
Geometric

Modeling

 in Graphics

Martin Samuelčík

www.sccg.sk/~samuelcik

samuelcik@sccg.sk

Part 1: Polygonal Meshes

Geometric object

 Set of connected points in space

 Usually inside Euclidean space (orthonormal basis,

coordinates, inner product, norm, distance, angle, …)

 Topological dimension – 0D,1D, 2D, 3D objects

 Topological dimension defined by open covers

Geometric Modeling in Graphics

wikipedia.org

Manifold

 n-manifold – set of points locally homeomorphic to n-

dimensional Euclidean space

 Manifold resembles Euclidean space near each point

 For each point of n-manifold there exists his

neighborhood homeomorphic with open n-dimensional

ball

 n-manifold is n dimensional object

 Homeomorphism – continuous function with continuous

inverse function, means topological equivalence

Geometric Modeling in Graphics

Manifolds & non-manifolds

Geometric Modeling in Graphics

Polygonal mesh
 Boundary representation of 3D object (polyhedron) or

representation of 2D object (surface)

 Boundary represented as set of polygons (faces)

 Each polygon defined by ordered set of vertices

 Vertices – coordinates – geometric information

 Order of vertices – topological information

 Possible additional element = edges – connecting 2
consecutive vertices in polygon

 Edges are shared between several neighboring polygons

 Boundary representation of 2D object – line loop

Geometric Modeling in Graphics

wikipedia.org

Extended polygonal mesh

 Extended faces with holes and self intersecting edges

 Each face is originally defined as set of contours

 Type of representation in some modeling packages

 Can be transformed to simplified mesh with faces

without holes – using tessellation algorithms (GLU

tessellation, CGAL, Visualization Library, …)

Geometric Modeling in Graphics

Polygonal mesh orientation

 Edge orientation – order of two vertices

 Polygon orientation – order of vertices (edges) that
defines polygon boundary

 Polygonal mesh orientation – given by orientation of
faces, such that polygons on common edge have opposite
orientation

 If orientation exists – orientable – have both sides

 Computation of orientable area, volume

Geometric Modeling in Graphics

Oriented Area of simple polygon

[xi, yi] is i-th vertex
Oriented Volume of convex polyhedron

xi is any point of i-th face

Ai is are of i-th face

ni is normal of i-th face

Euler characteristic

 Boundary representation of 3D object using 2-manifold

polygonal mesh

 Oriented 2-manifold polygonal mesh

 Works also for planar graphs

 Genus g – number of holes in 3D object

 V, E, F – number of vertices, edges, faces in mesh

 V-E+F=2-2g

Geometric Modeling in Graphics

Euler characteristic

Geometric Modeling in Graphics

wikipedia.org

Polygonal mesh structures

 Structures representing vertices, edges, faces

 Memory complexity of structures

 Optimizing algorithms on these structures

 Algorithms for creation and update

 Geometric algorithms

 Transformations, intersections

 Topological algorithms

 Finding neighborhood elements

 Visualization algorithms

 Usually using graphics cards and 3D APIs

Geometric Modeling in Graphics

Topological algorithms

 Find elements (vertices, edges, faces) that are connected

with given element

 Connected through k other elements = searching in k-

ring neighborhood

 Used frequently in many modeling algorithms

Geometric Modeling in Graphics

Vertex Edge Face

Vertex VV VE VF

Edge EV EE EF

Face FV FE FF
subdivision surfaces computation of vertex normals

Edge-Vertex meshes

 Simple representation of polygonal mesh

 Structure containing two sets

 List of vertices

 List of edges, where each edge is given by two vertices = two
pointers to list of vertices, several types of pointer

 No implicit representation of faces

 No information of neighboring elements = slow
topological algorithms

Geometric Modeling in Graphics

struct Vertex
{

float x, y, z;
}

struct Edge1
{

float x1, y1, z1;
float x2, y2, z2;

}

struct Edge2
{

int i1;
int i2;

}

struct Edge3
{

Vertex v1;
Vertex v2;

}

struct Mesh
{

List<Vertex> vertices;
List<Edge> edges;

}

Face-Vertex meshes

 Structure containing two sets

 List of vertices

 List of faces, where each face is given as ordered list of vertices

 Order of vertices (edges) in face – orientation of face

 No implicit representation of edges, but can be added
third list of edges

 No information of neighboring elements = slow
topological algorithms

Geometric Modeling in Graphics

struct Vertex
{
 float x, y, z;
}

struct Face1
{
 List<int> vertices;
}

struct Edge2
{
 Vertex v1, v2;
}

struct Face2
{
 List<Edge2> edges;
}

struct Mesh1
{
 List<Vertex> vertices;
 List<Face1> faces;
}

struct Mesh2
{
 List<Vertex> vertices;
 List<Edge2> edges;
 List<Face2> faces;
}

Face-Vertex meshes

 Minimal structure for representing vertices, edges and

faces

 Structure best suitable for visualization using graphics

card and serialization using files

 File formats for meshes – Collada, 3DS, OBJ, VRML, …

Geometric Modeling in Graphics

<mesh>
 <source id="box-lib-positions" name="position">
 <float_array id="box-lib-positions-array" count="24">-1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -1 -1 -1 1 -1 -1 </float_array>
 <technique_common>
 <accessor count="8" source="#box-lib-positions-array" stride="3">
 <param name="X" type="float"/>
 <param name="Y" type="float"/>
 <param name="Z" type="float"/>
 </accessor>
 </technique_common>
 </source>
 <vertices id="box-lib-vertices">
 <input semantic="POSITION" source="#box-lib-positions"/>
 </vertices>
 <polylist count="6" material="BlueSG">
 <input offset="0" semantic="VERTEX" source="#box-lib-vertices"/>
 <vcount>4 4 4 4 4 4 </vcount>
 <p>0 2 3 1 0 1 5 4 6 7 3 2 0 4 6 2 3 7 5 1 5 7 6 4 </p>
 </polylist>
</mesh>

Face-Vertex meshes

 Visualization using modern graphics card and 3D APIs

(Direct 3D, OpenGL, …)

 Using simple list (array) of vertex attributes and list

(array) of triangles (polygons)

 Polygon is given as list of indices to vertex array

 Use 3D API to send these arrays to graphic card

Geometric Modeling in Graphics

struct VisualizationVertex
{

float x, y, z;
// uv coordinates, normals

}

struct VisualizationTriangle
{

int i, j, k;
}

struct VisualizationMesh
{

int num_vertices;
Vertex[] vertices;
int num_triangles;
Triangle[] triangles;

}

Face-Vertex meshes

 Topological algorithms

Geometric Modeling in Graphics

Vertex Edge Face

Vertex O(m) O(m) O(l+k)

Edge O(1) O(m) O(l+k)

Face O(k) O(k) O(m+k)

• n – number of vertices

• m – number of edges

• l – number of faces

• k – maximal number of vertices (edges) for face

FaceVertexMeshFF(Face2 face, Mesh2 mesh)
{
 List<Face2> result;
 for (int i = 0; i < mesh.faces.size(); i++)
 mesh.edges[i].f1 = mesh.edges[i].f2 = NULL;
 for (int i = 0; i < mesh.faces.size(); i++)
 for (int j = 0; j < mesh.faces[i].edges.size(); j++)
 {
 if (mesh.faces[i].edges[j].f1 == NULL)
 mesh.faces[i].edges[j].f1 = mesh.faces[i];
 else if (mesh.faces[i].edges[j].f2 == NULL)
 mesh.faces[i].edges[j].f2 = mesh.faces[i];

 }
 for (int i = 0; i < face.edges.size(); i++)
 {
 if (face == face.edges[i].f1 && face.edges[i].f2 != NULL)
 result.add(face.edges[i].f2);
 if (face == face.edges[i].f2 && face.edges[i].f1 != NULL)
 result.add(face.edges[i].f1);
 }
 return result;
}

struct Edge2
{
 Vertex v1, v2;
 Face2 f1;
 Face2 f2;
}

Winged Edge

 Structure for representing polygonal orientable 2-
manifold mesh

 Lists of vertices, edges (winged edges), faces

 Structure for vertex and face contains only one pointer
to one incident edge + coordinates of vertex

 Extended incident data for edge structure, its members
are given by edge and polyhedron orientation

Geometric Modeling in Graphics

a – current edge

X – begin vertex of current edge

Y – end vertex of current edge

b – previous edge in orientation from left face

d – next edge in orientation from left face

c – next edge in orientation from right face

e – previous edge in orientation from right face

1 – left face

2 – right face

Winged Edge

 Possibility to store only next edges (c, d) from left and

right faces, removing previous faces (b, e)

 For extended meshes store one edge of each contour

inside each face

 Visualization & file serialization – covert between face-

vertex mesh and winged-edge mesh

Geometric Modeling in Graphics

struct Vertex
{

float x, y, z;
WingedEdge edge;

}

struct Face
{

WingedEdge outer_edge;
//List<WingedEdge> inner_edges;

}

struct WingedEdge
{

Vertex X;
Vertex Y;
WingedEdge b;
WingedEdge c;
WingedEdge d;
WingedEdge e;
Face 1;
Face 2;

}

struct WingedEdgeMesh
{

List<Vertex> vertices;
List<WingedEdge> edges;
List<Face> faces;

}

Winged Edge example

Geometric Modeling in Graphics

http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/winged-e.html

Winged Edge
 All topological algorithms in constant time, higher memory

Geometric Modeling in Graphics

WingedEdgeFF(Face face) {
WingedEdge start_edge = face.outer_edge;
WingedEdge current_edge;
if (start_edge.1 == face) {
 result.Add(start_edge.2);
 current_edge = start_edge.d;
}
else if (start_edge.2 == face) {
 result.Add(start_edge.2);
 current_edge = start_edge.c;
}
else return;
while (current_edge != start_edge) {

if (current_edge.1 == face) {
result.Add(current_edge.2);
current_edge = current_edge.d;

}
else if (current_edge.2 == face) {

result.Add(current_edge.1);
current_edge = current_edge.c;

}
}
return result;

}

WingedEdgeVE(Vertex vertex) {
WingedEdge start_edge = vertex.edge;
WingedEdge current_edge;
WingedEdge prev_edge = start_edge;
if (vertex == start_edge.X)
 current_edge = start_edge.d;
else
 current_edge = start_edge.c;
result.Add(start_edge);
while (current_edge != start_edge) {
 result.Add(current_edge);

if (vertex == current_edge.X) {
if (prev_edge == current_edge.e)
 current_edge = current_edge.d;
else
 current_edge = current_edge.e;

}
else {

if (prev_edge == current_edge.c)
 current_edge = current_edge.b;
else
 current_edge = current_edge.c;

}
prev_edge = result.Last();

}
return result;

}

Quad Edge

 Structure used mainly for representing graphs and its dual
graphs – flipping vertices and faces

 Structure for vertex and face is almost the same,
represented by same pointer

 List od data (vertices and faces) and list of quad edges

 New structure – half edge – connection from start vertex
of edge to end vertex of edge or from one face to second
face over edge

 Half edge holds starting data pointer (element) and
pointer to next half-edge around starting vertex or edge

 Set of 4 half edges – quad edge

Geometric Modeling in Graphics

Quad Edge

Geometric Modeling in Graphics

struct Vertex: Data
{

float x, y, z;
HEdge edge;

}

struct Face: Data
{

HEdge edge;
}

struct HEdge
{

HEdge next; // Onext
Data data; // vertex, face info
QuadEdge parent;

}

struct QuadEdge
{

HEdge e[4];
}

struct QuadEdgeMesh
{

List<Data> vertices_and_faces;
List<QuadEdge> edges;

}

Leonidas Guibas and Jorge Stolfi. 1985. Primitives for the manipulation of general subdivisions and the computation of Voronoi.

Algebra on edges

 Function for given half edge:
 Rot – rotating half edge by 90° counterclockwise

 Sym – symmetrical half edge

 Next – next half edge; can be around origin, destination, left, right object of given

half edge (Onext, Dnext, Lnext, Rnext)

 Prev – previous half edge, again around four elements

 Org – origin element, where half edge starts

 Dest – destination element, where half edge ends

 Left – element to the left of half edge

 Right – element to the right of half edge

Geometric Modeling in Graphics

https://www.cs.cmu.edu/afs/andrew/scs/cs/15-463/2001/pub/src/a2/quadedge.html

Algebra on edges
 Rot(e) = e->parent->e[(r+1) mod 4]; // r is index of e in e->parent QuadEdge

 Sym(e) = Rot(Rot(e)) = e->parent->e[(r+2) mod 4];

 Org(e) = e->data;

 Dest(e) = Sym(e)->data;

 Rot-1(e) = e->parent->e[(r+3) mod 4] = Rot(Rot(Rot(e)));

 Right(e) = Rot-1(e)->data;

 Left(e) = Rot(e)->data;

 Onext(e) = e->next;

 Oprev(e) = Rot(Onext(Rot(e)));

 Dnext(e) = Sym(Onext(Sym(e)));

 Dprev(e) = Rot-1(Onext(Rot-1(e)));

 Lnext(e) = Rot(Onext(Rot-1(e)));

 Lprev(e) = Sym(Onext(e));

 Rnext(e) = Rot-1(Onext(Rot(e)));

 Rprev(e) = Onext(Sym(e));

Geometric Modeling in Graphics

•Only Rot a Onext is needed, all

other operators can be

computed

•That is reason for only next
and parent members in

QuadEdge structure

Quad Edge

Geometric Modeling in Graphics

QuadEdgeFF(Face face)
{

HEdge start_edge = face.edge;
result.Add(Sym(start_edge).data);
HEdge current_edge = Onext(start_edge); // = start_edge.next
while (current_edge && current_edge != start_edge)
{
 result.Add(Sym(current_edge).data);
 current_edge = Onext(current_edge);
}
return result;

}

QuadEdgeVE(Vertex vertex)
{

HEdge start_edge = vertex.edge;
result.Add(start_edge);
HEdge current_edge = Onext(start_edge); // = start_edge.next
while (current_edge && current_edge != start_edge)
{
 result.Add(current_edge);
 current_edge = Onext(current_edge);
}
return result;

}

Delaunay-Voronoi dual graphs

Geometric Modeling in Graphics

DCEL and Half-Edge

 Solving problems with orientation in Winged Edge

 Breaking each edge into two half-edges, „arrows“ or
oriented edges

 DCEL - Double Connected Edge List for 2-manifold
polygonal mesh, contains list of vertices, faces and half
edges

 Each Half-edge contains

 Pointer to opposite or twin half-edge, together they form
whole edge, can be NULL if there is no opposite half-edge

 Pointer to vertex where this half-edge starts (or ends)

 Pointer to face where half-edge belongs, direction of half-edge
is given by orientation inside this face

 Pointer to next half-edge in orientation of half-edge’s face

Geometric Modeling in Graphics

DCEL

 Can represents also extended polygonal meshes – face

then contains one half-edge for each contour

Geometric Modeling in Graphics

struct Vertex
{

float x, y, z;
HalfEdge edge;

}

struct Face
{

HalfEdge outer_edge;
//List< HalfEdge> inner_edges;

}

struct HalfEdge
{

Vertex origin;
HalfEdge opp;
HalfEdge next;
//HalfEdge prev;
Face face;

}

struct DCEL
{

List<Vertex> vertices;
List<HalfEdge> edges;
List<Face> faces;

}

DCEL example

Geometric Modeling in Graphics

DCEL topological algorithms

Geometric Modeling in Graphics

HalfEdgeFF(Face face)
{

HalfEdge start_edge = face.outer_edge;
if (start_edge.opp)
 result.Add(start_edge.opp.face);
HalfEdge current_edge = start_edge.next;
while (current_edge && current_edge != start_edge)
{
 result.Add(current_edge.opp.face);
 current_edge = current_edge.next;
}
return result;

}

HalfEdgeVE(Vertex vertex)
{

HalfEdge start_edge = vertex.edge;
result.Add(start_edge);
HalfEdge current_edge = start_edge.opp.next;
while (current_edge && current_edge != start_edge)
{
 result.Add(current_edge);
 current_edge = current_edge.opp.next;
}
return result;

}

All in constant time!

Face-Vertex mesh to DCEL mesh

 Used mainly when importing mesh from file

 1. Copy list of vertices and faces from Face-Vertex mesh to

DCEL mesh

 2a. For each face traverse all edges of that face, create half edge

for each face vertex and fill origin, next and face pointers

 2b. While traversing faces and its vertices, remember all

incident (incoming) half-edges for each vertex

 3. Then for each half-edge, find opposite half-edge by searching

incoming half-edges for origin vertex, here we need 2-manifold

property to simple achieve this

 4. Add one arbitrary incident half-edge for each face and vertex

 Computational complexity is linear

Geometric Modeling in Graphics

The End
for today

Geometric Modeling in Graphics

