Interactive Collision Detection

Author: Philip M. Hubbard
Speaker: Martin Duncko

Introduction

= Simulation of physical world

= Collision-handling algorithm

= Detection algorithm

= Response algorithm

= Approximation

= Space-time bound

= Sphere-tree

Naive algorithm

for t — 0 to f in steps of At
for each agent A; € {A] §ua .,HN}
move A; to its position at time ¢
for each agent A; € {A;41,...,An}
move A; to its position at time ¢
if (surfaces of A;, A; penetrate)
then a collision occurs at time ¢

= Problems:

= Fixed-timestep weakness
= All-pairs weakness

= Pair-processing weakness

Space-time bounds

= Point A:
= Position in space 1n time : x(t)
= Velocity x'(t)
= Acceleration x"(t)
= We know:
= x(0), x'(0),

= gcalar M:

. M i
x(t) — [x(0) +x(0)t]] < - 0<t<t.

Space-time bounds 2

= 3D bound (sphere) at time ¢

= 4D bounds through time ¢

= Parabolic horn — bounding structure

Space-time bounds 3

= Parabolic factor — costly intersections

= Hyper-trapezoid — simple 4D polyhedron
= Encloses parabolic horn

= Cross section :

= atr=0and r =71 - 1sothetic cubes

= linear interpolation between endpoint cubes

Space-time bounds 4

= Hyper-trapezoid for motion in 2D

Space-time bounds 5

= Hyper-trapezoid has 6 4D faces
= One for each 3D face of cross-sectional cubes

= Each cross-section of 4D face 1s 1sothetic 3D square

Space-time bound
iIntersections

= 2 agents collide at time ¢

= 2 space-time bounds collide at time ¢’

s <t

= Detection alg. compute ¢' as smallest 7, where
collision can appear

Intersection

= Intersection between two hyper-trapezoid faces 1s
condition for intersection of two space-time
bounds

= So search for intersection of face intersections

Intersection 2

= Each 3D cross section of a 4D hyper-trapezoid face
1s normal to one of standard axis

= Set of all 4D faces partition to:
I, = {f|face f is normal to axis a}, o € {z,y, z}.

= If hyper-trapezoids intersect for first time, there
must be an intersection in the same ax

Intersection 3

= Jtersection 1n one set:

= Project each face f € F, to a-t plane
= 2D line segment

= Faces intersect if r = ' cross section intersect

= Two cross sections are 1sothetic squares with the
same ax - two dimensional problem

= Bentley-Ottman algorithm

Detecting collisions

thuild — fend f* teng = U before first call *f
while (t > t.n4)
rebuild space-time bounds as of {1414
t; — earliest inter. between bounds, B, B-
lend — fi
if (tcnd — lpuild < ﬂ.t)
could_overlap «— TRUE
if (B and B. really inter. before expiring)
if (pair-processing algorithm finds that B;'s
and B.'s agents penetrate at tbuﬂd)
return collision at {1,414
tend < touila + At
else
could_overlap — FALSE
lpuild = lend
return no collision as of t

Detecting collisions 2

t=0
= algorithm builts space-time bounds for all agents

Bounds expire, when M are unknown
Compute '
No working when t < ¢~

At — minimum temporal resolution

Easy check for penetration
Agents are approximates as spheres

Sphere tree

Deeper level — more spheres

Children of one sphere at level i are al spheres at
level i+1 that 1t bounds

Agents sphere-tree 1s built just once

Same rigid body transformation as agents

Building sphere trees

Built octree for agent

Circumscribing spheres of octants at level j are
spheres set at level j

Resolution doubles with each level

Only polyhedral agents

Performance - broad phase

= Compared to Turk's algorithm

= Test program generates random configurations of
1sothetic cubes and forces

= Unix clock routine measures time to find first
collision

Performance-broad phase2

00 w00
o | ! '
5 | 8 |
O | =Y |
B 10 2 e - pasti s R (T Y
g B -
Z iﬁ . ?& "?;?ﬁﬁum 37 5% o
= N b
3 |

005 1T 152253 %oo05 1152253

simulation time at which first collision occurred

= Turk's algorithm divide this algorithm
= Only 1+

Per frame performance

5000
4000
3000

2000 | 2000 |
1000 | . 1000 |
. 02 0.3 ﬂﬂ _ 'ﬂ' 0.3

seconds per frame (detection—only time)

num. frames, our algorithm
num. frames, Turk’s algorithm

= Slowest time was slower than Turk's

= But not often

Performance - narrow phase

= Spaceship simulator

= User control — forward and rotate
= Dron ships

= Random moves
= Sphere tree vs BSP trees

= BSP — exact results

Performance

= Broad + narrow phase 5 to 7 times faster than
Turk's algorithm with BSP

Thank you for your attention

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

