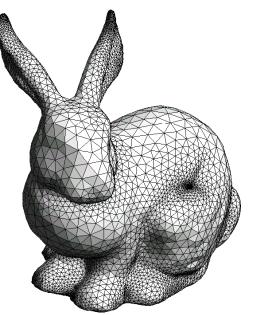
Geometric Modeling in Graphics



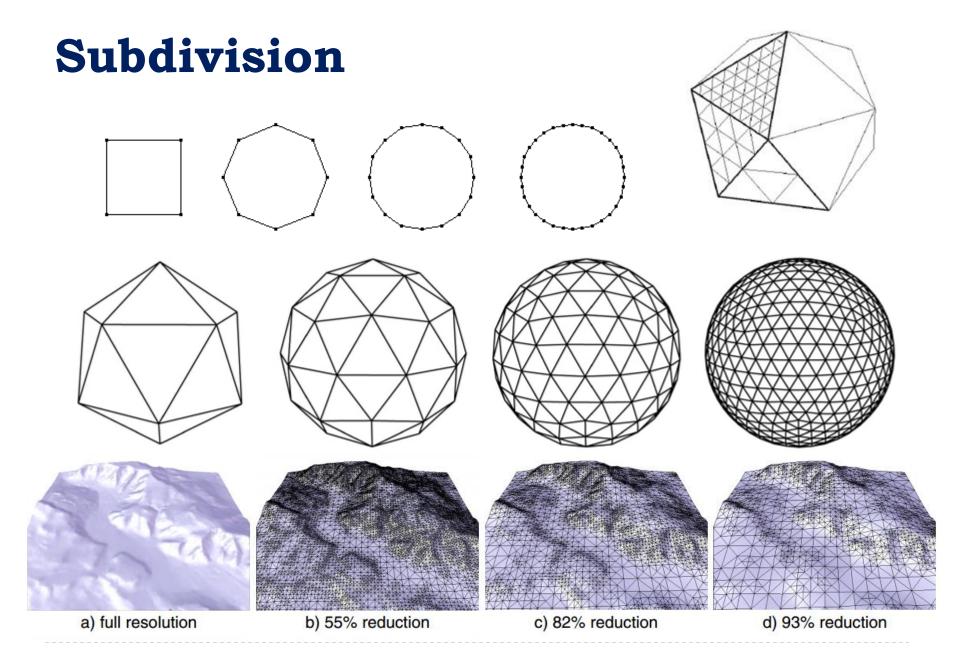
Part 4: Mesh smoothing

Martin Samuelčík

www.sccg.sk/~samuelcik samuelcik@sccg.sk

Subdivision

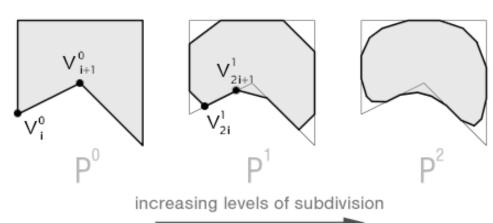
- Generating new object (mesh, polyline) from old one by dividing edges or faces into smaller parts
- Generating new vertices, edges, faces, changing position of old vertices
- One step of subdivision from object Pⁱ to object Pⁱ⁺¹, i=0,...
 - Subdivision scheme $S \mathbf{P}^{i+1} = S(\mathbf{P}^i)$
 - ► Control (starting) object **P**⁰
 - Limit object **P**, $\mathbf{P}^{\infty} = \lim \mathbf{P}^{i}$, $i \rightarrow \infty$
- Interpolation schemes vertices of Pⁱ are included in Pⁱ⁺¹, each Pⁱ and P passes through vertices of P⁰
- Approximation schemes Each object Pⁱ and P only approximates shape of P⁰
- Continuity continuity of limit object **P**, usually C^0 , C^1 , C^2 ,...



Polyline subdivision

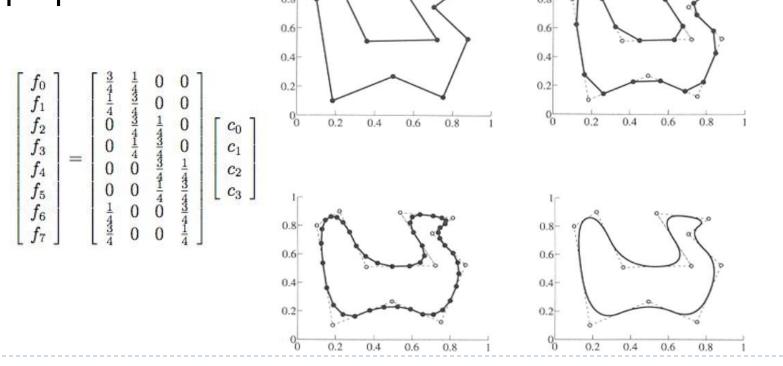
- Chaikin subdivision scheme
- Corner cutting algorithm, approximating scheme
- \mathbf{P}^{i} has vertices $V_{1}^{i}, V_{2}^{i}, ..., V_{n}^{i}$
- \mathbf{P}^{i+1} has vertices $V_1^{i+1}, V_2^{i+1}, \dots, V_m^{i+1}$
- V_{2j}ⁱ⁺¹ = 0.25 *V_jⁱ+0.75 *V_{j+1}ⁱ, j=1, 2, ..., m / 2
- V_{2j-1}ⁱ⁺¹ = 0.75 * V_jⁱ+0.25 * V_{j+1}ⁱ, j=1, 2, ..., m / 2
- Open polyline
 m=2n-2
- Closed polyline
 - ▶ m=2n

 $\flat \quad \bigvee_{n+1} i = \bigvee_n i$



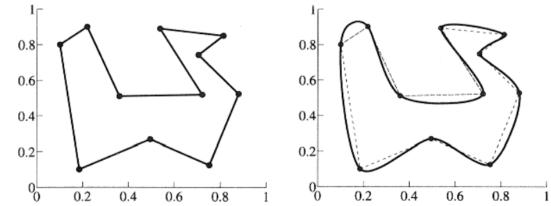
Chaikin scheme

- Limit of Chaikin scheme C¹ quadratic B-spline curve
- Limit curve in convex hull of control polyline
- Matrix notation, used for determination of mathematical properties



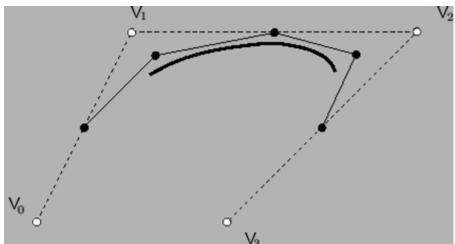
Polyline subdivision

- Interpolation Scheme, limit curve is C¹
- Dyn-Levin-Gregory
- ► $V_{2j-1}^{i+1} = V_j^i$, j=1, 2, ..., m / 2
- ► $V_{2j}^{i+1} = (-1/16) V_{j-1}^{i} + (9/16) V_j^{i} + (9/16) V_{j+1}^{i} + (-1/16) V_{j+2}^{i}$ j=1, 2, ..., m / 2
- Open polyline: m=2n-1, $V_0^i = V_1^i, V_{n+1}^i = V_n^i$
- Closed polyline: $m=2n, V_0^i = V_n^i, V_{n+1}^i = V_2^i$



Polyline subdivision

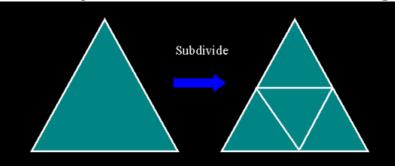
- Catmul-Clark approximating subdivision scheme
- ▶ Limit curve is C² cubic B-spline curve
- ► $V_{2j}^{i+1} = (1/2) * V_j^i + (1/2) * V_{j+1}^i, j=1, 2, ..., m/2$
- $V_{2j-1}^{i+1} = (1/8) V_{j-1}^{i} + (6/8) V_j^{i} + (1/8) V_{j+1}^{i}, j=1, 2, ..., m/2$
- Open polyline: $m=2n-1, V_0^i=V_1^i, V_{n+1}^i=V_n^i$
- Closed polyline: $m=2n, V_0^i = V_n^i, V_{n+1}^i = V_2^i$



Geometric Modeling in Graphics

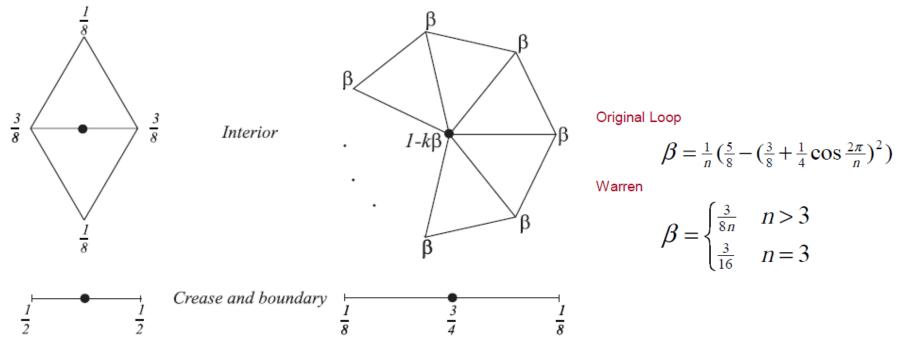
Loop subdivision

- Loop approximating scheme for triangular meshes
- Each subdivision step, triangle is divided into 4 subtriangles
- For each edge of mesh, new vertex is created near center of edge (odd vertex)
- Each old vertex is moved to new position (even vertex)
- Position of odd and even vertex is computed as barycentric combination of old vertices in its neighborhood – barycentric coordinates given as mask



Loop subdivision

- Special rules for vertices, edges lying on boundary or marked as crease
- Using DCEL to get vertex neighborhood info

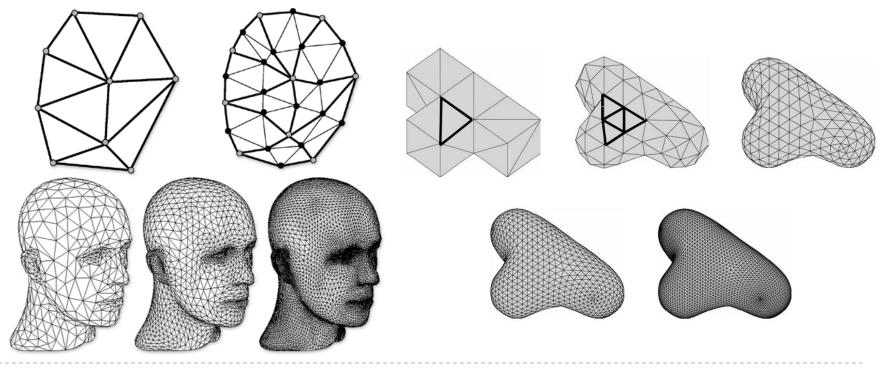


a. Masks for odd vertices

b. Masks for even vertices

Loop subdivision

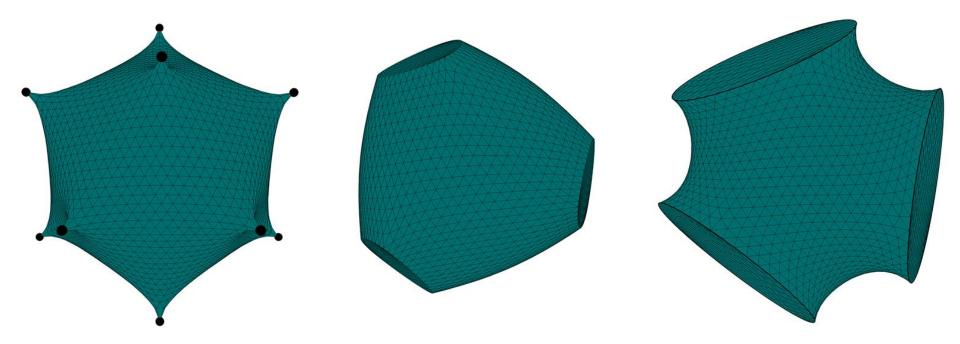
- Control mesh M⁰ arbitrary triangular mesh
- Limit mesh M[∞] C² smooth except small neighborhood of extraordinary vertices
- Extraordinary vertex with valence not equal to 6



Loop subdivision & DCEL

- One Loop subdivision step from mesh **M**ⁱ to mesh **M**ⁱ⁺¹
- Creating DCEL structure for mesh Mⁱ⁺¹
 - I. For each vertex of Mⁱ, create new even vertex of Mⁱ⁺¹ and compute its position from positions of Mⁱ vertices, remember connection of new and old vertex
 - 2. For each edge of Mⁱ, create and compute coordinates of new odd vertex, remember connection of new vertex with both halfedges of edge
 - 3. For each face of Mⁱ, create 4 new DCEL faces (triangles) and 12 new half-edges and fill its properties based on connections from previous steps except opposite pointers, remember connection of new faces with old faces
 - 4. Fill opposite half-edges of mesh Mⁱ⁺¹ using connections from step 3

Loop subdivision - Creases



http://www.bespokegeometry.com/2015/01/29/mesh-subdivision-loop-and-catmull-clark/

- Originally designed for quad meshes
- Generalized for control mesh with arbitrary simple polygons
- Approximating scheme, at least C² except neighborhood of extraordinary vertices
- After first step of subdivision, only quads are present
- For regular quad control mesh, limit surface is bicubic Bspline surface
- Extraordinary vertices are with valence not equal to 4
- Most popular scheme in modeling packages
- Used in many movies, first in short called Geri's game
- Catmull working in Pixar, Disney

- One step of subdivision process, Mⁱ to mesh Mⁱ⁺¹
- 3 kinds of new vertices of mesh Mⁱ⁺¹, created for each element (face, edge, vertex) of Mⁱ
 - ▶ Face point average of all vertices of face
 - Edge point average of two points from neighboring faces
 - Vertex point
 - F average of all face points for faces touching vertex
 - R average of all edge points for edges touching vertex
 - P position of vertex

$$\frac{F+2R+(n-3)P}{P}$$

n

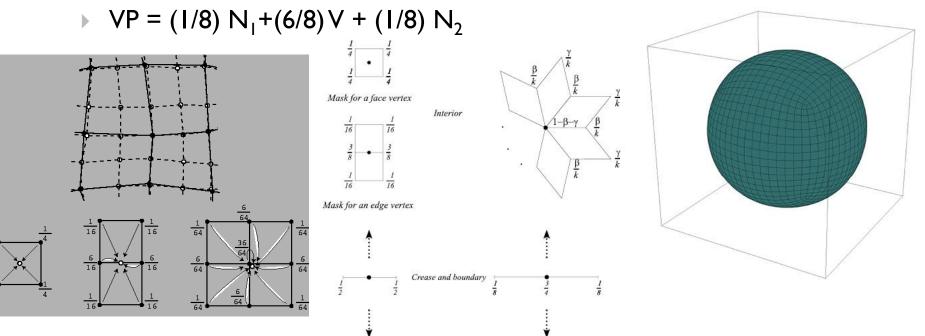
- n valence of vertex
- To create mesh Mⁱ⁺¹, connect each face point with corresponding edge points and each vertex point with

corresponding edge points

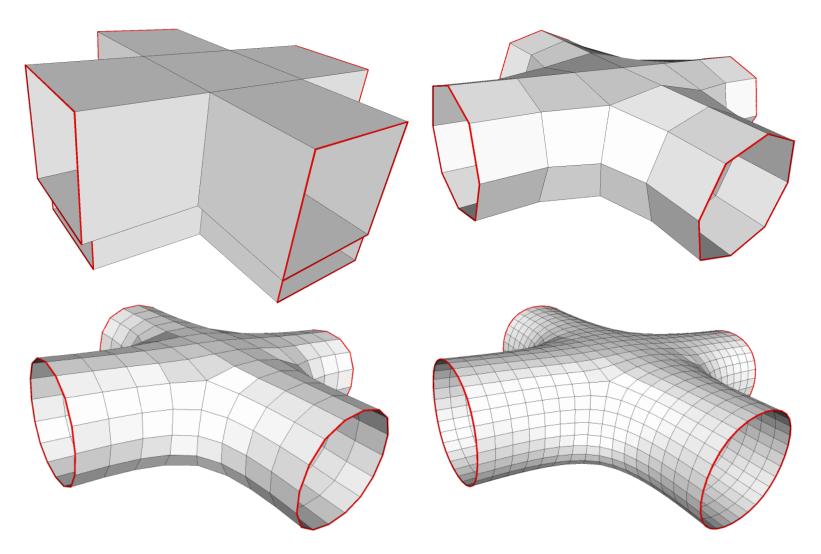
- Rules for boundary and crease are given by curve rules
 - Edge Point is computed as center of edge

• EP = $(1/2) * V_1 + (1/2) * V_2$

 Vertex point is computed as combination of vertex and its neighbor vertices on boundary (crease)



Geometric Modeling in Graphics



Modified Butterfly subdivision

- Interpolation scheme on triangular meshes
- Clsmooth everywhere except vertices with valence equal to 3 or greater then 7
- Extraordinary vertices with valence not equal to 6
- Dividing each triangle of mesh Mⁱ into 4 triangles of Mⁱ⁺¹
- All vertices of Mⁱ are present in Mⁱ⁺¹
- For each edge of Mⁱ, new edge point (odd vertex) is created and used when triangle is divided into 4 new triangles
- Rules for edge point are based on valence of end vertices of that edge

Modified Butterfly subdivision

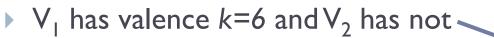
Computing edge point (odd vertex) for edge (V₁,V₂) leads to 4 possibilities

 \rightarrow

 S_{k-2}

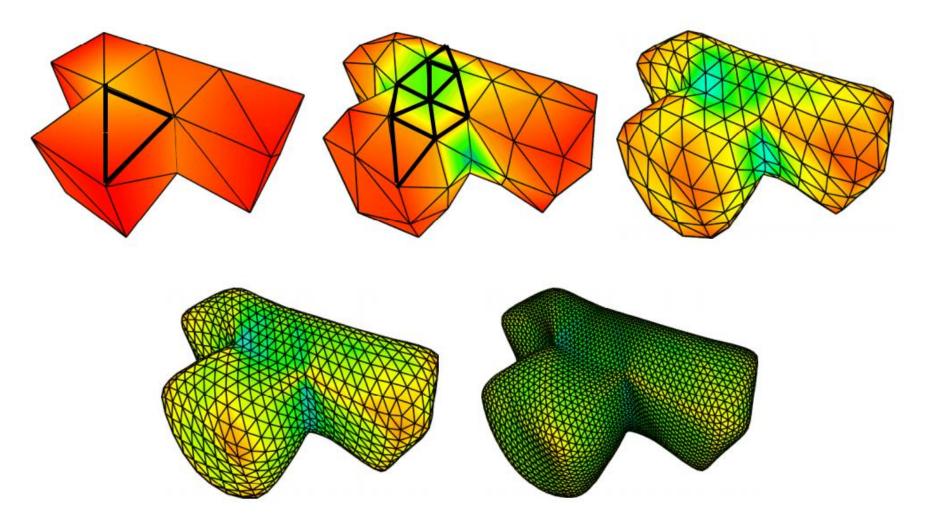
 $\frac{1}{16}$

 \triangleright V₁ and V₂ both have valence k=6 (are regular) –



- for k = 3 $s_0 = \frac{5}{12}$, $s_{1,2} = -\frac{1}{12}$
- for k = 4 $s_0 = \frac{3}{8}$, $s_2 = -\frac{1}{8}$, $s_{1,3} = 0$
- for $k \ge 5$ $s_i = \frac{1}{k} \left(\frac{1}{4} + \cos \frac{2i\pi}{k} + \frac{1}{2} \cos \frac{4i\pi}{k} \right)$
- V_1 and V_2 have valence not equal to 6
 - Average the results of using the extraordinary stencil on each of them
- Edge is on boundary $-\frac{1}{16}$ $\frac{9}{16}$ $\frac{9}{16}$ $-\frac{1}{16}$

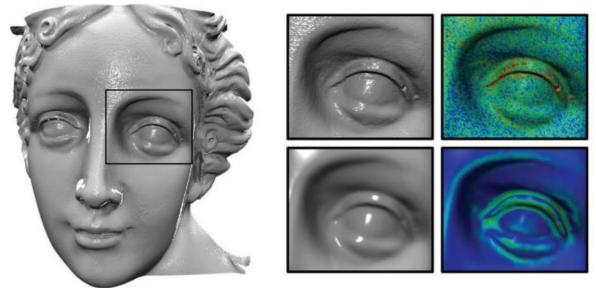
Modified Butterfly subdivision



http://graphics.stanford.edu/courses/cs468-10-fall/LectureSlides/10_Subdivision.pdf

Mesh smoothing

- Changing position of mesh vertices such that updated mesh is more smooth than given mesh
- No topology change inside mesh
- Increasing continuity of function over mesh
- Simulating (heat) diffusion, low pass filter
- Noise removal



http://staff.ustc.edu.cn/~tongwh/GM_2011/textbooks/Polygon Mesh Processing Mario Botsch et.al 2010.pdf

Laplacian smoothing

- Based on Fourier analysis
- Vertices of mesh are incrementally moved in direction of Vector Laplacian $\Delta f = \nabla^2 f = \sum_{i=1}^n \frac{\partial^2 f}{\partial x_i^2}$ $\nabla^2 \mathbf{A} = (\nabla^2 A_x, \nabla^2 A_y, \nabla^2 A_z),$
- Approximating Laplacian on meshes
 - Computation of mesh Laplacian for each vertex $x_i L(x_i)$
 - Mesh Laplacian is vector created as linear combination of vertex x, and vertices from its 1-ring neighborhood $N_1(i)$

$$L(x_i) = \sum_{j \in N_1(i)} w_{ij}(x_j - x_i)$$

- Simple Laplacian, uniform weights $w_{ij} = \frac{1}{m}$
- <u>Scale-dependent Laplacian</u>, Fujiwara weights $w_{ij} = \frac{1}{|e_{ij}|}$ $x_{\mu} \beta_{j} A_{j}^{\beta}$
- Cotangent Laplacian $w_{ii} = \cot \alpha_i + \cot \beta_i$
 - $L(x_i) = -2Hn_i$ (Laplacian is mean curvature normal)

Laplacian smoothing

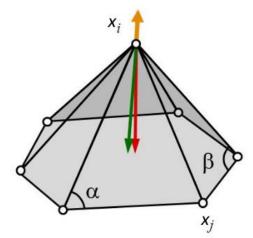
Simulating diffusion on mesh using forward difference

$$\frac{\partial X}{\partial t} = \lambda L(X)$$

Iterative process over each vertex, starting with base mesh

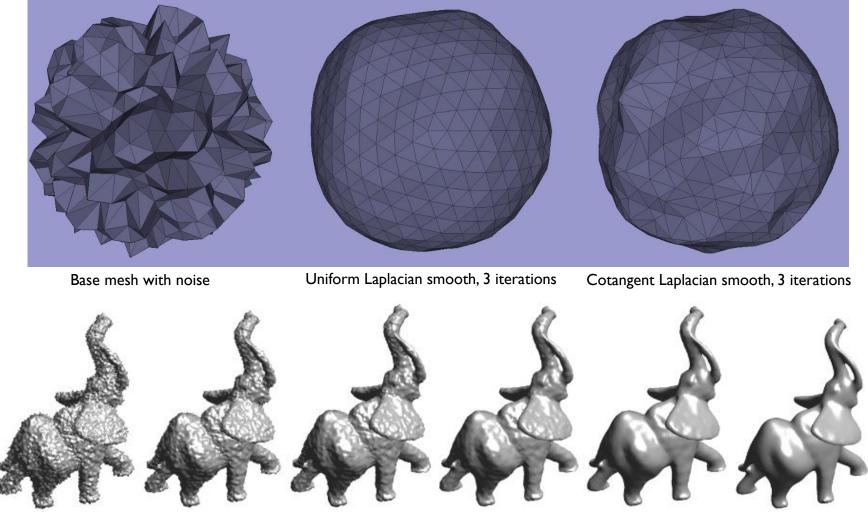
$$(x_1, x_2, ..., x_n) = (x_1^0, x_2^0, ..., x_n^0)$$

- One step of process computes new positions of vertices
 - $(x_1^{j}, x_2^{j}, ..., x_n^{j}) \to (x_1^{j+1}, x_2^{j+1}, ..., x_n^{j+1})$
 - Compute $L(x_i^j)$
 - ► $x_i^{j+l} = x_i^j + \lambda dt L(x_i^j)$, I = I, 2, ..., n
 - > λ scalar that controls the diffusion speed
 - dt sufficiently small time step
- Finish after user defined number of steps



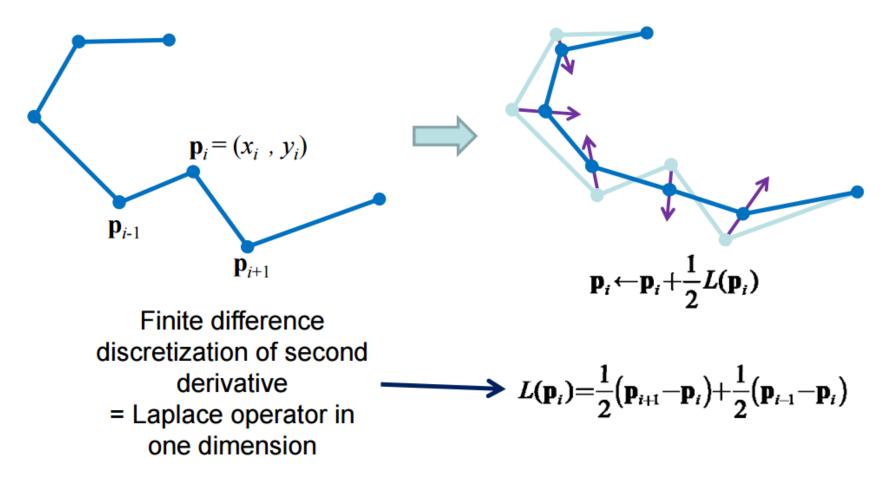
Laplacian smoothing

http://w3.impa.br/~zang/pg2012/exe3.html



https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp4.html

Laplacian smoothing - Curves



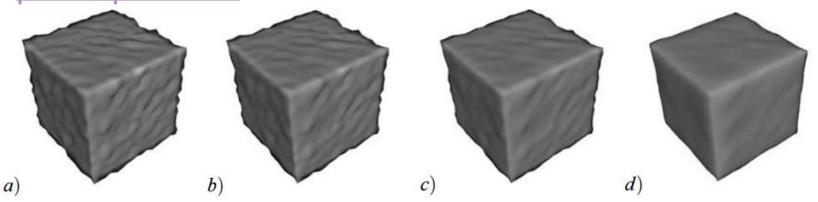
http://graphics.stanford.edu/courses/cs468-12-spring/LectureSlides/06_smoothing.pdf

Other smoothing algorithms

http://www.geometry.caltech.edu/pubs/JDD03.pdf

https://otik.uk.zcu.cz/bitstream/handle/11025/10872/Svub.

pdf?sequence=1



The End for today