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Motivations

 Dynamics of incompressible fluids is governed by 
the following Navier-Stokes equations

 Motivation: We need to understand the math 
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Spatial Discretization

 Virtually split simulation space into finite elements
 Irregular finite elements 

 Octrees, tetrahedral meshes, …

 Regular finite elements
 Regular grids

∆y

∆x



    

Scalar and Vector Fields

 Scalar field is a 
function mapping a 
location in the 
simulation space to a 
scalar value
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 Vector field is a 
function mapping a 
location in the 
simulation space to a 
vector value



    

Scalar and Vector Field Notation

 Scalar field
 f: Rn → R
 f(x) = a

 2D/3D Scalar fields
 f(x, y) = a
 f(x, y, z) = a

 Vector field
 F: Rn → Rm

 F(x) = a

 2D/3D Vector fields
 F(x, y) = (u, v)
 F(x, y, z) = (u, v, w)
 u(x, y, z) = a
 v(x, y, z) = b
 w(x, y, z) = c



    

Calculus – Partial Derivative

 Partial Derivative (∂) of a function of several 
variables is its derivative with respect to one of 
those variables with the others held constant

f x x , y , z =
∂ f x , y , z 

∂ x
= limh0

f xh , y , z− f  x−h , y , z 
2h

f y x , y , z  =
∂ f  x , y , z

∂ y = limh 0
f x , yh , z − f x , y−h , z

2h

f z x , y , z  = ∂ f x , y , z
∂ z

= limh 0
f x , y , zh− f x , y , z−h

2h



    

Calculus – Finite Differences

 Forward derivative

 Backward derivative

 Central derivative

 Forward difference

 Backward difference

 Central difference

∂ f
∂ x

= limh0
f  xh , y , z − f  x , y , z 

h

∂ f
∂ x = limh0

f x , y , z− f x−h , y , z
h

∂ f
∂ x

= limh0
f xh , y , z − f x−h , y , z 

2h

f x
 =

f  xh , y , z− f  x , y , z
h

f x
− =

f  x , y , z − f  x−h , y , z
h

f x
0 =

f  xh , y , z− f  x−h , y , z
2h



    

Calculus – Gradient Operator

 Gradient of a scalar field is a vector field which 
points in the direction of the greatest rate of 
increase of the scalar field, and whose magnitude 
is the greatest rate of change.

 Gradient operator (∇) is a vector of partial 
derivatives

∇ =  ∂
∂ x ,

∂
∂ y ,

∂
∂ z  ∇ u = ∂u∂ x , ∂u∂ y , ∂u∂ z 



    

Calculus – Gradient Operator

 First-order finite differences

 Finite difference of Gradient Operator

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h

u = u , v ,w  u x , y , z  = u  x , y , z  , v  x , y , z  ,w  x , y , z 

∇ u x , y , z  = u x x , y , z  , v y x , y , z  ,w z  x , y , z  =

u  xh , y , z −u  x , y , z h
, v  x , yh , z −v x , y , z 

h
,w  x , y , zh−w  x , y , z 

h
,



    

Calculus – Divergence of field

 Divergence (∇⋅) is an operator that measures the 
magnitude of a vector field’s source or sink at a 
given point

 Divergence of a vector field is a (signed) scalar

u = u , v ,w 

∇°u = ∂∂ x ,∂∂ y ,∂∂ z °u , v ,w
= ∂u

∂ x
 ∂ v

∂ y
 ∂w

∂ z
= u xu yuz



    

Calculus – Divergence of field

 First-order finite differences

 Finite difference of Gradient Operator
u = u ,v , w  u x , y , z  = u  x , y , z  , v x , y , z  , w  x , y , z 

∇°u x , y , z  = u x x , y , z v y  x , y , z w z  x , y , z  =
u  xh , y , z −u  x , y , z v  x , yh , z −v  x , y , z w  x , y , zh−w  x , y , z 

h

u x x , y , z  = u xh , y , z−u x , y , z 
h

v y x , y , z  =
v x , yh , z−v  x , y , z 

h

w z  x , y , z = w x , y , zh−w x , y , z
h



    

Calculus – Laplacian operator

 Laplacian roughly describes how much values in 
the original field differ from their neighborhood 
average 

 Laplacian operator (∇2) is defined as the 
divergence of a gradient

 Laplacian of a scalar u and vector u field

∇ 2 = ∇°∇ = ∂2

∂ x2
, ∂

2

∂ y2
, ∂

2

∂ z2

∇°∇ u = ∂∂ x ,∂∂ y ,∂∂ z °∂u∂ x ,∂u∂ y ,∂u∂ z  = ∂2u
∂ x2

∂2u
∂ y2

∂2u
∂ z2

∇ 2u = ... = ∇2u ,∇ 2v ,∇2w 



    

Calculus – Laplacian operator

 Second-order finite differences

 Finite difference of Laplacian operator

uxx x , y , z  = u  xh , y , z u x−h , y , z−2u x , y , z
h2

v yy x , y , z  = u x , yh , zu x , y−h , z −2u x , y , z
h2

w zz x , y , z  = u  x , y , zhu x , y , z−h−2u x , y , z
h2

∇ 2u x , y , z = u xx x , y , z u yy x , y , z u zz x , y , z =
u  xh , y , z u x−h , y , z u  x , yh , z u x , y−h , z u  x , y , zhu x , y , z−h−6u  x , y , z 

h2
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Motivations

 Dynamics of incompressible fluids is governed by 
the following Navier-Stokes equations

 Motivation: We need to understand the physics  
behind !

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Nomenclature

 Velocity vector field (u)
 Pressure scalar field (p)
 Density of fluid (ρ)
 Viscosity of fluid (υ)
 External force field (F)

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Navier-Stokes Equations

 Set of two Partial differential equations
 Continuity Equation – The rate at which mass 

enters a system is equal to the rate at which mass 
leaves the system. 

 Momentum equation – Application of Newton’s 
second law to fluid motion

∇°u = 0

∂u
∂ t

= −u°∇u − 1

∇ p  ∇2u  F



    

Continutity Equation

 Total mass must be always conserved.
 The rate at which mass enters a system is equal to 

the rate at which mass leaves the system.
 The divergence of the velocity field must always 

be zero

u = u , v ,w

∇ °u = uxu yu z=0



    

Momentum Equation

 Velocity field of fluid changes over time due to:

∂u
∂ t

=



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

∂u
∂ t

= −u°∇u



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

∂u
∂ t

= −u°∇u − 1

∇ p



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u



    

Momentum Equation

 Velocity field of fluid changes over time due to:

 Self advection force

 Pressure gradient force

 Internal viscosity force

 External body forces

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F



    

Time Derivative of Velocity

 At every location velocity field of fluid changes 
due to several internal and external forces acting 
on fluids body

 It’s time derivative simple measures the 
evaluation of the velocity field in time

∂u
∂ t

=



    

Advection Term

 Advection term represents internal rate of 
change of momentum due to velocity itself. To 
conserve momentum it must moved (self 
advected) through the space along with the fluid

 Mathematically advection is the scaled velocity by 
it’s divergence

∂u
∂ t

= −u°∇u



    

Pressure term

 Pressure term defines internal forces generated 
due to the pressure differences within the fluid

 For incompressible fluid pressure will be directly 
coupled with conservation of mass (continuity 
equation)

∂u
∂ t

= −u°∇u − 1

∇ p



    

Viscosity term

 Viscosity term captures internal friction forces 
due to material friction.

 Viscosity forces cause the velocity of fluid to move 
toward the neighbor average, see the Laplacian 
operator

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u



    

External forces

 External forces usually contain gravity, wind, user 
drag, contact forces or any other body forces.

 Simply we can modify the velocity field by any 
external force while keeping natural motion of 
fluid

∂u
∂ t

= −u°∇u − 1

∇ p  ∇ 2u  F
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Fluid simulation techniques

 Eulerian techniques
 Marker and Cell (MAC)
 Lattice Boltzmann Model (LBM)
 Other Finite Element/Difference Methods (FEM/FDM)

 Lagrangian techniques
 Smoothed Particle Hydrodynamics (SPH)
 Fluid Implicit Particle (FLIP)
 Particle in Cell (PIC)
 Moving Particle Semi Implicit (MPS)



    

Marker and Cell (MAC) Simulation  

 Popular Eulerian fluid simulation technique in CG
 Originally invented by Harlow and Welch in 1965

 Key ideas
 Discretize simulation space into cubical grid
 Store fluid variables in a staggered fashion
 Numerically evolve Navies Stokes eq. on grid in time
 Advect mass-less marker particles in velocity field
 Update type (solid, fluid, empty) of cells according to the 

location of marker particles



    

Staggered MAC grid

 Virtually decompose velocity vector field u into 
three respective scalar fields (u,v,w)

 Store each velocity component on face center of 
grid cell parallel to face normal

 In 2D - Vertical faces store horizontal component  
and vice versa

 Store pressure in the                                                
center of grid cell



    

MAC Grid: Cells



    

MAC Grid: u-velocity



    

MAC Grid: v-velocity



    

MAC Grid: pressure



    

Staggered MAC Grid

uij

vij

ui+1j

vij+1

ui-1j

uij+1

uij-1

vi+1j

vij-1

vi-1j

pijpi-1j

pij+1

pi+1j

pij-1



    

MAC Simulation



    

Stable MAC Algorithm

 Initialization
 Grid initialization
 Particle seeding 

 Simulation loop
 Time step estimation
 Particle advection 
 Grid update
 Boundary conditions 
 Velocity update



    

MAC – Initialization

 Grid Initialization
 Set all velocities to zero

 Define initial (static) environment

 Label cells as Fluid, Solid or Empty

 Particle seeding
 Randomly seed mass-less marker particles inside 

fluid body



    

MAC Initialization

Fluid cells
Fluid body

Empty
cells

Solid cells
Solid body

Fluid
particles



    

MAC Simulation Loop

 Calculate (set) simulation time step ∆t
 Advect marker particles along fluid velocity 
 Update grid by marker particles
 Apply boundary conditions 
 Advance the velocity field u



    

MAC – Time Step Estimation

 We need to achieve enough

 1) Stability prevent blow up 

 2) Accuracy to simulate plausible

 Use Courant-Friedrichs-Lewy (CFL) condition
 The CFL condition states that the time step must be small 

enough to make sure information does not travel across 
more than one cell at a time.

 t   x
max ∣u∣,∣v∣,∣w∣



    

MAC – Particle Advection

 Given velocity field and time step we can freely 
advect particles using some explicit scheme

 Standard Euler integration step

xnew = x + Δtu(x)

 Modified Euler (midpoint method)

x* = x + Δtu(x)
xnew = x + 0.5Δt[u(x) + u(x*)]



    

MAC – Grid update

 Particles have new locations
 Cell types must be updated
 Each cell containing at least one particle is 

marked as fluid cell
 Solid cells are unchanged
 Other cells are marked as empty (air) cells



    

MAC – Boundary Conditions

 Two types of boundary condition
 Fluid / Solid boundary conditions
 Fluid / Air boundary conditions

 We need to satisfy them both for velocity and 
pressure

 Velocity boundary conditions uses slip-conditions 
and continuity conditions

 Pressure boundary conditions uses Dirichlet and 
Neumann conditions (see Pressure calculation)



    

MAC – Velocity boundary conditions

 Free-slip fluid/solid condition:

 Fluid is freely allowed to slip along the solid/fluid 
boundary face

 No-slip fluid/solid condition:

 Fluid is not allowed to slip along the solid/fluid 
boundary face



    

MAC – Velocity Field Update 

 Evaluate velocity with operator splitting in four 
steps:

 1) Force - Apply external forces
 2) Advect - Apply advection
 3) Diffuse - Apply viscosity
 4) Project - Calculate and apply pressure

u(x, t) = w
0
force → w

1
advect → w

1
diffuse → w

1
project → w

4
 = u(x, t+h)



    

MAC – Apply External Forces

 Use simple explicit Euler to integrate force fields
 Force field is usually gravity or wind body force

w
1
(x) = w

0
(x) + ΔtF(x,t)



    

MAC – Apply Velocity Advection

 We want to know how will be the velocity advected 
over the time step

 Simple Euler scheme brings instability or extremely 
small time steps must be taken

 Method of characteristics is unconditionally 
stable, allows large time steps – semi Implicit 
advection



    

MAC – Semi-implicit Advection

 Suppose simple particle advection
 During time step particle will travel along the blue 

path in the velocity field  and can carry any 
scalar/vector with it

 Let p(x,s) be the                                                      
location of particle                                                          
at time s

p(x ,0)=xp(x , ∆t)

p(x , s)



    

MAC – Semi-implicit Advection

 Key idea – trace particle in negative velocity and 
find which velocity will be advected to particles 
location

 Use bilinear interpolation                                            
of values in green cells 

p(x ,-∆t)p(x ,0)=x



    

MAC – Semi-implicit Advection

 Bilinear interpolation is always bounded, 
advection is unconditionally stable

 Particle back-tracing must be done separately for 
each velocity dimension (scalar field)

 If particle tracer is simple Euler with ∆t time step 
semi-implicit advection can be written as

w
2
(x) = w

1
(p(x, -Δt))

w
2
(x) = w

1
(x - Δtw

1
(x))



    

MAC – Applying Viscosity

 Explicit and Implicit Euler Scheme

x(t + Δt) = x(t) + Δt x'(t)                (Explicit Euler)
x(t + Δt) - Δt x'(t) = x(t)                 (Implicit Euler)

 Implicit viscosity application (sparse lin. eq. Solver)

dw
2
(x)/dt = ∇2w

2
(x)

w
3
(x) - Δt ∇2w

3
(x)= w

2
(x)

(I - Δt ∇2)w
3
(x)= w

2
(x)     

Ax = b where A = (I - Δt ∇2)               (Sparse system)



    

MAC – Calculating Pressure

 For solving pressure we use implicit Euler and 
continuity condition

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)

0 = ∇•u = ∇•w
4
(x) = ∇•w

3
(x) - Δt∇2p(x)

∇2p(x) = ∇•w
3
(x)/Δt                       (Poisson Equation)

Ax=b    where    A=∇2                     (Sparse system)



    

MAC – Pressure Boundary Conditions

 Neumann boundary condition
 Set pressure in solid cells equal to fluid pressure in neighbor 

fluid cell
 Pressure gradient along boundary face will be zero = 

Neumann boundary condition

 Dirichlet boundary condition
 Set pressure in empty (air) cells to zero = Dirichlet boundary 

condition

 Next slides demonstrate Poisson equation 
evaluation satisfying Neumann and Dirichlet 
boundary conditions



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Poisson equation



    

MAC – Applying Pressure

 Once the pressure is known we use explicit Euler 
to find new velocity

dw
3
(x)/dt = -∇p(x)

u(x) = w
4
(x) = w

3
(x) - Δt∇p(x)



    

Smoothed Particle HydrodynamicsParticle



    

Smoothed Particle Hydrodynamics

 Historical origin
 Invented by Monaghan and Lucy in astrophysics for 

Simulating flow of interstellar gas

 Classification
 Lagrangian mesh-less particle-based
 Based on local integral function representation 

(convolution)

 Principles
 Represent fluid with finite number of particles
 Store all quantities only on particle positions only
 Approximate field quantities by kernel convolution
 Use Lagrangian formulation of Navies-Stokes equations for 

particle dynamics



    

SPH – Method Overview

 Benefits
 Mesh-less (grid-less) particle-based
 No advection term in Navier Stokes equations
 Inherently mass conserving (finite number of particles)
 Straightforward multiphase extension
 Spatially unlimited simulation domain 
 Suitable for interactive applications

 Drawbacks
 Difficult to achieve incompressible fluid
 Time consuming Neighbor search algorithm
 Boundary deficiency (e.g. in density estimation)



    

SPH – Approximation Principle

 Assume the following notation:
 A(r) – Scalar (or vector) field, Ai = A(ri) 

 δ(r) – Dirac delta function
 Wh(r) – Radial symmetric smoothing kernel

 ri – Position of i-th particle

 Vi – Volume of i-th particle



    

SPH – Approximation Principle

 Integral representation of function

A(r) = ∫
r
A(r')δ(r - r')dr' = A*δ

 Approximation of function by convolution

A(r) ≈ A*W
h
 = ∫

r
A(r')W

h
(r - r')dr'

 Particle-base approximation of function

<A(r)> = ∑
j
V

j
A

j
W

h
(r - r

j
) ≈ A*W

h 
≈ A(r)



    

SPH – Gradient and Laplacian

 Basic Gradient Approximation Formula (BGAF)

∇
b
(A) = <∇A(r)> = ∑

j
V

j
A

j
∇W

h
(r - r

j
)

 Basic Laplacian Approximation Formula (BLAF)

∇2
b
(A) = <∇2A(r)> = ∑

j
V

j
A

j
∇2W

h
(r - r

j
)



    

SPH – Gradient and Laplacian

 Difference Gradient Approximation Formula (DGAF)

∇
b
(A) = (1/ρ)∑

j
V

j
ρ

j
(A

j 
- A)∇W

h
(r - r

j
)

 Symmetric Gradient Approximation Formula (SGAF)

∇
s
(A) = ρ∑

j
V

j
ρ

j
(A

j
/ρ

j 
+ A/ρ)∇W

h
(r - r

j
)

 Zero Laplacian Approximation Formula (ZLAF)

∇2
z
(A) = ∑

j
V

j
(A

j 
- A)∇2W

h
(r - r

j
)



    

SPH – Kernel functions: W
h
(r)

 Basic kernel function properties
 Compact support
 Partition of unity
 Symmetry
 Limit to delta function

 |r| ≥ h → W
h
(r) = 0          (Compact Support)

 ∫
r
W

h
(r)dr = 1                      (Partition of unity)

 ∫
r
rW

h
(r)dr = 0                    (Symmetry)

 Lim
h → 0

W
h
(r) = δ(r)            (Limit to delta function)



    

SPH – Kernel functions

Kernel function

Kernel function derivative

Kernel function second derivative

Wpoly Wpress Wvisco



    

SPH – Navier Stokes Equations

 Eulerian formulation

∂p/∂t + v•∇p = – p∇•v = 0

p( ∂v/∂t + v•∇v ) = –∇P + μ∇2v + pf

 Lagrangian formulation

dp/dt = ∂p/∂t + v•∇p = – p∇•v = 0

dv/dt = ∂v/∂t + v•∇v = –∇P/p + μ∇2v/p + a =

           = apress + avisco + aext



    

SPH – Evaluating Fluid Properties

 Density and pressure estimations

p(r
i
) = <p(r

i
)> = ∑

j
V

j
p

j
W

h
(r – r

j
) = ∑

j
m

j
p

j
W

h
(r – r

j
)

P(r
i
) = kgas((p

i
/p

0
)y  -1)                    (State equation)

 Pressure, viscosity and external forces

fpress(r
i
)=-(m

i
/p

i
)∇

s
(p)= ∑

j
m

i
m

j
(P

j
/p

j
 + P

i
/p

i
)∇W

h
press(r

i
- r

j
)

fvisco(r
i
) = -(m

i
/p

i
)∇2

z
(μv) = ∑

j
V

i
V

j
(v

j
 - v

i
)∇2W

h
visco(r

i
 - r

j
)

fext(r
i
) = m

i
a

i
 = fint + fgrav + … 



    

SPH – Fluid Simulation Algorithm

 Collision Detection
 Find approximate and precise neighbor particle pairs
 Find closest points on boundaries

 SPH Dynamics
 Accumulate densities
 Calculate pressure
 Accumulate pressure, viscosity forces and color field
 Apply surface tension force
 Apply boundary collision forces 

 Time integration (ODE)
 Use leap-frog to integrate positions and velocities



    



    

Neighbor search with Z-indexing

 Neighbor search: Given a particle find all particles 
whose distance to this particle is less than some 
threshold (support radius in SPH)
 This can be O(n2) problem → very expensive for large 

number of particles
 In SPH simulations it is in average case an O(n) problem

 Proposed solution: Z-indexing and radix sort

 Z-indexing: A strategy create a linear index of 
particles in a 3D grid while maintaining good 
spatial locality of particles enumerated in index 
order.

 Radix-sort: O(n) sort for bounded values



    

Z-indexing : Index order

000000 000001

000010 000011

000100 000101

000110 000111

001000 001001

001010 001011

001100 001101

001110 001111

010000 010001

010010 010011

010100 010101

010110 010111

011000 011001

011010 011011

011100 011101

011110 011111

100000 100001

100010 100011

100100 100101

100110 100111

101000 101001

101010 101011

101100 101101

101110 101111

110000 110001

110010 110011

110100 110101

110110 110111

111000 111001

111010 111011

111100 111101

111110 111111

x = 0
000

x = 1
001

x = 2
010

x = 3
011

x = 4
100

x = 5
101

x = 6
110

x = 7
111

y = 0
000

y = 1
001

y = 2
010

y = 3
011

y = 4
100

y = 5
101

y = 6
110

y = 7
111



    

Z-Indexing: Index Structure

 Given (8-bit) coordinates (i,j,k) of some cell 
 i = i7i6i5i4i3i2i1i0 (eg  45 = 00101101)

 j = j7j6j5j4j3j2j1j0 (eg 135 = 10000111)

 k = k7k6k5k4k3k2k1k0 (eg 209 = 11010001)

 The interleaved (24-bit) Z-index of cell (i,j,k) is:
 Index = k7j7i7k6j6i6k5j5i5k4j4i4k3j3i3k2j2i2k1j1i1k0j0i0

 Index = 110 100 001 100 001 011 010 111

 We precompute tables i
24

, j
24

 and k
24

 and get index

 Index = i
24

 or j
24

 or k
24

 (or is bit-wise or operation)

 Tables i
24

, j
24

 and k
24

 are stored as CUDA textures



    

Z-Indexing: Index Structure

 For each i (0..2n) precompute i24 as
 i24 = 00i700i600i500i400i300i200i100i0

 i24 = 000000001000001001000001

 For each j (0..2n) precompute j24 as
 j24 = 0j700j600j500j400j300j200j100j00

 j24 = 010000000000000010010010

 For each k (0..2n) precompute k24 as
 k24 = k700k600k500k400k300k200k100k000

 k24 = 100100000100000000000100



    

Z-Indexing: Summary

 The simulation domain is divided into a virtual 
indexing grid

 Grid location of a particle is used to determine its 
bit-interleaved Z-index

 The Z-indices are computed very efficiently in 
parallel using a table look-up approach and 
binary “or”

 Z-indices of particles being within some 2n spatial 
block are contiguous

 Before NB particles are sorted based on Z-indices 
using parallel CUDA radix-sort



    

Demos / Tools / Libs

 SPH water demo  MAC fire/smoke demo



    

The End
… endless torture is over … 

… fire and smoke next time :) ...


