

## LESSON 7

Computer Graphics 1

## Intersections

line-line, point-polygon, line-curve, line-plane, line-polygon, line-surface

## Intersections

$\square$ Frequent operation
$\square$ Ambition to accelerate computation
$\square$ Bounding volumes for complex objects
$\square$ Box, sphere, ellipsoid, cylinder,...
$\square$ Partial scene organization
$\square$ Octant tree, BSP tree, ...

## Line-Line Intersection

$$
L_{1}(t)=A+\vec{u} t ; t \in\langle 0,1\rangle \quad L_{2}\left(t^{\prime}\right)=B+\vec{v} t^{\prime} ; t^{\prime} \in\langle 0,1\rangle
$$

$\square$ 1. Treat special cases
$\square$ Parallel lines

- Intersect only if they are collinear
$\square$ 2. Nonparallel lines

$$
\begin{aligned}
& A+\vec{u} t=B+\vec{v} t^{\prime} \\
& \vec{u} t-\vec{v} t^{\prime}=(B-A) \\
& \vec{u} \vec{v}^{\perp} t-\vec{v} \vec{v}^{\perp} t^{\prime}=(B-A) \vec{v}^{\perp} \\
& t=\frac{(B-A) \vec{v}^{\perp}}{\vec{u} \vec{v}^{\perp}} \quad t \in\langle 0,1\rangle \Rightarrow \text { Intersection lies on line } \mathrm{L}_{1}
\end{aligned}
$$

## Line-Line Intersection (2)

$$
\begin{aligned}
& t^{\prime}=\frac{(B-A) \vec{u}^{\perp}}{-\vec{v} \vec{u}^{\perp}}=\frac{(B-A) \vec{u}^{\perp}}{\vec{u} \vec{v}^{\perp}} \\
& \vec{v} \vec{u}^{\perp}=\left(v_{1}, v_{2}\right)\left(-u_{2}, u_{1}\right)=-u_{2} v_{1}+u_{1} v_{2}=\left(u_{1}, u_{2}\right)\left(v_{2},-v_{1}\right)= \\
& =-\left(u_{1}, u_{2}\right)\left(-v_{2}, v_{1}\right)=-\vec{u} \vec{v}^{\perp}
\end{aligned}
$$

$$
t=\frac{(B-A) \vec{v}^{\perp}}{\vec{u} \vec{v}^{\perp}}
$$

Intersection exist if:

$$
t^{\prime}=\frac{(B-A) \vec{u}^{\perp}}{\vec{u} \vec{v}^{\perp}}
$$

$$
t \in\langle 0,1\rangle \wedge t^{\prime} \in\langle 0,1\rangle
$$

## Detecting Line-Line Intersection





Comparing basis orientation

## Cross product

$\square 2 \mathrm{D}->3 \mathrm{D}$

$$
\begin{aligned}
& \vec{u}=\left(u_{1}, u_{2}\right) \rightarrow\left(u_{1}, u_{2}, 0\right) \\
& \vec{v}=\left(v_{1}, v_{2}\right) \rightarrow\left(v_{1}, v_{2}, 0\right)
\end{aligned}
$$

$$
\vec{u} \times \vec{v}=\left(\left|\begin{array}{ll}
u_{2} & 0 \\
v_{2} & 0
\end{array}\right|,\left|\begin{array}{ll}
0 & u_{1} \\
0 & v_{1}
\end{array}\right|,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)=\left(0,0,\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|\right)
$$

$$
|\vec{u}, \vec{v}|=\left|\begin{array}{ll}
u_{1} & u_{2} \\
v_{1} & v_{2}
\end{array}\right|
$$

## Basis Orientation

$\square$ Compare basis orientation

$$
\operatorname{sgn}\left|B^{\prime}-B, A-B\right|=\operatorname{sgn}\left|B^{\prime}-B, A^{\prime}-B\right|
$$

$\square$ Basis have the same orientation
$\square A$ and $A^{`}$ are in the same half plane from $B B^{`}$
$\square$ Intersection does not exist

$$
\left.\begin{array}{l}
\operatorname{sgn}\left|B^{\prime}-B, A-B\right| \neq \operatorname{sgn}\left|B^{\prime}-B, A^{\prime}-B\right| \\
\operatorname{sgn}\left|A^{\prime}-A, B-A\right| \neq \operatorname{sgn}\left|A^{\prime}-A, B^{\prime}-A\right|
\end{array}\right\} \Rightarrow \text { intersection exists }
$$

## Point-Polygon Intersection

$\square$ Test if point lies inside the polygon
$\square$ Sum of oriented angles

- If the sum is 0 point lies outside
$\square$ Count intersections of a Ray from the point P with the polygon
- \#even - point is outside
$\square$ \#odd - point lies inside
$\square$ Treat special cases



## Convex Polygon

$\square$ Point lies inside if the basis $\left(A_{i}-P_{,} A_{i+1}-P\right)$ is positively oriented

$$
\left|A_{i}-P, A_{i+1}-P\right| \geq 0
$$



## Line-Curve Intersection

$\square$ Quadratic curve
$\square$ Substitute into equation and solve
$\square$ Polynomial of a higher degree
$\square$ e.g. Bezier Clipping
$\square$ Other functions
$\square$ Finding roots: Newton method, interval bisection, approximating with polyline, ...

$$
\begin{aligned}
& f(x, y)=0, \quad P=\left(p_{1}, p_{2}\right) \text {-intersection point } \\
& n=\left(\frac{\partial f}{\partial x}\left(p_{1}, p_{2}\right), \frac{\partial f}{\partial y}\left(p_{1}, p_{2}\right)\right)
\end{aligned}
$$

## Bezier Clipping

$\square$ Express the polynomial curve as Bezier curve
$\square$ Control points form a convex hull
$\square$ Exploit this property


Example of Bezier Clipping

## Newton Method - Example



## Newton Method - Example



## Newton Method - Example



## Newton Method

$\square$ Tangential direction in $\left(t_{i}, f\left(t_{i}\right)\right)$ is $f^{\prime}\left(t_{i}\right)$

$$
y=f^{\prime}\left(t_{i}\right) x+c
$$

$\square\left(t_{i}, f\left(t_{i}\right)\right)$ lies on the line

$$
\begin{aligned}
& f\left(t_{i}\right)=f^{\prime}\left(t_{i}\right) t_{i}+c \\
& y=f^{\prime}\left(t_{i}\right) x+f\left(t_{i}\right)-f^{\prime}\left(t_{i}\right) t_{i}
\end{aligned}
$$

$\square$ Intersection with $x$ axis $(y=0)$

$$
\begin{aligned}
& f^{\prime}\left(t_{i}\right) x=f^{\prime}\left(t_{i}\right) t_{i}-f\left(t_{i}\right) \\
& x=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
\end{aligned}
$$

$$
t_{i+1}=t_{i}-\frac{f\left(t_{i}\right)}{f^{\prime}\left(t_{i}\right)}
$$

## Line-Plane Intersection

$\square$ Test if the intersection exist
$\square$ Intersection exist only if $\operatorname{sgn}(f(A))<>\operatorname{sgn}\left(f\left(A^{`}\right)\right)$

$$
\begin{aligned}
t= & \frac{|A P|}{\left|A A^{\prime}\right|}=\frac{|A P|}{|A P|+\left|A^{\prime} P\right|}=\frac{|f(A)|}{|f(A)|+\left|f\left(A^{\prime}\right)\right|} \\
& |A P|=|A \rho|=\frac{|f(A)|}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

$$
P=A+\frac{|f(A)|}{|f(A)|+\left|f\left(A^{\prime}\right)\right|}\left(A^{\prime}-A\right)
$$

## Line-Polygon Intersection in 3D

$\square$ Transform into 2D case
$\square$ Project the coordinates into the polygon`s plane
$\square$ Forget the largest coordinate of the surface normal
$\square$ Produces the projected polygon with larges area
$\square$ Better numerical stability

## Line-Surface Intersection

$$
\begin{aligned}
& f(x, y, z)=0 \\
& X=A+\vec{u} t ; t \in\langle 0,1\rangle
\end{aligned}
$$

$\square$ Similar to 2D solutions
$\square$ Normal at point ( $p_{1}, p_{2}, p_{3}$ ):

$$
n=\left(\frac{\partial f}{\partial x}\left(p_{1}, p_{2}, p_{3}\right), \frac{\partial f}{\partial y}\left(p_{1}, p_{2}, p_{3}\right), \frac{\partial f}{\partial z}\left(p_{1}, p_{2}, p_{3}\right)\right)
$$

# Clipping 

Point clipping, Polygon clipping, Curve and text clipping

## Clipping

$\square$ Any procedure that identifies portions outside or inside a specified region
$\square$ Very important in computer graphics
$\square$ Mostly planar clipping
$\square$ Use
$\square$ Visibility
$\square$ Extracting part for viewing

- CSG
$\square$ Selecting part of an image


## Point clipping

$\square$ Clip against a window (axis aligned)
$\square$ Check if coordinates lie in the window
$\square$ Clip against a polygon
$\square$ Test if point lies in the polygon

## Line Clipping

$\square$ See Lesson 5

## Polygon Clipping

$\square$ Deal with many different cases
$\square$ Add and remove edges and vertices


3 examples of polygon clipping

## Sutherland-Hodgeman - Example



## Sutherland-Hodgeman - Algorithm

$\square$ Divide and conquer approach
$\square$ Clip against infinite clip edges
$\square$ Combine to get the solution
$\square$ Clip against all edges of a polygon (no testing like in line clipping)
$\square$ Can be used to clip against arbitrary convex polygon
$\square$ Can be extended into 3D
$\square$ Clipping against convex polyhedra

## Clip Against Infinite Edge

$\square$ Input: list of vertices of a polygon
$\square$ Algorithm clips against single infinite edge
$\square$ Move along the polygon
$\square$ Examine relationship between successive vertices and the clip edge

- 4 cases
$\square 0$, 1 , or 2 vertices are added in each step
$\square$ Output: new list of the vertices of the clipped polygon


## Sutherland-Hodgeman - Example



## Sutherland-Hodgeman - Conclusion

$\square$ Clipping only against convex polygons
$\square$ Creates only a single polygon
$\square$ Problem with concave polygons
$\square$ Clipped polygon may have multiple separate parts
$\square$ Solution
$\square$ Postprocess and create multiple polygons
$\square$ Modify the algorithm
$\square$ Use other clipping algorithm

## Weiler-Atherton

$\square$ Weiler-Atherton[77] improved in Weiler[80]
$\square$ Arbitrary polygon clipping regions
$\square$ Sometimes follow the window boundary
$\square$ Depend if the edge is inside to outside or outside to inside
$\square$ Clockwise processing
$\square$ out->in: follow polygon boundary
$\square$ in->out: follow window boundary in clockwise direction

## Weiler Algorithm Steps

$\square$ 1. Find intersection and insert into polygons
$\square$ 2. Mark the nonintersecting polygon points as inside and outside
$\square$ 3. Divide intersection points into two groups (create lists)
$\square$ Entering list (out->in edge)
$\square$ Leaving list (in->out edge)
$\square$ 4. Clip

## Weiler Clipping Step

$\square$ 1. Remove intersection point

- If there is none then we are done
$\square$ 2. Follow the clipped polygon vertices to the next intersection
$\square$ 3. Switch to clipping polygon vertex list
$\square$ 4. Follow the clipping polygon vertices to the next intersection
$\square$ 5. Switch to clipped polygon vertex list
$\square$ 6. Repeat 2-5 until we are at the starting vertex


## Weiler-Atherton - Example



## Greiner-Hormann

$\square$ Similar to Weiler algorithm
$\square$ Less memory consumption
$\square$ Does not need whole boundary representation
$\square$ Exploit the winding number to check if we are inside or outside
$\square 3$ phases
$\square$ Compute intersections
$\square$ Mark as entry and exit
$\square$ Crete polygons

## Winding Number



## Greiner-Hormann: Vertex

```
vertex = record
    float \(x, y\);
    vertex pointer next, prev;
    boolean intersect;
    boolean entry;
    vertex pointer neighbor;
    float alpha;
    vertex pointer nextPoly;
end;
```


## Greiner-Hormann: Data Structure


clip polygon C

clipped polygon

subject polygon $S$

## Greiner-Hormann: Algorithm

vertex pointer current;
while more unprocessed subject intersection points do
begin
current := pointer to first remaining unprocessed subject intersection point;
NewPolygon (P);
NewVertex (current);
repeat
if current $\rightarrow$ entry
then
repeat
current $:=$ current $\rightarrow$ next;
NewVertex (current);
until current $\rightarrow$ intersect
else
repeat
current := current $\rightarrow$ prev;
NewVertex (current);
until current $\rightarrow$ intersect
current $:=$ current $\rightarrow$ neighbor;
until Closed (P);
end;

## Other Algorithms

$\square$ Rectangular Region
$\square$ Liang-Barsky
$\square$ Maillot
$\square$ Arbitrary polygon polygons with holes and self intersecting polygons
$\square$ Vatti

## Curve and text clipping

$\square$ Curve clipping
$\square$ Similar methods to the polygon clipping
$\square$ Nonlinear equation
$\square$ Check if object lies in the clipping polygon (use bounding box)
$\square$ Text clipping
$\square$ Clip whole string or character (use bounding box)
$\square$ Clip the boundary representing the character

