

## Geometric Modeling

 in Graphics
## Part 4: Mesh smoothing



## Subdivision

- Generating new object (mesh, polyline) from old one by dividing edges or faces into smaller parts
- Generating new vertices, edges, faces, changing position of old vertices
- One step of subdivision - from object $\mathbf{P}^{\mathbf{i}}$ to object $\mathbf{P}^{\mathbf{i + 1}}, \mathrm{i}=0, \ldots$
- Subdivision scheme $S-\mathbf{P}^{\mathbf{i + 1}}=S\left(\mathbf{P}^{\mathbf{i}}\right)$
- Control (starting) object - $\mathbf{P}^{0}$
- Limit object - $\mathbf{P}, \mathbf{P}^{\infty}=\lim \mathbf{P}^{\mathbf{i}}, \mathrm{i} \rightarrow \infty$
- Interpolation schemes - vertices of $\mathbf{P}^{\mathbf{i}}$ are included in $\mathbf{P}^{\mathbf{i + 1}}$, each $\mathbf{P}^{i}$ and $\mathbf{P}$ passes through vertices of $\mathbf{P}^{0}$
- Approximation schemes - Each object $\mathbf{P}^{\mathbf{i}}$ and $\mathbf{P}$ only approximates shape of $\mathbf{P}^{0}$
- Continuity - continuity of limit object $\mathbf{P}$, usually $\mathrm{C}^{0}, \mathrm{C}^{1}, \mathrm{C}^{2}, \ldots$


## Subdivision



a) full resolution

b) $55 \%$ reduction

c) $82 \%$ reduction

d) $93 \%$ reduction

## Geometric Modeling in Graphics

## Polyline subdivision

- Chaikin subdivision scheme
- Corner cutting algorithm, approximating scheme
- $\mathbf{P}^{i}$ has vertices $\mathrm{V}_{1}{ }^{i}, \mathrm{~V}_{2}{ }^{i}, \ldots, \mathrm{~V}_{n}{ }^{i}$
- $\mathbf{P}^{i+1}$ has vertices $\mathrm{V}_{1}{ }^{i+1}, \mathrm{~V}_{2}^{i+1}, \ldots, \mathrm{~V}_{\mathrm{m}}{ }^{i+1}$
- $V_{2 j}{ }^{i+1}=0.25 * V_{j}^{i}+0.75 * V_{j+1}{ }^{i}, j=1,2, \ldots, m / 2$
- $V_{2 j-1}{ }^{i+1}=0.75 * V_{j}^{i}+0.25 * V_{j+1}{ }^{i}, j=I, 2, \ldots, m / 2$
- Open polyline
* $m=2 n-2$
- Closed polyline
- $m=2 n$
- $V_{n+1}{ }^{i}=V_{n}{ }^{i}$

increasing levels of subdivision

Geometric Modeling in Graphics

## Chaikin scheme

- Limit of Chaikin scheme - $C^{\prime}$ quadratic B -spline curve
- Limit curve in convex hull of control polyline
- Matrix notation, used for determination of mathematical properties

$$
\left[\begin{array}{c}
f_{0} \\
f_{1} \\
f_{2} \\
f_{3} \\
f_{4} \\
f_{5} \\
f_{6} \\
f_{7}
\end{array}\right]=\left[\begin{array}{cccc}
\frac{3}{4} & \frac{1}{4} & 0 & 0 \\
\frac{1}{4} & \frac{3}{4} & 0 & 0 \\
0 & \frac{3}{4} & \frac{1}{4} & 0 \\
0 & \frac{1}{4} & \frac{3}{4} & 0 \\
0 & 0 & \frac{3}{4} & \frac{1}{4} \\
0 & 0 & \frac{1}{4} & \frac{3}{4} \\
\frac{1}{4} & 0 & 0 & \frac{3}{4} \\
\frac{3}{4} & 0 & 0 & \frac{1}{4}
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]
$$






Geometric Modeling in Graphics

## Polyline subdivision

- Interpolation Scheme, limit curve is $\mathrm{C}^{\prime}$
- Dyn-Levin-Gregory
- $V_{2 j-1}{ }^{i+1}=V_{j}^{i}, j=I, 2, \ldots, m / 2$
- $V_{2 j}{ }^{i+1}=(-1 / 16) V_{j-1}{ }^{i+}+(9 / 16) V_{j}^{i}+(9 / 16) V_{j+1}{ }^{i}+(-1 / 16) V_{j+2}{ }^{i}$ $j=1,2, \ldots, m / 2$
- Open polyline: $m=2 n-I, V_{0}{ }^{i}=V_{1}{ }^{i}, V_{n+1}{ }^{i}=V_{n}{ }^{i}$
- Closed polyline: $m=2 n, V_{0}{ }^{i}=V_{n}{ }^{i}, V_{n+1}{ }^{i}=V_{2}{ }^{i}$



Geometric Modeling in Graphics

## Polyline subdivision

- Catmul-Clark approximating subdivision scheme
- Limit curve is $\mathrm{C}^{2}$ cubic B -spline curve
- $V_{2 j}{ }^{i+1}=(I / 2) * V_{j}^{i}+(I / 2) * V_{j+1}{ }^{i}, j=I, 2, \ldots, m / 2$
- $V_{2 j-1}{ }^{i+1}=(I / 8) V_{j-1}{ }^{i+}(6 / 8) V_{j}^{i}+(I / 8) V_{j+1}{ }^{i}, j=I, 2, \ldots, m / 2$
- Open polyline: $m=2 n-I, V_{0}{ }^{i}=V_{1}{ }^{i}, V_{n+1}{ }^{i}=V_{n}{ }^{i}$
- Closed polyline: $m=2 n, V_{0}{ }^{i}=V_{n}{ }^{i}, V_{n+1}{ }^{i}=V_{2}{ }^{i}$


Geometric Modeling in Graphics

## Loop subdivision

- Loop approximating scheme for triangular meshes
- Each subdivision step, triangle is divided into 4 subtriangles
- For each edge of mesh, new vertex is created near center of edge (odd vertex)
- Each old vertex is moved to new position (even vertex)
- Position of odd and even vertex is computed as barycentric combination of old vertices in its neighborhood - barycentric coordinates given as mask



## Loop subdivision

- Special rules for vertices, edges lying on boundary or marked as crease
- Using DCEL to get vertex neighborhood info


Original Loop


Crease and boundary

b. Masks for even vertices


$$
\begin{aligned}
& \beta=\frac{1}{n}\left(\frac{5}{8}-\left(\frac{3}{8}+\frac{1}{4} \cos \frac{2 \pi}{n}\right)^{2}\right) \\
& \beta= \begin{cases}\frac{3}{8 n} & n>3 \\
\frac{3}{16} & n=3\end{cases}
\end{aligned}
$$

Warren
Warren
a. Masks for odd vertices

Geometric Modeling in Graphics

## Loop subdivision

- Control mesh $\mathbf{M}^{0}$ - arbitrary triangular mesh
- Limit mesh $\mathbf{M}^{\infty}-\mathbf{C}^{2}$ smooth except small neighborhood of extraordinary vertices
- Extraordinary vertex - with valence not equal to 6


Geometric Modeling in Graphics

## Loop subdivision \& DCEL

- One Loop subdivision step from mesh $\mathbf{M i}^{i}$ to mesh $\mathbf{M}^{\text {i+1 }}$
- Creating DCEL structure for mesh $\mathbf{M}^{i+1}$
, I. For each vertex of $\mathbf{M}^{i}$, create new even vertex of $\mathbf{M}^{i+1}$ and compute its position from positions of $\mathbf{M}^{i}$ vertices, remember connection of new and old vertex
- 2. For each edge of $\mathbf{M}$, create and compute coordinates of new odd vertex, remember connection of new vertex with both halfedges of edge
- 3. For each face of Mi, create 4 new DCEL faces (triangles) and 12 new half-edges and fill its properties based on connections from previous steps except opposite pointers, remember connection of new faces with old faces
- 4. Fill opposite half-edges of mesh $\mathbf{M}^{\text {i+1 }}$ using connections from step 3

Geometric Modeling in Graphics

## Loop subdivision - Creases


http://www.bespokegeometry.com/20|5/0|/29/mesh-subdivision-loop-and-catmull-clark/

## Catmull-Clark subdivision

- Originally designed for quad meshes
- Generalized for control mesh with arbitrary simple polygons
- Approximating scheme, at least $C^{2}$ except neighborhood of extraordinary vertices
- After first step of subdivision, only quads are present
- For regular quad control mesh, limit surface is bicubic Bspline surface
- Extraordinary vertices are with valence not equal to 4
- Most popular scheme in modeling packages
- Used in many movies, first in short called Geri's game
- Catmull - working in Pixar, Disney


## Catmull-Clark subdivision

- One step of subdivision process, $\mathbf{M i}^{i}$ to mesh $\mathbf{M}^{i+1}$
- 3 kinds of new vertices of mesh $\mathbf{M}^{\mathbf{i + 1}}$, created for each element (face, edge, vertex) of $\mathbf{M i}^{\mathbf{i}}$
- Face point - average of all vertices of face
- Edge point - average of two points from neighboring faces
- Vertex point
- $F$ - average of all face points for faces touching vertex
- $R$ - average of all edge points for edges touching vertex
> $P$ - position of vertex
- $n$ - valence of vertex
- To create mesh $\mathbf{M}^{\mathbf{i + 1}}$, connect each face point with corresponding edge points and each vertex point with corresponding edge points

Geometric Modeling in Graphics

## Catmull-Clark subdivision

- Rules for boundary and crease are given by curve rules
- Edge Point is computed as center of edge

$$
\text { bP }=(I / 2) * V_{1}+(I / 2) * V_{2}
$$

- Vertex point is computed as combination of vertex and its neighbor vertices on boundary (crease)
- $\mathrm{VP}=(1 / 8) \mathrm{N}_{1}+(6 / 8) \mathrm{V}+(1 / 8) \mathrm{N}_{2}$


Mask for a face vertex


Mask for an edge vertex


Geometric Modeling in Graphics

## Catmull-Clark subdivision



Geometric Modeling in Graphics

## Modified Butterfly subdivision

- Interpolation scheme on triangular meshes
- Clsmooth everywhere except vertices with valence equal to 3 or greater then 7
- Extraordinary vertices with valence not equal to 6
- Dividing each triangle of mesh $\mathbf{M i}^{i}$ into 4 triangles of $\mathbf{M}^{\mathbf{i + 1}}$
- All vertices of $\mathbf{M}^{\mathbf{i}}$ are present in $\mathbf{M}^{\text {i+1 }}$
- For each edge of Mi, new edge point (odd vertex) is created and used when triangle is divided into 4 new triangles
- Rules for edge point are based on valence of end vertices of that edge


## Modified Butterfly subdivision

- Computing edge point (odd vertex) for edge $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}\right)$ leads to 4 possibilities
* $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$ both have valence $\mathrm{k}=6$ (are regular)
* $V_{1}$ has valence $k=6$ and $V_{2}$ has not
- for $k=3 \quad s_{0}=\frac{5}{12}, s_{1,2}=-\frac{1}{12}$
- for $k=4 \quad s_{0}=\frac{3}{8}, s_{2}=-\frac{1}{8}, s_{1,3}=0$
- for $k>=5 \quad s_{i}=\frac{1}{k}\left(\frac{1}{4}+\cos \frac{2 i \pi}{k}+\frac{1}{2} \cos \frac{4 i \pi}{k}\right)$

, $V_{1}$ and $V_{2}$ have valence not equal to 6
- Average the results of using the extraordinary stencil on each of them
- Edge is on boundary

$$
\begin{array}{ccccc}
1 & \frac{1}{16} & \frac{9}{16} & \frac{9}{16} & -\frac{1}{16}
\end{array}
$$

Geometric Modeling in Graphics

## Modified Butterfly subdivision


http://graphics.stanford.edu/courses/cs468-I0-fall/LectureSlides/l0 Subdivision.pdf
Geometric Modeling in Graphics

## Mesh smoothing

- Changing position of mesh vertices such that updated mesh is more smooth than given mesh
- No topology change inside mesh
- Increasing continuity of function over mesh
- Simulating (heat) diffusion, low pass filter
- Noise removal



## Laplacian smoothing

- Based on Fourier analysis
- Vertices of mesh are incrementally moved in direction of Vector Laplacian

$$
\begin{aligned}
& \Delta f=\nabla^{2} f=\sum_{i=1}^{n} \frac{\partial^{2} f}{\partial x_{2}^{2}} \\
& \text { n on meshes }
\end{aligned}
$$

- Computation of mesh Laplacian for each vertex $x_{i}-L\left(x_{i}\right)$
- Mesh Laplacian is vector created as linear combination of vertex $x_{i}$ and vertices from its I-ring neighborhood $N_{l}$ (i)

$$
L\left(x_{i}\right)=\sum_{j \in \mathcal{N}_{i}(\overrightarrow{)}} w_{j i}\left(x_{j}-x_{i}\right)
$$

- Simple Laplacian, uniform weights $w_{i j}=\frac{1}{m}$
- Scale-dependent Laplacian, Fujiwara weights $w_{i j}=\frac{1}{\left|e_{i j}\right|}$
- Cotangent Laplacian $\quad w_{i j}=\cot \alpha_{j}+\cot \beta_{j}$
- $L\left(x_{i}\right)=-2 H n_{i}$ (Laplacian is mean curvature normal)


Geometric Modeling in Graphics

## Laplacian smoothing

- Simulating diffusion on mesh using forward difference

$$
\frac{\partial X}{\partial t}=\lambda L(X)
$$

- Iterative process over each vertex, starting with base mesh
- $\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}{ }^{0}, x_{2}{ }^{0}, \ldots, x_{n}{ }^{0}\right)$
- One step of process computes new positions of vertices
- $\left(x_{1}^{j}, x_{2}^{j}, \ldots, x_{n}^{j}\right) \rightarrow\left(x_{1}^{j+1}, x_{2}^{j+1}, \ldots, x_{n}^{j+1}\right)$
- Compute $L\left(x_{j}^{j}\right)$
- $x_{1}^{j+1}=x_{1}^{j}+\lambda d t L\left(x_{i}^{j}\right), I=I, 2, \ldots, n$
- $\lambda$ - scalar that controls the diffusion speed

D dt - sufficiently small time step

- Finish after user defined number of steps


Geometric Modeling in Graphics

## Laplacian smoothing



Base mesh with noise
Uniform Laplacian smooth, 3 iterations
Cotangent Laplacian smooth, 3 iterations

https://www.ceremade.dauphine.fr/~peyre/teaching/manifold/tp4.html
Geometric Modeling in Graphics

## Laplacian smoothing - Curves



Finite difference
discretization of second derivative

$$
\longrightarrow L\left(\mathbf{p}_{i}\right)=\frac{1}{2}\left(\mathbf{p}_{i+1}-\mathbf{p}_{i}\right)+\frac{1}{2}\left(\mathbf{p}_{i-1}-\mathbf{p}_{i}\right)
$$ one dimension

## Other smoothing algorithms

- http://www.geometry.caltech.edu/pubs/JDD03.pdf

- https://otik.uk.zcu.cz/bitstream/handle/ I I025/I0872/Svub. pdf?sequence= I

b)

c)

d)


Geometric Modeling in Graphics


## The End for today

