
Physical-based Animations and
Mathematical Modeling

Projects

[Animations Topics]

Animations Notes:
 Put your name and title at the beginning.
 Animation duration should be at least 1 minute.
 Focus on physical phenomena, not materials models or rendering, but try to make it nice.
 Google for tutorials, self-study tutorials how to make it (it is a part of your task)
 You can use any authoring tool (eg 3dsmax, maya, blender, realflow...)
 Animations should be uploaded to youtube or any other video service and email me the link

A01: World of Domino
Place hundreds of dominos (box with texture) in some cool paths, going up/down over some obstacles,
hitting balls (with different weights) that roll over and hit another balls or dominos. Some fallen
dominos should slide over inclined plane, they should have different sliding friction and weight so
some slide faster and longer than other. Camera should follow the falling/sliding dominos and rolling
balls, making interesting details visible.

A02: A Billiard Match
Create simple billiard table with 6 holes, 2 cues, 15 numbered balls and one white ball. Your task is to
animate one game, where in every round you put one ball into the hole by hitting at least 1 intermediate
ball. You animate the cue striking white ball, which hits some numbered ball that hits another
numbered ball which hits the hole. Balls should have different radius and weight and should physically
roll and bounce. Cues should be key-frame animated.

A03: Punching Bag
Create simple human skeleton (each bone is simply a capsule or box) with a boxing glove (it should be
from an elastic material). Create a punching bag (from elastic material too) hanging on a rope in front
of the figure. Use Inverse Kinematics (for arm at least) to animate the arm as punch the bag. The bag
should be heavy and elastic to bend when it's hit. After some strikes it should also swing on the rope. At
the end the rope should tear up and the bag must fall down onto the ground. Camera should follow
details

A04: North Pole
Make a simple scenery of glaciers and snowdrifts (not just a simple plane !) From the sky start to fall
down big rocky 3D letters N, than O than R, T, H P, O, L, E next to each other. When the letter hit the
ground it should physically collide (bound, spin...) and spray some snow particles. During the whole

animation snow particles should fall down. After all letters are settled down the snowing should
increase so after a while those rocky letters start to be covered with a thin snow layer.

A05: Catching Spider
Create a skeleton of a 6 leg spider (each bone is simply a capsule or box) Make simple model of spider
and apply skinning on it. Use inverse kinematics to make the spider walking in some direction. After
some steps a web (make a rectangular piece of cloth with a texture of web) falls down from the sky and
catches the spider.

A06: Great Fisherman
Create simple human skeleton (each bone is simply a capsule or box) with a rod (from elastic material)
in the hand. Figure should be standing near some pond. Use inverse kinematics (IK) to animate how the
fisherman throws the hook into the pond (hook must be on a visible nylon). When the hook hits the
water simple waves should start around. After a short while the fisherman starts to twist the rope (use
IK to move other hand in a rotational movement), the nylon should strain and the rod must bend.
Camera can be simple static.

A07: Suit up !
Create simple human skeleton (each bone is simply a capsule or box). From cloth like material create
simple t-shirt and pants around the skeleton. Make simple head (sphere is enough). Create long hair on
the head (use hair or fur: google for hair in 3ds max). Use inverse kinematics for make the figure dance
(some simple movements). Add wind to wave hair and cloth. Change cloth shear and bend stiffness
during animation. Camera should be simple rotating around figure.

A08: World Trade Center
Create a simple scene depicting WTC towers (min two, just boxes with texture). Model simple air
plane flying towards the building. Model the plane crash with the building. Plane should break apart,
debris from plane and building should fall down. There should be explosion with fire and dust (you can
use particle systems with textures of smoke and fire). After a while the whole building should fall
down, with a huge dust and smoke (use rigid bodies as floors falling down). Camera can by static not to
far from the crash.

A09: Great Fireworks
Create 3D fireworks. Design min 10 different rockets with various explosion effects. Particles should
change their size, color, weight, life-time and should explode into another particles. Use nice explosion
and dust particles. Change wind during animation. Camera should rotate around the fireworks.

A10: The Game of Fire
Create a rectangular piece of cloth hanging from two hooks. Next create simple model of one match
and match box. Kindle the match by moving close to the matchbox. Next move it close to the piece of
cloth, which starts to burn. However only letters F, I, R, E will burn, the rest of the cloth will resist
(place particle emitters only in the shape of letters). Change wind during animation. Cloth and fire
should move with the wind. Camera can be static.

A11: Help Firemen !
Create simple model of burning house. From broken windows and doors flames comes out (you can
use fire and smoke particles). Create simple fire truck with a jet. After a while water starts to flow out
of the jet, turning flames into smoke. At the end fire should be stopped and only dust comes out of the
house. Camera can be static.

A12: The Beauty of Niagara
Create simple waterfall scenery. Create fluid inflow above the waterfall and simulate falling water from
the rock. At the beginning show the rock without water, then start the inflow. Next create a simple boat
model flowing the river above waterfall. After a while the boat should fall down with the water in the
waterfall.

A13: Breaking Dam
Create simple scenery of a valley filled with water and a concrete dam. Next create a simple model of
rocket (use dust and fire particles) flying towards the dam. The racket should explode after the it hits
the dam. Dam breaks apart (no physical fracture is necessary, just create broken parts manually). Water
should flow through the hole in the dam.

A14: Flood in the City
Create simple model of city (just boxes as buildings). Place simple cars, rubbish bins etc. onto roads.
Next create large body of water flooding the city. Objects on roads should flow with the water. Camera
should follow the the front wave of water.

A15: Sailing the Ocean
Create ocean-like water surface with waves. Model simple sailing ship model floating in the water. (On
the water / boat contact create particle sprays). The boat should have at least one sail (use cloth
material) that reacts on wind around. Change the wind power during the simulation. Create rain
particles that react on wind. Camera can be static.

A16: Splash
Create splash like animation with very complex shape of splash in air. Show the shape in slow motion.
See the realflow animation on youtupe for more details.

A17: Autumn Leaves
Create animation of walking man on autumn leaves on forest tract. Show the food and the leaves
banging under the foot. Demonstrate the softness of leaves and softness of walking.

A18: Leaves in a Wind
Create animation autumn leaves moving in small wind in a park. Wind should take the leaves from the
ground and put them in a trash. Show soft nice leave movemts so that the viewer would like to move
with leaves.

A19: Walking on a Snow
Create animation of walking man on a wet snow leaving the foot tracts. Focus on very detail of snow
under the food, show the detail.

A20: Melting Ice Dragon
Create animation of ice and snow dragon being melted while changing the shape.

A21: Candle
Create animation of burning candle. Candle will be lighted by matches, it will meld and deform under
the temperature. Wax will fall down from the candle. Light off the candle and show the smoke.

A22: Metal Balls
Create animation of metal balls falling on metal spirals, small tracks, falling blocks and finall it andsup
in aquarium.

A23: Child with Pool
Create animation of a boy playing with dirty pool on street. Show a food stepping in a pool and soft
interaction with water and dirt. Show it in such a way that the viewer would like to jump in the pool.

A24: Snowing Country
Create animation of a scene during the snowing season and show the object slowly covering by a snow.
Snow should create the bunch of snow.

A25: Bubbles
Create animation of small and huge bubbles. Small bubbles do not change the shape and the huge
bubbles should be largely deformed. Show the elasticity of large bubbles.

A26: Fireplace
Create animation of fire being started in fireplace. Light up the fire, show growing fire, show large fire,
show smaller fire, show the end of fire and the hot coal at the end.

A27: Dragon
Create animation of a dragon floating above the huge medieval castle. Show the dragon moving its
wings and spitting the fire. Show growing fire, show large fire, show smaller fire. Create a little story.

A28: Crowd Animation
Create animation of koi fish crowd swimming in a pond. Koi is a Japanese colored carp. Use the crowd
animation scripts. Make a small story with a fish. You have seen the crow animation in the Lord of the
Rings.

A29: Running Cat
Create animation of running cat or dog. You should show the most realistic cat moves, tail moves and
the body deforms while running. You can make it even without the motion capture data the key
animation should be enough but will take time. Focus on reality.

A29: Fresh Bread
Create animation of a fresh bread being cut by a knife. Show the freshness of bread, show that it is still
hot, show how it deforms before cutting, and show that it is crunchy.

[Coding Tasks]

C01: Key-framing and Parameter Interpolation
 Scene: 2d space with one box positioned at (0,0) rotated by 0 degs
 Implement parameter interpolation of position (x,y) and orientation (angle) - user can choose
interpolation type
◦ Nearest neighbor interpolation of a Sequence of key-frames - user can add key-frames
◦ Linear interpolation of a Sequence of key-frames - user can add key-frames
◦ One Cubic Bezier curve - user can move control points
 Implement time control: Change time from 0 to 1 second by a slider. Set FPS in edit-box.
◦ Box should be rendered with interpolated parameters for given time

C02: Skeleton and Skinning
 Scene: 2d line-segment skeleton of figure (min 15 bones), poly-line skin around skeleton
 Implement 2d skeleton creation
◦ User can create new bone by selecting parent bone (click on it) and clicking anywhere to define
end of bone
◦ Bones can have more child bones
◦ Each bone has its position, rotation angle and length (end point can be calculated)
 Implement 2d skin creation
◦ After skeleton is done, define skin around by clicking and creating poly-line
◦ Generate weights automatically by calculating distance to all bones (simple all bone test).
Ignore bones which are further beyond some threshold
 Implement Matrix Palette Skinning
 Implement forward kinematics
◦ Select bone by clicking, change rotation angle by dragging
◦ Child bones must be transformed correctly (can use transformation 3x3 matrices - they handle
both rotation and translation)

C03: Inverse Kinematics
 Scene: 2d line-segment skeleton of figure (min 15 bones)
 Implement 2d skeleton creation
◦ User can create new bone by selecting parent bone (click on it) and clicking anywhere to define
end of bone
◦ Bones can have more child bones
◦ Each bone has its position, rotation angle and length (end point can be calculated)
◦ User can select starting and ending bone of the IK sequence
 Implement forward kinematics
◦ Select bone by clicking, change rotation angle by dragging
◦ Child bones must be transformed correctly (can use transformation 3x3 matrices - they handle
both rotation and translation)
 Implement inverse kinematics (relaxation by gradient calculation)
◦ User can move end bone - IK solves bones in the IK sequence

C04: Particle system
 Scene: 2D fountain emitter emitting Y-Up. Gravity (9.81) Y-Down. One spherical obstacle in

front of emitter
 Implement User editable emitter parameters:
◦ Emit rate: How many particles are emitted per second
◦ Emit angle: Particles are emitted in -angle +angle range around emitter direction (Y-axis)
randomly
◦ Particle Life: Time in seconds each particle lives
◦ Initial velocity: How fast particles moves from emitter
 Implement position integration (ODE)
◦ Explicit Euler, Mid point and Verlet (user can choose)
 Implement simple sphere obstacle
◦ Particles resolves collisions with Newton impact law (coefficient of restitution = 0.5)
 Implement basic time control: start, pause, stop animation

C05: Uniform Grid and Pair Management
 Scene: 2d space, with n random positioned AABB boxes within some boundary, set initial
velocity random
 Implement simple coherent motion
◦ Integrate positions with explicit Euler
◦ On boundary negate velocity
 Implement simple uniform grid broad phase (AddBox, RemoveBox, UpdateBox)
◦ Grid is stored in dense matrix (no spatial hashing)
 Implement simple (full matrix) pair management
 Implement hashed pair management
 Compare results (pairs) and times of both algorithms

C06: Hierarchical Grids
 Scene: 2d space, with n random positioned AABB boxes within some boundary, set initial
velocity random
 Implement simple coherent motion
◦ Integrate positions with explicit Euler
◦ On boundary negate velocity
 Implement naive n^2 broad phase collision detection
 Implement hierarchical grid broad phase (AddBox, RemoveBox, UpdateBox)
◦ Grids are stored by spatial hashing in hash tables
 Compare results (pairs) and times of both algorithms
 Implement simple (full matrix) pair management

C07: Sweep And Prune
 Scene: 2d space, with n random positioned AABB boxes within some boundary, set initial
velocity random
 Implement simple coherent motion
◦ Integrate potions with explicit Euler
◦ On boundary negate velocity
 Implement naive n^2 broad phase collision detection
 Implement incremental 2d SAP (AddBox, RemoveBox, UpdateBox)
 Compare results (pairs) and times of both algorithms

 Implement simple (full matrix) pair management

C08: Oriented Bounding Boxes
 Scene: Two 2D non-convex poly-line objects
 Implement object definition
◦ either read line segment positions from text file
◦ or implement user interface to create poly-line by clicking on canvas
 Implement 2D OBB near optimal fitting
◦ choose principal direction by rotating X-axis and Y-axis by one deg in a cycle
◦ for each angle (direction) project poly-line on new x,y axes and choose center as midpoint of
projection, fit OBB
◦ finally select direction of the OOB with minimal volume (area in 2d)
 Implement binary BVT construction by Top-Down approach
◦ By splitting near optimal OBBs in half along principal direction (in each level should have
optimal OBBS)
 Implement Tandem traversal for generated two BVTs
◦ Show overlapping boxes with red. Show their parent boxes up to the root with green
◦ When nothing is overlapping show full box hierarchy with gray (user can turn this on/off)
 Implement user interaction with object
◦ User can move poly-lines - OBBs are updated - rotation of poly-line is NOT required

C09: Swept Sphere Volumes (only LSS - capsules)
 Scene: Two 2D non-convex poly-line objects
 Implement object definition
◦ either read line segment positions from text file
◦ or implement user interface to create poly-line by clicking on canvas
 Implement 2D capsule near optimal fitting
◦ choose principal direction by rotating X-axis and Y-axis by one deg in a cycle
◦ for each angle (direction) project poly-line on new x,y axes and choose center as midpoint of
projection, fit capsule
◦ finally select direction of the capsule with minimal volume (area in 2d)
 Implement binary BVT construction by Top-Down approach
◦ By splitting near optimal Capsules in half along direction (in each level should have optimal
Capsules)
 Implement Tandem traversal for generated two BVTs
◦ Show overlapping capsules with red. Show their parent capsules up to the root with green
 Implement user interaction with object
◦ User can move poly-lines - Capsules are updated - rotation of poly-line is NOT required

C10: V-Clip: narrow phase collision detection
 Scene: Two 2D convex poly-line objects
 Implement object definition
◦ either read line segment positions from text file
◦ or implement user interface to create poly-line by clicking on canvas
 Implement simplified 2D V-Clip algorithm
◦ Implement method ClipVertex() for VV and VE case
◦ Implement method ClipEdge() for VE and EE case

 Implement user interaction with object
◦ User can move object (rotation is optional)
◦ Show closest points (features) on both geometries

C11: GJK: narrow phase collision detection
 Scene: Two 2D convex poly-line objects
 Implement object definition
◦ either read line segment positions from text file
◦ or implement user interface to create poly-line by clicking on canvas
 Implement 2D Proximity GJK algorithm
◦ Implement method ClosestPoint() on simplex
◦ Implement method SupportHC() for Hill Climbing support function
◦ Implement method 2D BestSimplex() for simplex refinement (simpler case as in 3D)
 Implement user interaction with object
◦ User can move object (rotation is optional)
◦ Show closest points (features) on both geometries

C12: Rigid Body Dynamics and Inertia Tensors
 Scene: 2d space with N spheres composed into one moving and rotating rigid body
 Implement object definition
◦ either read each sphere position and radius from text file
◦ or implement user interface to create spheres (position and radius) by clicking on canvas
 Implement !!!3D!!! rigid body dynamics (render 2D)
◦ Position p(t) and orientation q(t) (using quaternion)
◦ Linear v(t) and angular ω(t) velocity
◦ Linear a(t) and angular α(t) acceleration
◦ Scalar mass M and Inertia tensor J(t)
◦ Linear P(t) and angular L(t) momentum
◦ Applying force f(t) and torque τ(t) on body
◦ Integrate motion equation (ODE) using simple explicit Euler
 Implement Mass, Inertia tensor and Center of Mass
◦ Define material density as parameter
◦ Calculate mass and volume of each sphere
◦ Calculate body center of mass as weighted (mass) average of sphere centers
◦ Calculate Inertia tensor of each sphere (separate) and use “offset” theorem to move them into
center of mass. Total inertia is then sum of all offset inertia
 Implement user interaction
◦ User can apply force on body by clicking and dragging. Define start of force vector (button
press) and end of force vector (button release). Body should start moving and rotating w.r.t to point
where to force was applied.
◦ During simulation show force, linear velocity and acceleration vectors.
◦ Restrict body position to be only inside visible area (window). Mirror linear velocity
◦ User can change density during simulation (mass and inertia must be recalculated)

C13: Rigid Body Dynamics and Impulse based Collisions
 Scene: 2d space with N spheres – each represent one rigid body. Draw sphere as oriented disk
(draw circle and line segment from (0,0,0) to (radius,0,0) in local space, this must rotate as the body
rotates)

 Implement object definition
◦ either read each sphere position and radius from text file
◦ or implement user interface to create spheres (position and radius) by clicking on canvas
 Implement !!!3D!!! rigid body dynamics (rendering can be only 2D)
◦ Position p(t) and orientation q(t) (using quaternion)
◦ Linear v(t) and angular ω(t) velocity
◦ Linear a(t) and angular α(t) acceleration
◦ Scalar mass M and Inertia tensor J(t) (mass = 1, inertia = identity, center of mass = sphere
center)
◦ Linear P(t) and angular L(t) momentum
◦ Applying force f(t) and torque τ(t) on body
◦ Integrate motion equation (ODE) using simple explicit Euler
 Implement impulse based collision resolution
◦ find colliding spheres (simple brute force n2 collision detection – no need to optimize here)
◦ Resolve each sphere-sphere contact by applying collision impulses
 Implement user interaction
◦ User can apply force on bodies by clicking and dragging. Define start of force vector (button
press) and end of force vector (button release). Body should start moving and rotating w.r.t to point
where to force was applied.
◦ During simulation show collision impulses between colliding spheres.
◦ Restrict body position to be only inside visible area (window). Mirror linear velocity
 Rendering – can be only 2D
◦ Choose plane XY (or XZ) and set position. Z=0 (or Y=0) for all objects.

C14: Mass-Spring system (infinity stiff springs)
 Scene: 2d set of particles interconnected with infinitely stiff (rigid) links (constraints).
 Implement scene definition
◦ either read each particle and interconnection (link) data from text file
◦ or implement user interface to create particles (position, mass) and links (select 2 particles to
create link) by clicking on canvas
◦ Particles with zero inverse mass (1/mass) should be fixed in space (do not move)
 Implement position based dynamics algorithm
◦ Model links as simple distance constraint.
◦ Particles must collide with ground (bottom of the screen should be rigid ground). Collision
constraint simply pushes particle above the ground.
◦ Gravity acts in negative y-coordinate.
◦ User should be able to define (change) number iterations of the constraint projection.
◦ No friction or restitution is needed.
◦ Add simple damping force to each particle (f = - kd v), where kd is damping coefficient
(experiment with it) and v is current velocity of particle.
 Implement user interaction
◦ Users can click on particles during simulation and drag them
 Rendering – only 2D
◦ Draw particles as points and links as lines.

C15: Mass-Spring system (non-stiff springs)
 Scene: 2d set of particles interconnected with non-stiff springs (constraints).
 Implement scene definition

◦ either read each particle and spring data from text file
◦ or implement user interface to create particles (position, mass) and springs (select 2 particles to
create spring and define some spring coefficient) by clicking on canvas
◦ Particles with zero inverse mass (1/mass) should be fixed in space (do not move)
 Implement position based dynamics algorithm
◦ Model springs as simple distance constraint with some ks constraint coefficient (0 < ks < 1)
◦ Particles must collide with ground (bottom of the screen should be rigid ground). Collision
constraint simply pushes particle above the ground.
◦ Gravity acts in negative y-coordinate.
◦ User should be able to define (change) number iterations of the constraint projection.
◦ No friction or restitution is needed.
◦ Add simple damping force to each particle (f = - kd v), where kd is damping coefficient
(experiment with it) and v is current velocity of particle.
 Implement user interaction
◦ Users can click on particles during simulation and drag them
 Rendering – only 2D
◦ Draw particles as points and springs as lines.

[Scientific Papers]

Presentation Notes:
 Scope should be from 10 to 15 slides. Do not put too much on one slide, rather make more
slides. Your presentation time should be from 10 to 15 min.
 Mention title and authors of the paper at the beginning + your name, date, your team
 In overview summarize key topics you are going to speak about.
 First slides should serve as introduction to your topic. Define main problems, describe
motivations and goals of authors. Summarize some problems of previous works.
 Explain each contributions of the work. You should understand “what they did and how”
 Use pictures, schemes, graphs, tables, equations not just plain words. Explain algorithms in
specific details where it could be unclear. Remember your audience is probably not very well informed
in your topic, thus be specific and explain even straightforward details (but not too long)
 If it's something unclear to you read related papers
 Show results authors did (renders, animations, graphs, tables)
 Describe conclusions and future work, repeat key ideas so your audience can remember them.
 Do not show (if exists) original slides of authors (but you can inspire)
 Your oral presentation is a part of your score – do prepare for it !

P01: Broad-Phase Collision Detection Using Semi-Adjusting BSP-trees
http://www.sccg.sk/~onderik/phd/ca2010/papers/01 - Broad-Phase Collision Detection Using Semi-Adjusting BSP-trees (Luque2005Broad) I3D.pdf

P02: Scalable Partitioning for Parallel Position Based Dynamics
http://pellacini.di.uniroma1.it/publications/ppbd15/ppbd15.html

P03: Fast Simulation of Skeleton-Driven Deformable Body Characters
http://www.cs.cmu.edu/~junggon/projects/fastsimuldbody/fastsimuldbody.htm

P04: Optimized Spatial Hashing for Collision Detection of Deformable Objects
http://matthias-mueller-fischer.ch/publications/tetraederCollision.pdf

P05: Feedback Control for Rotational Movements in Feature Space
http://www.cs.utoronto.ca/~mazen/rotation/

P06: Large Steps in Cloth Simulation
http://www.sccg.sk/~onderik/phd/ca2010/papers/06 - Large Steps in Cloth Simulation (Barraf1998Large) SG.pdf
http://www.sccg.sk/~onderik/phd/ca2010/papers/06 - RealTime Cloth (Marci).pdf

P07: Meshless Deformations Based on Shape Matching
https://www.cs.drexel.edu/~david/Classes/Papers/MeshlessDeformations_SIG05.pdf

P08: Position Based Dynamics
http://www.sccg.sk/~onderik/phd/ca2010/papers/08 - Position Based Dynamics (Muller2006Position) VIRPHYS.pdf

P09: Particle-Based Fluid Simulation For Interactive Applications
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.844&rep=rep1&type=pdf

P10: Particle-Based Fluid-Fluid Interaction
http://matthias-mueller-fischer.ch/publications/sca05.pdf

P11: Particle-Based Viscoelastic Fluid Simulation
http://www.ligum.umontreal.ca/Clavet-2005-PVFS/pvfs.pdf

P12: Smoothed Particle Hydrodynamics In Complex Shapes
http://www.sccg.sk/~onderik/phd/ca2010/papers/12 - Smoothed Particle Hydrodynamics In Complex Shapes (Harada2007Complex)
SCCG.pdf

P13: Efficient Neighbor Search for Particle-based Fluids
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6732&rep=rep1&type=pdf

P14: Stable Fluids
http://www.intpowertechcorp.com/GDC03.pdf

P15: Wave Particles
http://www.cemyuksel.com/research/waveparticles/waveparticles.pdf

P16: OmniAD: Data-driven Omni-directional Aerodynamics
http://www.disneyresearch.com/publication/omniad/

P17: Animating Human Dressing
http://www.cc.gatech.edu/~aclegg3/projects/AnimatingHumanDressing.html

P18: Dyna: A Model of Dynamic Human Shape in Motion
http://dyna.is.tue.mpg.de/

P19: Double Bubbles Sans Toil and Trouble: Discrete Circulation-reserving Vortex Sheets for
Soap Films and Foams

http://www.cs.columbia.edu/cg/doublebubbles/

P20: Simulating Rigid Body Fracture with Surface Meshes
http://www.cs.ubc.ca/~mike323/project/fsm/index.html

P21: High-Resolution Brittle Fracture Simulation with Boundary Elements
http://pub.ist.ac.at/group_wojtan/projects/2015_Hahn_HRBFwBE/

P22: Inverse-Foley Animation: Synchronizing rigid-body motions to sound
http://www.cs.cornell.edu/Projects/Sound/ifa/

P23: Displaced Dynamic Expression Regression for Real-time Facial Tracking and Animation
http://gaps-zju.org/DDE/

P24: Generalizing Locomotion Style to New Animals With Inverse Optimal Regression
http://grail.cs.washington.edu/projects/inverse_locomotion/

P25: Learning Bicycle Stunts
http://www.cc.gatech.edu/~jtan34/project/learningBicycleStunts.html

P26: Online Motion Synthesis Using Sequential Monte Carlo
https://mediatech.aalto.fi/publications/graphics/OnlineSMC/

P27: Boxelization: Folding 3D Objects Into Boxes
http://www.disneyresearch.com/project/boxelization/

P28: Pixie Dust: Graphics Generated by Levitated and Animated Objects in a Computational
Acoustic-Potential Field
http://96ochiai.ws/PixieDust/

http://96ochiai.ws/PixieDust/
http://www.disneyresearch.com/project/boxelization/
https://mediatech.aalto.fi/publications/graphics/OnlineSMC/
http://www.cc.gatech.edu/~jtan34/project/learningBicycleStunts.html
http://grail.cs.washington.edu/projects/inverse_locomotion/
http://gaps-zju.org/DDE/
http://pub.ist.ac.at/group_wojtan/projects/2015_Hahn_HRBFwBE/
http://www.cs.ubc.ca/~mike323/project/fsm/index.html
http://www.cs.columbia.edu/cg/doublebubbles/
http://dyna.is.tue.mpg.de/
http://www.cc.gatech.edu/~aclegg3/projects/AnimatingHumanDressing.html

P29: Tangible and Modular Input Device for Character Articulation
http://igl.ethz.ch/projects/character-articulation-input-device/

P30: Interactive Manipulation of Large-Scale Crowd Animation
http://mrl.snu.ac.kr/research/ProjectCrowdEditing/crowd_editing.htm

P31: Robust and Accurate Skeletal Rigging from Mesh Sequences
http://graphics.cs.uh.edu/ble/papers/2014s-ske/

P32: Interactive Generalized Penetration Depth Computation for Rigid and Articulate Models
Using Object Norm
http://graphics.ewha.ac.kr/polydepthg/

P33: Animation of Deformable Bodies with Quadratic Bézier Finite Elements
http://sealab.cs.utah.edu/Papers/Bargteil-2014-AOD/

P34: Adaptive Tearing and Cracking of Thin Sheets
http://graphics.berkeley.edu/papers/Pfaff-ATC-2014-07/

P35: Codimensional Surface Tension Flow on Simplicial Complices
http://physbam.stanford.edu/~boolzhu/codim/codimensional_surface_tension.pdf

P36: Adaptive Nonlinearity for Collisions in Complex Rod Assemblies
http://www.cs.columbia.edu/cg/adonis/

P37: A Reduced Model for Interactive Hairs
http://gaps-zju.org/reducedhair/

P38: Blending Liquids
http://www.thuerey.de/ntoken/download/Raveendran_BlendingLiquids-Preprint_2014.pdf

P39: From Capture to Simulation - Connecting Forward and Inverse Problems in Fluids
http://www.cs.ubc.ca/labs/imager/tr/2014/FromCaptureToSimulation/

P40: Deformation Embedding for Point-Based Elastoplastic Simulation
http://sealab.cs.utah.edu/Papers/Jones-2014-DEF/

P41: Unified Particle Physics for Real-Time Applications
http://blog.mmacklin.com/flex/

P42: Subspace Fluid Re-Simulation
http://www.mat.ucsb.edu/~kim/RESIM/

P43: Near-exhaustive Precomputation of Secondary Cloth Effects
http://graphics.berkeley.edu/papers/Kim-NEP-2013-07/index.html

P44: Dynamic Element Textures
http://www.cs.ubc.ca/~chyma/publications/dt/index.html

P45: Interactive Authoring of Simulation-Ready Plants
http://run.usc.edu/botanical/

P46: Eulerian-On-Lagrangian Simulation
https://www.cs.ubc.ca/paper/eulerian-lagrangian-simulation

https://www.cs.ubc.ca/paper/eulerian-lagrangian-simulation
http://run.usc.edu/botanical/
http://www.cs.ubc.ca/~chyma/publications/dt/index.html
http://graphics.berkeley.edu/papers/Kim-NEP-2013-07/index.html
http://www.mat.ucsb.edu/~kim/RESIM/
http://sealab.cs.utah.edu/Papers/Jones-2014-DEF/
http://www.cs.ubc.ca/labs/imager/tr/2014/FromCaptureToSimulation/
http://gaps-zju.org/reducedhair/
http://www.cs.columbia.edu/cg/adonis/
http://graphics.berkeley.edu/papers/Pfaff-ATC-2014-07/
http://sealab.cs.utah.edu/Papers/Bargteil-2014-AOD/
http://graphics.ewha.ac.kr/polydepthg/
http://graphics.cs.uh.edu/ble/papers/2014s-ske/
http://mrl.snu.ac.kr/research/ProjectCrowdEditing/crowd_editing.htm
http://igl.ethz.ch/projects/character-articulation-input-device/

P47: Two-Layer Sparse Compression of Dense-Weight Blend Skinning
http://graphics.cs.uh.edu/ble/papers/2013s-dwc/

P48: Parameterization of Catmull-Rom Curves
http://www.cemyuksel.com/research/catmullrom_param/

http://graphics.cs.uh.edu/ble/papers/2013s-dwc/

	P16: OmniAD: Data-driven Omni-directional Aerodynamics
	P19: Double Bubbles Sans Toil and Trouble: Discrete Circulation-reserving Vortex Sheets for Soap Films and Foams
	P31: Robust and Accurate Skeletal Rigging from Mesh Sequences
	P33: Animation of Deformable Bodies with Quadratic Bézier Finite Elements
	P39: From Capture to Simulation - Connecting Forward and Inverse Problems in Fluids
	P40: Deformation Embedding for Point-Based Elastoplastic Simulation

