

Broad Phase
Lesson 04 Collision Detection

Lesson 04 Outline

 Collision Detection overview
 Hierarchical grids and Spatial hashing
 Sweep and Prune and Radix Sort
 Pair management – a practical guide
 Demos / tools / libs

Collision Detection Overview

 Collision detection (CD) means
 Calculate when and where are objects overlapping.

 General taxonomy of algorithms
 Static / Pseudo-dynamic / Dynamic

 Stages of CD algorithms
 Broad Phase / (Mid Phase) / Narrow Phase

 Algorithm strategies
 Spatial partitioning / Bounding volume hierarchies /

Coordinate sorting / Feature tracking / Signed distance
maps …

Broad Phase

 Approximate (broad) collision detection phase.
 Principles

 Quickly find pairs of objects which are potentially (probably)
colliding.

 Reject pairs of objects which are distant to each other.
 Techniques

 Uniform Spatial partitioning (Hierarchical grids)
 Complex Spatial partitioning (dynamic BSP, kd trees)
 Coordinate sorting (Sweep and prune, range search)

 Difficult to parallelize (GPU not friendly)

Mid Phase

 Mid (refinement) collision detection phase
 Principles

 Refine pairs from broad phase, simplify the work of narrow
phase

 Techniques
 Preprocess complex geometry into Bounding Volume

Hierarchies
 Decompose non-convex objects into convex parts
 Axis Aligned Bounding Boxes, Oriented Bounding Boxes,

k-Discrete Orientation Polytopes, Swept Sphere Volumes...
 Usually good for parallelization (GPU friendly)

Narrow Phase

 Exact (Narrow) Collision detection phase.
 Principles

 Given a list of potential colliding pairs of objects find exact
time and geometry features (vertices, edges, faces) where
objects penetrate (intersect).

 Reject all non-colliding object pairs.
 Techniques

 Bounding volume hierarchies (AABB, OBB, kDOP …)
 Coherent feature tracking (GJK, V-Clip)
 Signed distance map queries (2d/3d bitmap collisions)

 Naturally suitable for parallelization (GPU friendly)

Collision Detection Phases

 Broad Phase
 Find potential

pairs

Potential colliding
pairs

Collision Detection Phases

 Broad Phase
 Find potential

pairs

 Mid Phase
 Refine pairs

Removed pairsPotential colliding
pairs

Collision Detection Phases

 Broad Phase
 Find potential

pairs

 Narrow Phase
 Find exact

collisions

 Mid Phase
 Refine pairs

Exact colliding
pairs

Removed pairsPotential colliding
pairs

Spatial HashingHierarchical Grids

Uniform Grid – Principle

 Define a uniform grid with cell size s
 For each point p = (x,y,z) we can find

corresponding cell c = (i,j,k) = T(p)
 Tiling function T(p) = ([x/s], [y/s], [z/s])

y

x

s

 s

(x,y)

(i,j)

Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into
overlapping cells based on its AABB

1

1 1

1

1

y

x

s

 s

Uniform Grid – Principle

 Insert object (ID=1) into grid and store it's ID into
overlapping cells based on its AABB

 Insert object (ID=2) into grid …

2

1 1;2

1

2 2

2

2

22

1
2

y

x

s

 s

Uniform Grid – Principle

 Insert all objects into grid and store IDs into cells
 Orange cell has only one ID
 Blue cells contain more Ids - define colliding pairs

 Colliding pairs: (1-2),(1-4),(4-5)

2

3

1;4 1;2

4;5

4;5

3

3 3 1

2 2

2

5

5

2

22

4

4

5 4

1
3 2

y

x

s

 s

Uniform Grid – AddBox

 We want to add new object “A” into grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell create pair (ID
k
, ID)

 Add ID of object from the list of IDs (check duplicates)

Uniform Grid – RemoveBox

 We want to remove existing object from grid
 Calculate AABB(A) = (A

x-
, A

y-
, A

z-
, A

x+
, A

y+
, A

z+
) of “A”

 Calculate Cell(A) = (A
i-
, A

j-
, A

k-
, A

i+
, A

j+
, A

k+
)

 For each cell within (A
i-
, A

j-
, A

k-
) and (A

i+
, A

j+
, A

k+
)

 For each ID stored in the cell remove pair (IDk, ID)

 Remove ID of object from the list of IDs

Uniform Grid – UpdateBox

 Object has moved - we need to update it's AABB
and corresponding cells

 Simple approach: call RemoveBox, than AddBox
 Not efficient for larger and coherent objects – many cells

has not changed their state (no add, no remove)
 Effective approach:

 Find quickly only cells where we need to add/remove ID

Uniform Grid - Summary

 Pros
 Simple algorithm – easy to implement
 Fast in special cases – only particles (small dynamic objects)

and static (large) environment
 Cons

 how to find optimal grid size → problem with large vs small
dynamic objects (hierarchical grid)

 Large 3d gird → huge amount of memory (spatial hashing)
 Slow grid update for large objects
 Accuracy depends on the largest resolution

Hierarchical Uniform Grid

 Suppose 4 uniform grids with 2k resolutions
 Grid-0: cell size s

0
 = 1/20 = 1.000

 Grid-1: cell size s
1
 = 1/21 = 0.500

 Grid-2: cell size s
2
 = 1/22 = 0.250

 Grid-3: cell size s
3
 = 1/23 = 0.125

3

2

1

0

s0

s3

Hierarchical Uniform Grid - Principle

 Find resolution of object “C”: Res(C) = 3
 Cell sizes in grids: S = (s

0
,s

1
, … ,s

k
)

 Object box: AABB(C) = (C
x-
, C

y-
, C

z-
, C

x+
, C

y+
, C

z+
)

 Object size: Size(C) = Max(C
x+

 - C
x+-

, C
y+

 - C
y+-

, C
y+

 - C
y+-

)

 Object resolution: Res(C) = i <=> a <= (Size(C)/si) <= b

 Typically: a = 0.5 ; b = 1

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2

C C

C C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1

C C

C C

C

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert “C” into grid-3
 Insert “C” into grid-2
 Insert “C” into grid-1
 Insert “C” into grid-0

C C

C C

C

CD

C

3

2

1

0

s0

s3

C

Hierarchical Uniform Grid - Principle

 Insert other objects into grids
 Build ID sets in cells
 Mark IDs “bold” which represent the resolution of

object

C C E

A D D

B B

DEF F

AB

C C

C

CD

E

E

AB

A B DC E F

3

2

1

0

s0

s3

A B
DC E

F

Hierarchical Uniform Grid - Principle

 During insertion report all ID pairs within each cell
which are either “bold” x “regular” or “bold” x
“bold” IDs
 Cell (AB) has only one pair: A-B
 Cell (DEF) has pairs: D-F and E-F (D-E is not a pair !)

C C E

A D D

B B

DEF F

AB

C C

C

CD

E

E

AB

A B DC E F

3

2

1

0

s0

s3

A B
DC E

F

Hierarchical Uniform Grid - Methods

 AddBox(A)
 Calculate AABB(A), resolution r = Res(A), add box into all grids

(0 to r), report pair (A-A
k
) only if grid resolution is

Min(Res(A), Res(A
k
))

 RemoveBox
 Calculate AABB(A), resolution r = Res(A), remove box from all

grids (0 to r), remove pair (A-A
k
) only if grid resolution is

Min(Res(A), Res(A
k
))

 UpdateBox
 Since objects ID are stored only in grids with equal or larger

resolutions as Res(A) – no need for optimizing update –
simply RemoveBox than AddBox every modified object

Hierarchical Uniform Grid - Summary

 Pros
 Handle small and large dynamic objects No optimal grid size
 True linear time broad phase algorithm

 Cons
 More memory (usually 2 times more)
 Must update (hash) more grids for each object
 Accuracy depends on the largest resolution

 Constant Update → Linear time complexity
 Assuming R = (s+ / s-) = largest / smallest AABB size is constant
 We need k = log(R) grids – is constant
 One object marks O(log R) cells – is constant
 Add/Remove/Update - are constant → time complexity is O(n)

Spatial Hashing

 Motivation: large grids are usually very sparse –
we need to store data only for non-empty cells –
but we need fast O(1) access based on (x,y,z)

 Given point p=(x,y,z) laying within cell c=(i,j,k) we
define spatial hashing function as

 hash(i,j,k) = (ip
1
 xor jp

2
 xor jp

3
) mod n

 Where p
1
, p

2
, p

3
 are large prime numbers and n is

the size of hash table
 Hash collision are solved with buckets

Sweep & Prune

Sweep-And-Prune (SAP)

 Broad phase collision detection algorithm based
on Separating Axes Theorem.

 Pros
 Suitable for physically based motions
 Exploits spatial and temporal coherence
 Practical average O(n) broad phase algorithm

 Cons
 Uses bad fitting axis-aligned boxes (AABB).
 Not efficient for complex scenes with prolong objects
 Too many collisions for high-velocity objects

Separating Plane Theorem

 Two convex objects do NOT penetrate (are
separated) if and only if there exists a
(separating) plane which separates them
 i.e. first (second) object is fully above (below) this plane.

Separating plane

Separating Axis Theorem

 Two convex objects do NOT penetration (are
separated) if and only if there exists a
(separating) axis on which projections of objects
are separated
 i.e. Intervals formed by minimal and maximal projections of

objects do not intersect.

Separating plane

Separating
Axis

Separating Duality Principle

 For Convex objects
 Separating Plane Theorem (SPT)
 Separating Axes Theorem (SAT)

 SAP and STP are equal (dual) !
 Separating plane and separating axis are perpendicular

 SAP STP

SAP – Algorithm Principle

 Suppose a scene with 5 (not necessarily convex)
objects

y

x

SAP – Algorithm Principle

 Fit each object into its smallest enclosing AABB
 Label boxes as : 1, 2, 3, 4, 5 according to the

associated objects.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Project AABBs onto axis X.
 Form list of intervals of minimal and maximal

projections on X axis.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Project AABBs onto axis Y.
 Form list of intervals of minimal and maximal

projections on Y axis.

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Sort list of projections (limits) on X axis.
 Sort list of projections (limits) on Y axis.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

.

.

.
y3

y2

y1

SAP – Algorithm Principle

 Limits are marked as min (green) and max (blue)
for associated AABB.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Sweep X-limits from first to last while building set
of open intervals.

 When adding new min-limit to the set, report
potential collision pair between all boxes from set
and the new box.

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Open interval set example:
 (), (1), (1;3), (1), (1;4), (4), (), (5), (), (2), ()

 Reported pairs: (1-3) and (1-4)

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Algorithm Principle

 Do the same on Y-Axis:
 Set: (), (4), (4;1), (4), (4;5), (5), (5;2), (5;2;3), (2;3), (2), ()
 Pairs: (1-4), (4-5), (5-2), (5-3), (2-3)

1 4

5
3 2

y

x

SAP – Algorithm Principle

 Find common pairs in all swept directions
 i.e. Real intersecting AABB pairs = SetX ^ SetY

 Pairs = SetX ^ SetY = { (1-4) }

1 4

5
3 2

y

x

SAP - Summary

 To achieve linear time O(n) complexity in average
case we must
 Move objects in a coherent fashion (physical motion)
 Use incremental sort of limits. Due to coherence most of

limits are sorted. Insert sort needs only constant swaps.
 Implement an efficient “pair management” i.e. fast set

intersection of axis pair sets (Pairs = SetX ^ SetY ^ SetZ)
 Problems

 Since objects tend to settle down (usually along Z-axis)
during the simulation, large interval clustering can happen

SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

SAP – Incremental Update

 Reported pairs: (1-3) and (1-4)
 Suppose object 5 moves right
 End limit x

8
 pass over x

9
 breaking the order

 In this case we report new pair (2-5)

1 4

5
3 2

y

x
 x1 x2 x3 x4 x5 x6 x7 x9 x8 x10

SAP – Incremental Update

 Select moving objects and update theirs limits
 When a start limit moves right and

 passes over start limit – report nothing

 passes over end limit – remove pair

 When a start limit moves left and
 passes over start limit – report nothing

 passes over end limit – add pair

 When an end limit moves right and
 passes over start limit – add pair

 passes over end limit – report nothing

 When an end limit moves left and
 passes over start limit – remove pair

 passes over end limit – report nothing

SAP – Incremental Update

Nothing Nothing Nothing Nothing

Add Add Remove Remove

 Limit swap cases

Pair Management

a practical guide

Pair Management

 An ID pair is defined as (ID
1
, ID

2
)

 Pair Manager is a data structure allowing quickly
 Adding new pair in O(1): AddPair(ID

1
, ID

2
)

 Removing an existing pair in O(1): RemovePair(ID
1
, ID

2
)

 Finding an existing pair in O(1): FindPair(ID
1
, ID

2
)

 Enumerating all pairs in O(n): GetPairs()
 Trivial approach is to use

 big matrix to store pair infos - just look at (ID
1
, ID

2
) item

 simple list to store set of active pairs.
 Huge amount of memory, pair list update can be slow
 Can be efficient for < 1000 objects (matrix size 10002 !!!)

Efficient Pair Management

 Use spatial (2d) hashing:
 h = hash(ID

1
, ID

2
) = (ID

1
*p1 + ID

2
*p2) mod N

 Use array bag structure to hold pairs
 Preallocate “capacity” of data (usually 2 x length)
 AddPair – stores new pair at the end of array (can resize)
 RemovePair – move last pair to the removed index – fill the

hole
 Point from hash table to pair list
 Chain pairs when hash collision occurs

Efficient Pair Management

ID
1

ID
2 (ID

1
, ID

2
) hash(ID1,ID2)

Hash table

Pair array

Hash collision chain
Virtual ID pair matrix

 In hash table we store pointer to first pair in the
hash collision chain (length k) – should be as small
as possible. When k > K (constant) we resize hash
table (rehash all pairs). Operations are O(k)=O(1)

D
e

m
o

s
/

to
o

ls
 /

 li
b

s

Demos / tools / libs

 Free Open Source Libraries:

 Bullet Physics Library: http://www.bulletphysics.org
 Bullet collision detection framework

 http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework

 Box2D: http://www.box2d.org/
 Chipmunk: http://howlingmoonsoftware.com
 SOFA: http://www.sofa-framework.org/
 Tokamak: http://www.tokamakphysics.com

http://www.bulletphysics.org/
http://bulletphysics.org/mediawiki-1.5.8/index.php/CDTestFramework
http://www.box2d.org/
http://howlingmoonsoftware.com/
http://www.sofa-framework.org/
http://www.tokamakphysics.com/

the
end
that was enough...

	Snímok 1
	Snímok 2
	Snímok 3
	Snímok 4
	Snímok 5
	Snímok 6
	Snímok 7
	Snímok 8
	Snímok 9
	Snímok 10
	Snímok 11
	Snímok 12
	Snímok 13
	Snímok 14
	Snímok 15
	Snímok 16
	Snímok 17
	Snímok 18
	Snímok 19
	Snímok 20
	Snímok 21
	Snímok 22
	Snímok 23
	Snímok 24
	Snímok 25
	Snímok 26
	Snímok 27
	Snímok 28
	Snímok 29
	Snímok 30
	Snímok 31
	Snímok 32
	Snímok 33
	Snímok 34
	Snímok 35
	Snímok 36
	Snímok 37
	Snímok 38
	Snímok 39
	Snímok 40
	Snímok 41
	Snímok 42
	Snímok 43
	Snímok 44
	Snímok 45
	Snímok 46
	Snímok 47
	Snímok 48
	Snímok 49
	Snímok 50
	Snímok 51
	Snímok 52
	Snímok 53
	Snímok 54
	Snímok 55
	Snímok 56

