# Geometric Modeling in Graphics



# Part 5: Mesh repairing

#### Martin Samuelčík

www.sccg.sk/~samuelcik samuelcik@sccg.sk



# **Mesh repairing**

- Joining identical vertices
- Removing degenerated (empty) polygons and edges
- Removing duplicated faces
- Creating consistent orientation
- Fixing manifoldness, <u>remeshing</u>
- Preparing mesh with only simple polygons, <u>triangulation</u>
- Creating closed solid objects, watertight mesh, <u>filling</u> <u>holes</u>
- Overview of repairing software
  - http://meshrepair.org/

# Triangulation

- Converting polygonal mesh to triangular mesh
- D manifold polygons decomposing polygon to triangles



# Ear clipping

- Simple polygon with n ordered vertices V<sub>0</sub>, V<sub>1</sub>,...,V<sub>n-1</sub>
   V<sub>-1</sub> = V<sub>n-1</sub>, V<sub>n</sub> = V<sub>0</sub>
- Assuming counterclockwise orientation interior is to the left when traversing
- Ear of polygon triangle  $V_{i-1}V_iV_{i+1}$ 
  - V<sub>i</sub> is convex vertex angle at V<sub>i</sub> is less than  $\pi$  radians ear tip
  - Line segment  $V_{i-1}V_{i+1}$  lies inside polygon diagonal
  - No other vertices V<sub>i</sub> lies inside ear
- Polygon of four or more sides always has at least two non-overlapping ears
- Ear removal reducing number of polygon vertices by I
- http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html

## **Detecting ears**

- Iterate over vertices V<sub>i</sub>
- Test all other vertices V<sub>0</sub>,...,V<sub>i-2</sub>,V<sub>i+2</sub>,...,V<sub>n-1</sub> if any are inside triangle V<sub>i-1</sub>V<sub>i</sub>V<sub>i+1</sub>
- Test only reflex vertices interior angle at vertex is larger than π radians
  - Reflex vertex  $V_j (V_j V_{j-1})x(V_{j+1} V_j)$  has in 3D negative third coordinate
  - Convex vertex  $V_j (V_j V_{j-1})x(V_{j+1} V_j)$  has in 3D positive third coordinate
- Maintaining lists of vertices V, list of reflex vertices R and (ordered) list of ear tips E during triangulation

# Ear clipping algorithm

- I. Given initial list of vertices V
- 2. Construct initial list R of reflex vertices and construct list E of ear tips using list R
- 3. Pick (random or with minimal inner angle) and remove one ear tip V<sub>i</sub> from E
  - Add triangle  $V_{i-1}V_iV_{i+1}$  to final triangulation
  - Remove V<sub>i</sub> from list V
  - Update R and E with adjacent vertices  $V_{i-1}, V_{i+1}$ 
    - If the adjacent vertex is reflex, it is possible that it becomes convex and, possibly, an ear
    - If an adjacent vertex is an ear, it does not necessarily remain an ear
- A. Repeat 3. until list V contains only 3 vertices last triangle of triangulation

# Ear clipping algorithm

- Time complexity O(n<sup>2</sup>)
- http://www.geometrictools.com/Documentation/Triangulat ionByEarClipping.pdf



# **Polygons with holes**

- One outer polygon
- Several non-intersecting inner polygons with opposite ordering as outer polygon
- Finding two mutually visible vertices, one from outer loop, one from inner loop
- Connect two mutually visible vertices and combine inner and outer loop into one outer loop



# **Finding visible vertices**

- I. Find vertex M of inner loop such that its x-coordinate is maximal for all vertices of all inner loops.
- 2. Intersect the ray M + t(1, 0) with all directed edges  $V_i$ ,  $V_{i+1}$  of the outer polygon for which M is to the left of the line containing the edge. Let I be the closest visible point to M on this ray.
- 3. If I is a vertex of the outer polygon, then M and I are mutually visible.
- 4. Otherwise, I is an interior point of the edge V<sub>i</sub>, V<sub>i+1</sub>. Select P to be the endpoint of maximum x-value for this edge.
- 5. Search the reflex vertices of the outer polygon except P. If all of these vertices are strictly outside triangle (M, I, P), then M and P are mutually visible.
- 6. Otherwise, at least one reflex vertex lies in (M, I, Pi). Search for the reflex vertex R that minimizes the angle between (I, 0) and the line segment (M, R). Then M and R are mutually visible. There can be multiple reflex vertices that minimize the angle, in this case choose the reflex vertex on this ray that is closest to M.

### **Finding visible vertices**



# **Delaunay triangulation**

- Triangulation for set of points in plane, dual graph to Voronoi diagram
- Points  $p_i, p_j, p_k$  combine into triangle in DT  $\Leftrightarrow$ circumscribed circle for points  $p_i, p_j, p_k$  does not contain any other point – Delaunay property
- DT maximizes minimal inner angle





# **Delaunay triangulation**

- Construction algorithm using point insertion
- Given set S of points in plane
- 2 cases when inserting new point to already created triangulation
  - Point is inserted inside convex hull of points from S inserted point is inside one triangle of current DT
  - Point is inserted outside convex hull of points from S
- After insertion, Delaunay property can be broken fixed by multiple edge flips
- Time complexity O(n<sup>2</sup>) in worst case, O(n.log(n)) in average case, can be extended to O(n.log(n)) in worst case

### **DT construction – 1. case**

- New point  $p_i$  lies in triangle  $T = \Delta(p_i, p_k, p_l)$
- Edges  $p_i p_i, p_i p_k, p_i p_l$  belong to new DT
- Conflict with Delaunay property can be in neighbors of T
- Maintaining list P(\*(p<sub>i</sub>)) all edges that are candidates for flipping
- If some edge from P(\*(p<sub>i</sub>)) is flipped, then it is removed from P(\*(p<sub>i</sub>)) and two adjacent edges are added
- If no edge from  $P(*(p_i))$  is flipped, algorithm terminates



### DT construction – 2. case

- New point p<sub>i</sub> does not lie in convex hull of original DT
- For each point from q from S, that are visible from p<sub>i</sub>, edges p<sub>i</sub>q are part of new DT
- Again flipping edges that breaks Delaunay property of DT and updating list of active edges P(\*(p<sub>i</sub>))



# **DT construction algorithm**



```
InsertSite(T, p) (T represents the current Delaunay triangulation, p is a new site)
{
    t = T.FindTriangle(p);
    if (t != NULL)
        Star(p) = t.CreateStar(p);
    else
        Star(p) := T.HullEdges(p);
    T.Insert(Star(p), t);
    StarPoly = t.Edges();
    while (StarPoly.size() > 0)
         e = StarPoly.First();
         StarPoly.DeleteFirst();
         q = p.Opposite(e);
        if (q ≠ NULL)
            (r, s) = e.EndPoints();
            if (InCircleTest(p, r, s, q))
                 T.Remove(e);
                 T.Add((p, q));
                 StarPoly.Add((r,q));
                 StarPoly.Add((s,q));
         }
    }
}
```

# **Additional DT**

- Constrained DT additional set of edges that must be in triangulation, endpoints of edges are in S, introducing special constrained Delaunay property
- Conforming DT still constrained by set of edges, algorithm adds new (Steiner) points to maintain Delaunay property



# **Quality triangulation**

- https://kogs-www.informatik.unihamburg.de/~tchernia/SR\_papers/chew93.pdf
- https://www.ics.uci.edu/~eppstein/pubs/BerEpp-CEG-95.pdf
- Introducing two criteria for triangle grading
  - Triangle is well-shaped if all its angles are greater than or equal to 30 degrees
  - Triangle is well-sized if it fits within a circle of given radius and satisfy the grading function
- Build over constrained DT by inserting new special points for each bad-graded triangle
- Extended for curved surfaces in 3D
- https://www.cs.cmu.edu/~quake/triangle.html

### **Quality triangulation**



# **Triangulation in 3D**

- Triangulating non-planar polygon
- Ear clipping in 3D
- Projecting 3D points on principal plane
- Delaunay based curved surface triangulations
- Tetrahedralization of 3D points
- Filling holes algorithms for meshes





# Filling holes in meshes

- Creating closed, watertight meshes
- Several connectivity components
- Surface-oriented vs volumetric algorithms
- Handling islands, non-manifoldness





# **Filling holes**

- Peter Liepa: Filling Holes in Meshes
  - http://www.brainjam.ca/papers/papers.htm
- Surface-oriented algorithm, not handling islands
- I. Identify non-empty contours that represents holes
  - User-defined , topology-defined holes
- 2. Compute coarse triangulation T to fill hole
  - Weighting each triangle by its area and maximal angle of triangle and its adjacent triangles
  - Iterative computation of triangulation that minimizes weight of its triangles, favoring triangulations of low area and low normal variation
  - Weight of larger polygon is computed from weight of triangle and weight of smaller polygon
  - Time complexity O(n<sup>3</sup>)

# **Filling holes**

- 3. Refine triangulation T to match vertex density of the surrounding area
  - Compute edge length data for the vertices on the hole boundary
  - Subdividing triangles of T with barycenter to reduce edge lengths
  - Swapping edges when necessary to maintain Delaunay-like property
- 4. Smooth the triangulation T to match the geometry of the surrounding area
  - Laplacian-based mesh smoothing
  - Minimizing umbrella-based operator(Vector Laplacian)
  - Solving linear system, variables are positions of vertices in T

### **Filling holes**





# Volumetric mesh repair

- Closing meshes, repairing non-manifoldness, creating more regular polygons, triangulation, remeshing
- I. convert the input model into an intermediate volumetric representation
- 2. do robust and reliable processing with discrete volumetric representation – morphological operators (dilation, erosion), smoothing, interior/exterior identification
- 3. extract the surface of a solid object from the volume



# Volumetric mesh repair

- S. Bischoff, D. Pavic, L. Kobbelt: Automatic Restoration of Polygon Models
  - https://www.graphics.rwthaachen.de/publication/86/automatic\_restoration1.pdf



**Geometric Modeling in Graphics** 

# Voxelization

- Adaptive octree structure
- Voxels are used to determine mesh connectivity, topology
- Geometry of output mesh is given by input mesh
- Each voxel holds reference to triangles of input mesh
- Determining cells with boundary edges



# **Closing gaps**

- Dilating boundary edges in octree grid
- Computing new triangles for gap voxels



## **Surface reconstruction**

- Dual contouring algorithm
- Creating new triangles for each leaf cell of octree
  - Connectivity of new triangles is given by cells neighborhood
  - Positions of new triangle vertices is computed from input mesh triangles referenced in cell



### Volumetric mesh repair



original 1124 triangles reconstruction 279892 triangles (at 1000<sup>3</sup>)

decimated 7018 triangles

### Volumetric mesh repair





### **Additional resources**

### Polygon Mesh Processing



Chapman & Hall/CRC Computer & Information Science Series

#### Delaunay Mesh Generation



Siu-Wing Cheng Tamal Krishna Dey Jonathan Richard Shewchuk





# The End for today