Interactive Collision Detection

Author: Philip M. Hubbard

Speaker: Martin Duncko

Introduction

- Simulation of physical world
- Collision-handling algorithm
 - Detection algorithm
 - Response algorithm

- Approximation
 - Space-time bound
 - Sphere-tree

Naive algorithm

```
for t \leftarrow 0 to \hat{t} in steps of \Delta t
for each agent A_i \in \{A_1, \ldots, A_N\}
move A_i to its position at time t
for each agent A_j \in \{A_{i+1}, \ldots, A_N\}
move A_j to its position at time t
if (surfaces of A_i, A_j penetrate)
then a collision occurs at time t
```

Problems:

- Fixed-timestep weakness
- All-pairs weakness
- Pair-processing weakness

- Point A:
 - Position in space in time : x(t)
 - Velocity x'(t)
 - Acceleration x"(t)
- We know:
 - x(0), x'(0),
 - scalar M:

$$|\mathbf{x}(t) - [\mathbf{x}(0) + \dot{\mathbf{x}}(0)t]| \le \frac{M}{2}t^2, \quad 0 \le t \le \hat{t}.$$

- 3D bound (sphere) at time t
- 4D bounds through time *t*

Parabolic horn – bounding structure

- Parabolic factor costly intersections
- Hyper-trapezoid simple 4D polyhedron
 - Encloses parabolic horn
- Cross section :
 - at t = 0 and $t = t^-$ isothetic cubes
 - linear interpolation between endpoint cubes

Hyper-trapezoid for motion in 2D

Hyper-trapezoid has 6 4D faces

One for each 3D face of cross-sectional cubes

Each cross-section of 4D face is isothetic 3D square

Space-time bound intersections

- 2 agents collide at time t
- 2 space-time bounds collide at time t'
 - t' < t</p>

 Detection alg. compute t' as smallest t, where collision can appear

Intersection

 Intersection between two hyper-trapezoid faces is condition for intersection of two space-time bounds

So search for intersection of face intersections

Intersection 2

- Each 3D cross section of a 4D hyper-trapezoid face is normal to one of standard axis
- Set of all 4D faces partition to:

```
F_{\alpha} = \{f \mid \text{face } f \text{ is normal to axis } \alpha\}, \ \alpha \in \{x, y, z\}.
```

 If hyper-trapezoids intersect for first time, there must be an intersection in the same ax

Intersection 3

- Itersection in one set:
 - Project each face $f \in F_{\alpha}$ to α -t plane
 - 2D line segment
 - Faces intersect if t = t' cross section intersect
- Two cross sections are isothetic squares with the same ax - two dimensional problem
- Bentley-Ottman algorithm

Detecting collisions

```
t_{\rm build} \leftarrow t_{\rm end} / * t_{\rm end} = 0 before first call */
while (t \geq t_{\rm end})
     rebuild space-time bounds as of t_{
m build}
     \check{t}_i \leftarrow earliest inter. between bounds, B_1, B_2
     t_{\text{end}} \leftarrow \check{t_i}
     if (t_{\rm end} - t_{\rm build} < \Delta t)
        could\_overlap \leftarrow TRUE
        if (B_1 \text{ and } B_2 \text{ really inter. before expiring})
           if (pair-processing algorithm finds that B_1's
                        and B_2's agents penetrate at t_{\text{build}})
               return collision at t_{\rm build}
        t_{\text{end}} \leftarrow t_{\text{build}} + \Delta t
     else
        could\_overlap \leftarrow FALSE
     t_{\text{build}} \leftarrow t_{\text{end}}
return no collision as of t
```

Detecting collisions 2

- t = 0
 - algorithm builts space-time bounds for all agents
- Bounds expire, when M are unknown
- Compute *t'*
- No working when $t < t^{\hat{}}$
- Δt minimum temporal resolution

Sphere trees

- Easy check for penetration
- Agents are approximates as spheres
- Sphere tree
 - Deeper level more spheres
 - Children of one sphere at level *i* are al spheres at level *i*+1 that it bounds
- Agents sphere-tree is built just once
- Same rigid body transformation as agents

Building sphere trees

- Built octree for agent
- Circumscribing spheres of octants at level j are spheres set at level j
- Resolution doubles with each level

Only polyhedral agents

Performance - broad phase

- Compared to Turk's algorithm
- Test program generates random configurations of isothetic cubes and forces
- Unix clock routine measures time to find first collision

Performance-broad phase2

- Turk's algorithm divide this algorithm
 - Only 1+

Per frame performance

- Slowest time was slower than Turk's
- But not often

Performance - narrow phase

- Spaceship simulator
 - User control forward and rotate
- Dron ships
 - Random moves
- Sphere tree vs BSP trees
 - BSP exact results

Performance

Broad + narrow phase 5 to 7 times faster than
 Turk's algorithm with BSP

Thank you for your attention