

## Geometric Modeling

 in Graphics
## Part 5: Mesh repairing



## Mesh repairing

- Joining identical vertices
- Removing degenerated (empty) polygons and edges
- Removing duplicated faces
- Creating consistent orientation
- Fixing manifoldness, remeshing
- Preparing mesh with only simple polygons, triangulation
- Creating closed solid objects, watertight mesh, filling holes
- Overview of repairing software
- http://meshrepair.org/


## Triangulation

- Converting polygonal mesh to triangular mesh
- 2D manifold polygons - decomposing polygon to triangles


Geometric Modeling in Graphics

## Ear clipping

- Simple polygon with n ordered vertices $\mathrm{V}_{0}, \mathrm{~V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}-\mathrm{l}}$
, $\mathrm{V}_{-1}=\mathrm{V}_{\mathrm{n}-1}, \mathrm{~V}_{\mathrm{n}}=\mathrm{V}_{0}$
- Assuming counterclockwise orientation - interior is to the left when traversing
- Ear of polygon - triangle $V_{i-1} V_{i} V_{i+1}$
, $V_{i}$ is convex vertex - angle at $V_{i}$ is less than $\pi$ radians - ear tip
- Line segment $\mathrm{V}_{\mathrm{i}-1} \mathrm{~V}_{\mathrm{i}+1}$ lies inside polygon - diagonal
, No other vertices $V_{j}$ lies inside ear
- Polygon of four or more sides always has at least two non-overlapping ears
- Ear removal - reducing number of polygon vertices by I
- http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html

Geometric Modeling in Graphics

## Detecting ears

- Iterate over vertices $\mathrm{V}_{\mathrm{i}}$
- Test all other vertices $\mathrm{V}_{0}, \ldots, \mathrm{~V}_{\mathrm{i}-2}, \mathrm{~V}_{\mathrm{i}+2}, \ldots, \mathrm{~V}_{\mathrm{n}-1}$ if any are inside triangle $\mathrm{V}_{\mathrm{i}-1} \mathrm{~V}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}+1}$
- Test only reflex vertices - interior angle at vertex is larger than $\pi$ radians
- Reflex vertex $V_{j}-\left(V_{j}-V_{j-1}\right) \times\left(V_{j+1}-V_{j}\right)$ has in 3D negative third coordinate
- Convex vertex $\mathrm{V}_{\mathrm{j}}-\left(\mathrm{V}_{\mathrm{i}}-\mathrm{V}_{\mathrm{j}-1}\right) \times\left(\mathrm{V}_{\mathrm{j}+1}-\mathrm{V}_{\mathrm{j}}\right)$ has in 3D positive third coordinate
- Maintaining lists of vertices $V$, list of reflex vertices $R$ and (ordered) list of ear tips $E$ during triangulation


## Ear clipping algorithm

- I. Given initial list of vertices $V$
- 2. Construct initial list $R$ of reflex vertices and construct list $E$ of ear tips using list $R$
- 3. Pick (random or with minimal inner angle) and remove one ear tip $V_{i}$ from $E$
- Add triangle $V_{i-1} V_{i} V_{i+1}$ to final triangulation
- Remove $V_{i}$ from list $V$
- Update $R$ and $E$ with adjacent vertices $\mathrm{V}_{\mathrm{i}-1}, \mathrm{~V}_{\mathrm{i}+1}$
- If the adjacent vertex is reflex, it is possible that it becomes convex and, possibly, an ear
- If an adjacent vertex is an ear, it does not necessarily remain an ear
- 4. Repeat 3. until list $V$ contains only 3 vertices - last triangle of triangulation


## Ear clipping algorithm

- Time complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- http://www.geometrictools.com/Documentation/Triangulat ionByEarClipping.pdf




Geometric Modeling in Graphics

## Polygons with holes

- One outer polygon
- Several non-intersecting inner polygons with opposite ordering as outer polygon
- Finding two mutually visible vertices, one from outer loop, one from inner loop
- Connect two mutually visible vertices and combine inner and outer loop into one outer loop



## Finding visible vertices

- I. Find vertex $M$ of inner loop such that its $x$-coordinate is maximal for all vertices of all inner loops.
- 2. Intersect the ray $M+t(I, 0)$ with all directed edges $V_{i}, V_{i+1}$ of the outer polygon for which $M$ is to the left of the line containing the edge. Let I be the closest visible point to $M$ on this ray.
- 3. If $I$ is a vertex of the outer polygon, then $M$ and $I$ are mutually visible.

4. Otherwise, $I$ is an interior point of the edge $V_{i}, V_{i+1}$. Select $P$ to be the endpoint of maximum $x$-value for this edge.

- 5. Search the reflex vertices of the outer polygon except P. If all of these vertices are strictly outside triangle ( $\mathrm{M}, \mathrm{I}, \mathrm{P}$ ), then M and P are mutually visible.
- 6. Otherwise, at least one reflex vertex lies in (M,I, Pi). Search for the reflex vertex $R$ that minimizes the angle between $(1,0)$ and the line segment ( $M, R$ ). Then $M$ and $R$ are mutually visible. There can be multiple reflex vertices that minimize the angle, in this case choose the reflex vertex on this ray that is closest to $M$.

Geometric Modeling in Graphics

## Finding visible vertices



## Delaunay triangulation

- Triangulation for set of points in plane, dual graph to Voronoi diagram
- Points $p_{j} p_{j} p_{k}$ combine into triangle in DT $\Leftrightarrow$ circumscribed circle for points $p_{j} p_{j} p_{k}$ does not contain any other point - Delaunay property
- DT maximizes minimal inner angle



## Delaunay triangulation

- Construction algorithm using point insertion
- Given set $S$ of points in plane
- 2 cases when inserting new point to already created triangulation
- Point is inserted inside convex hull of points from $S$ - inserted point is inside one triangle of current DT
- Point is inserted outside convex hull of points from S
- After insertion, Delaunay property can be broken - fixed by multiple edge flips
- Time complexity $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in worst case, $\mathrm{O}(\mathrm{n} . \log (\mathrm{n})$ ) in average case, can be extended to $\mathrm{O}(\mathrm{n} . \log (\mathrm{n})$ ) in worst case

Geometric Modeling in Graphics

## DT construction - 1. case

- New point $p_{i}$ lies in triangle $T=\Delta\left(p_{j} p_{k}, p_{l}\right)$
- Edges $p_{i} p_{j} p_{i} p_{k}, p_{i} p_{l}$, belong to new DT
- Conflict with Delaunay property can be in neighbors of T
- Maintaining list $\mathrm{P}\left(*\left(\mathrm{p}_{\mathrm{i}}\right)\right)$ - all edges that are candidates for flipping
- If some edge from $\mathrm{P}\left(*\left(\mathrm{P}_{\mathrm{i}}\right)\right)$ is flipped, then it is removed from $P\left(*\left(p_{\mathrm{i}}\right)\right)$ and two adjacent edges are added
- If no edge from $P\left(*\left(p_{i}\right)\right)$ is flipped, algorithm terminates


Geometric Modeling in Graphics

## DT construction - 2. case

- New point $p_{i}$ does not lie in convex hull of original DT
- For each point from $q$ from $S$, that are visible from $p_{p}$ edges $p_{i} q$ are part of new DT
- Again flipping edges that breaks Delaunay property of DT and updating list of active edges $\mathrm{P}\left({ }^{*}\left(\mathrm{p}_{\mathrm{i}}\right)\right)$


Geometric Modeling in Graphics

## DT construction algorithm

```
Delaunay(S) (S is set of sites)
{
    T = new array;
    while (S.size() > 0)
    {
            p = S.First;
            S.DeleteFirst;
            T.InsertSite(p);
    }
}
```

```
InsertSite(T, p) (T represents the current Delaunay triangulation, p is a new site)
{
    t = T.FindTriangle(p);
    if (t != NULL)
    Star(p) = t.CreateStar(p);
    else
        Star(p) := T.HullEdges(p);
    T.Insert(Star(p), t);
    StarPoly = t.Edges();
    while (StarPoly.size() > 0)
    {
        e = StarPoly.First();
        StarPoly.DeleteFirst();
        q = p.Opposite(e);
        if (q = NULL)
        {
            (r,s) = e.EndPoints();
            if (InCircleTest(p,r, s, q))
            {
                T.Remove(e);
            T.Add((p,q));
            StarPoly.Add((r,q));
            StarPoly.Add((s,q));
            }
        }
    }
}
```

Geometric Modeling in Graphics

## Additional DT

- Constrained DT - additional set of edges that must be in triangulation, endpoints of edges are in S, introducing special constrained Delaunay property
- Conforming DT - still constrained by set of edges, algorithm adds new (Steiner) points to maintain Delaunay property


[^0]
## Quality triangulation

- https://kogs-www.informatik.unihamburg.de/~tchernia/SR_papers/chew93.pdf
- https://www.ics.uci.edu/~eppstein/pubs/BerEpp-CEG95.pdf
- Introducing two criteria for triangle grading
- Triangle is well-shaped if all its angles are greater than or equal to 30 degrees
- Triangle is well-sized if it fits within a circle of given radius and satisfy the grading function
- Build over constrained DT by inserting new special points for each bad-graded triangle
- Extended for curved surfaces in 3D
- https://www.cs.cmu.edu/~quake/triangle.html

Geometric Modeling in Graphics

## Quality triangulation



Geometric Modeling in Graphics

## Triangulation in 3D

- Triangulating non-planar polygon
- Ear clipping in 3D
- Projecting 3D points on principal plane
- Delaunay based curved surface triangulations
- Tetrahedralization of 3D points
- Filling holes algorithms for meshes


Geometric Modeling in Graphics

## Filling holes in meshes

- Creating closed, watertight meshes
- Several connectivity components
- Surface-oriented vs volumetric algorithms
- Handling islands, non-manifoldness


Geometric Modeling in Graphics

## Filling holes

- Peter Liepa: Filling Holes in Meshes


## - http://www.brainjam.ca/papers/papers.htm

- Surface-oriented algorithm, not handling islands
- I. Identify non-empty contours that represents holes
- User-defined, topology-defined holes
- 2. Compute coarse triangulation T to fill hole
- Weighting each triangle by its area and maximal angle of triangle and its adjacent triangles
- Iterative computation of triangulation that minimizes weight of its triangles, favoring triangulations of low area and low normal variation
- Weight of larger polygon is computed from weight of triangle and weight of smaller polygon
- Time complexity $O\left(\mathrm{n}^{3}\right)$

Geometric Modeling in Graphics

## Filling holes

- 3. Refine triangulation T to match vertex density of the surrounding area
- Compute edge length data for the vertices on the hole boundary
- Subdividing triangles of T with barycenter to reduce edge lengths
- Swapping edges when necessary to maintain Delaunay-like property
- 4. Smooth the triangulation T to match the geometry of the surrounding area
, Laplacian-based mesh smoothing
- Minimizing umbrella-based operator(Vector Laplacian)
- Solving linear system, variables are positions of vertices in T


## Filling holes



Figure 5: (a) Stanford bunny. (b) Mutilated Stanford bunny. (c) After hole triangulation. (d) After meshing and fairing. (b) and (d) are reproduced in the color section in Figure 8.

## Geometric Modeling in Graphics

## Volumetric mesh repair

- Closing meshes, repairing non-manifoldness, creating more regular polygons, triangulation, remeshing
- I. convert the input model into an intermediate volumetric representation
- 2. do robust and reliable processing with discrete volumetric representation - morphological operators (dilation, erosion), smoothing, interior/exterior identification
- 3. extract the surface of a solid object from the volume

voxel grid

adaptive octree


BSP tree

Geometric Modeling in Graphics

## Volumetric mesh repair

- S. Bischoff, D. Pavic, L. Kobbelt: Automatic Restoration of Polygon Models
- https://www.graphics.rwth-
aachen.de/publication/86/automatic_restoration I.pdf


Geometric Modeling in Graphics

## Voxelization

- Adaptive octree structure
- Voxels are used to determine mesh connectivity, topology
- Geometry of output mesh is given by input mesh
- Each voxel holds reference to triangles of input mesh
- Determining cells with boundary edges


Geometric Modeling in Graphics

## Closing gaps

- Dilating boundary edges in octree grid
- Computing new triangles for gap voxels


Geometric Modeling in Graphics

## Surface reconstruction

- Dual contouring algorithm
- Creating new triangles for each leaf cell of octree
- Connectivity of new triangles is given by cells neighborhood
- Positions of new triangle vertices is computed from input mesh triangles referenced in cell


Geometric Modeling in Graphics

## Volumetric mesh repair



Geometric Modeling in Graphics

## Volumetric mesh repair



Geometric Modeling in Graphics

## Additional resources

## Polygon Mesh Processing



Mario Botsch Leif Kobbelt
Mark Pauly
Pierre Alliez
Bruno Lévy

## Delaunay Mesh Generation



Siu-Wing Cheng
Tamal Krishna Dey Jonathan Richard Shewchuk

$$
\begin{aligned}
& \text { CBC) CRC Press } \\
& \text { A CHAPMAN a HaLL Book }
\end{aligned}
$$

Geometric Modeling in Graphics


## The End for today


[^0]:    Geometric Modeling in Graphics

