} \times d_{1}^{B}, d_{1}^{A} \times d_{2}^{B}, \ldots$
\rightarrow If all of them are separating OBBs do not overlap

Swept Sphere Volumes (SSV)

* Definition: The Swept Sphere Volume SSVV is a region of points $\rho \in R 3$ whose distance to some primitive volume V is at most the radius r. Alternatively (SSV) is defined as the Minkowski sum of a primitive volume V and a sphere $S=\{\rho| | \rho-$ $0 \mid k \leq r\}$ with a radius r located at the origin.
*SSVV $=\{\rho| | \rho-q \mid \leq r \wedge q \in V\}=V \oplus S$
* Point Swept Sphere (PSS): V is a point
* Line swept Sphere (LSS): V is a line segment
* Rectangle swept Sphere (RSS): V is a rectangle

SSV - Overlap Test and Update

* Overlap test: True if distance between primitive volumes is less than the sum of radius
* Update: Transform primitive geometries

Proximity

Sphere x Sphere

* Contact point/normal:
\rightarrow Take the direction from one center to other
\rightarrow Calculate points on both spheres along direction vector.
\rightarrow Take their average as contact point
\rightarrow Contact normal is just normalized distance vector
* Penetration depth:
\rightarrow Take the distance between centers minus radius of both spheres

Capsule \times Sphere

* Contact point/normal:
\rightarrow Project center " C " of sphere onto capsule direction axis " a " $a=C_{2}-C_{i} ; u=\operatorname{norm}(a) ; v=C-C_{i} ; q=u \operatorname{dot} v$
\rightarrow Solve Case $1(\mathrm{q}<0)$ and Case $3(\mathrm{a}>|\mathrm{a}|)$ as Sphere \times Sphere contact
\rightarrow Case 2 is sphere to infinite cylinder contact:
$Q=c_{1}+q u ; m=C-Q ; n=\operatorname{norm}(m) ; P 1=Q+r n ; P 2=C-r_{2} n$
\Rightarrow Contact point/normal: $p=0.5\left(P_{1}+P_{2}\right) ; n=\operatorname{norm}\left(P_{2}-P_{1}\right)$
* Penetration depth:
\rightarrow Take $d=-\left|P_{2}-P_{1}\right|$

Capsule \times Sphere

Capsule \times Capsule

*Principle: use external Voronoi Regions to classify centers of capsules

* Project centers of capsule A onto axis of B
* Project centers of capsule B onto axis of A
* Classify centers on axes as

	CenterB1	CenterB2
RegionA1	A1B1	A1B2
RegionA	AB1	AB2
RegionA2	A2B1	A2B2

	CenterA1	CenterA2
RegionB1	B1A1	B1A2
RegionB	BA1	BA2
RegionB2	B2A1	B2A2

Capsule \times Capsule

* Sphere \times Sphere cases:
$\rightarrow(A 1 B 1 ; B 1 A 1),(A 1 B 2 ; B 2 A 1),(A 2 B 1 ; B 1 A 2),(A 2 B 2 ; B 2 A 2)$
* Project projected centers PA1, PA2, (PB1, PB2) back onto its original axes A (B) = PPA1, PPA2, (PPB1, PPB2)
* Sphere \times Cylinder cases:
\rightarrow e.g. PA1 is projected A1 onto B
\rightarrow Now project PA1 back onto A (=PPA1) and see where it lies
\rightarrow If PPA1 is in RegionA1 or RegionA2 we have sphere x cylinder
\rightarrow PPA2 in RegionA1/A2; PPB2 in RegionB1/B2; PPB2 in RegionB1/B2
* Cylinder x Cylinder cases:
\rightarrow Otherwise (e.g. PPA1 lies in RegionA)
\rightarrow or PPA2 is in RegionA or PPB1 is in RegionB or PPB2 is in RegionB

Capsule x Capsule

Capsule \times Capsule

* $\mathrm{PP}_{\mathrm{A}^{2}}$ is in Region ${ }_{A 2}$
*Sphere x Cylinder

Region $_{A}$
Region $_{B}$

Region $_{\mathrm{B} 2}$
Region $_{A 1}$

Approximate Convex Decomposition

Approximate Convex Decomposition

* Problem: For a given non-convex geometry find a small set of sub-parts which are almost convex
* A geometry is almost convex if the difference between its volume and the volume of its convex hull is under given threshold
* It is usually done only once before simulation
* A number of complex algorithms exists
\rightarrow Measuring concavity, fuzzy clustering, ...
* We provide here simple relaxation strategy

ACD - Relaxation strategy

* Choose a Top-Down splitting strategy (e.g. OBB)
* Split recursively geometry until small leaf nodes
* Use volume threshold and stop criterion
* We have now a (large) set of small (almost) convex sub-parts.
* Put them into priority queue based on their volume (sort upon volume)
* Pop first part and try to merge it with some other small part. Merge only when the ratio between merged volume and appropriate convex hull is under given threshold

Approximate Convex Decomposition

* Choose patch, create convex hull, mark splitting vertices \rightarrow Create sub-parts. Exterior volume $\rightarrow 0$

