

Lesson 08 Outline

* Problem definition and motivations
* Dynamics of rigid bodies
* The equation of unconstrained motion (ODE)
* User and time control
* Demos / tools / libs

Rigid Body Concepts

Concept of Rigid Bodies

* Assumption of Rigidity: The shape of rigid body never undergoes any deformation during simulation
*Motion concept: Due to rigidity overall motion of body is a composition of
* 1) Linear motion of the center of mass (CoM)
*2) Angular motion - rotation of body shape around center of mass

Position and Orientation

* Position is represented as vector c = (x, y, z)
* Orientation can by represented using:
*1) Euler Angles: $q=(\varphi, \theta, \psi)$
\rightarrow This is the minimal $6(3+3)$ DOF representation of body.
\rightarrow Problems of gimbal lock (non-uniqueness)
*2) Rotation Matrices: $R=\left(R_{i, j}\right) \in R^{3 \times 3}$
\rightarrow Overdetermined representation. Must by orthogonalized.
*3) Unit Quaternions: $q=(x, y, z, w)$
$\rightarrow 7(3+4)$ DOF representation solved by simple normalization. Very suitable for angular velocity integration

Linear and Angular Velocity

* Linear velocity $\vee(t)$ is simply the time derivative of position
\rightarrow Formally: $v(t)=c^{\prime}(t)=d c(t) / d t$
* Angular velocity $\omega(t)$ is a vector parallel to rotational axis with the length equal to spin velocity
\rightarrow Spin velocity = total radians body spin around rotational axis per second.
\rightarrow Formally: $q^{\prime}(t)=0.5 Q \omega(t) \quad$ (see later for details)

Linear and Angular Velocity

* Assume some body point $\rho=c+r$
\rightarrow Local displacement $r=a+b$ can be decomposed into axis parallel "a" and axis perpendicular "b"
* Current velocity u of point ρ is
\rightarrow Perpendicular to rotation axis
\rightarrow Proportional to length of angular velocity $|\omega|$ and distance from rotation axis |b|
\rightarrow Formally $|u|=|\omega||b| \rightarrow u=\omega \times b$
* Since $\omega \times a=0$
* $u=\omega \times b=\omega \times a+\omega \times b=\omega \times r\left(=r^{\prime}\right)$

Linear and Angular Velocity

* Cross product matrix a^{x} for vector $a=\left(a_{x}, a_{y}, a_{z}\right)$ is
\rightarrow antisymmetric 3×3 matrix

$$
\mathbf{a} \times \mathbf{b}=\mathbf{a}^{\times} \mathbf{b}=\left(\begin{array}{ccc}
0 & -\mathbf{a}_{z} & +\mathbf{a}_{y} \\
+\mathbf{a}_{z} & 0 & -\mathbf{a}_{x} \\
-\mathbf{a}_{y} & +\mathbf{a}_{x} & 0
\end{array}\right)\left(\begin{array}{l}
\mathbf{b}_{x} \\
\mathbf{b}_{y} \\
\mathbf{b}_{z}
\end{array}\right)
$$

*Rotation matrix R is a orthonormal 3×3 matrix

$$
\mathbf{R}=\left(\begin{array}{lll}
\mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z}
\end{array}\right)=\left(\begin{array}{lll}
\mathbf{R}_{x x} & \mathbf{R}_{x y} & \mathbf{R}_{x z} \\
\mathbf{R}_{y x} & \mathbf{R}_{y y} & \mathbf{R}_{y z} \\
\mathbf{R}_{z x} & \mathbf{R}_{z y} & \mathbf{R}_{z z}
\end{array}\right)
$$

Linear and Angular Velocity

* Time derivative of rotation matrix R with respect to angular velocity ω is (assuming $r^{\prime}=\omega \times r=\omega^{\times} r$) $\dot{\mathbf{R}}=\left(\begin{array}{llll}\mathbf{R}_{x} & \dot{\mathbf{R}}_{y} & \dot{\mathbf{R}}_{z}\end{array}\right)=\left(\begin{array}{llll}\omega^{\times} \mathbf{R}_{x} & \omega^{\times} \mathbf{R}_{y} & \omega^{\times} \mathbf{R}_{z}\end{array}\right)=\omega^{\times}\left(\begin{array}{lll}\mathbf{R}_{x} & \mathbf{R}_{y} & \mathbf{R}_{z}\end{array}\right)=\omega^{\times} \mathbf{R}$
* Time derivative of orientation quaternion $q=(x, y, z, w)$ is

$$
\dot{\mathbf{q}}=\left(\begin{array}{c}
\dot{x} \\
\dot{y} \\
\dot{z} \\
\dot{w}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{lll}
+w & -z & +y \\
+z & +w & -x \\
-y & +x & +w \\
-x & -y & -z
\end{array}\right)\left(\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right)=\frac{1}{2} \mathbf{Q} \omega
$$

$\rightarrow Q$ is 4×3 "quaternion matrix"

Center of Mass

* Consider rigid body as a collection of particles with their positions ρ_{i} and masses m_{1}
* Center of mass "c" is a weighted average of all particles

$$
\mathbf{c}=\frac{\sum m_{i} \mathbf{p}_{i}}{\sum m_{i}}=\frac{\sum m_{i} \mathbf{p}_{i}}{M}
$$

\rightarrow where $M=\Sigma m_{i}$ is total mass of body
*Relative position r_{1} of i-th particle satisfies $\rho_{1}=c+r_{1}$

* Current i-th particle position is $\rho_{i}=c+R r_{0}$
$\rightarrow R$ is current rotation matrix of body
$\rightarrow r_{0}$ is initial local-space position of i-th particle

Linear and Angular Momentum

* Assuming each particle has its own mass m_{i} and velocity $u_{i}=\omega \times r_{1}+v$, we define its linear momentum " P_{i} " and i-th angular momentum " L_{i} " as

$$
\begin{aligned}
& \rightarrow P_{1}=m_{1} u_{1} \\
& \rightarrow L_{i}=r_{1} \times P_{1}=m_{1} r_{1} \times u_{1}
\end{aligned}
$$

* Summing up Pi and Li over all particles we get total linear momentum "P" and angular momentum "L"
$* P=\Sigma P_{i}=\Sigma m_{i} u_{i}=\Sigma m_{i}\left(\omega \times r_{i}+v\right)=\ldots=M v$
$* L=\Sigma L_{i}=\Sigma m_{1} r_{1} \times u_{i}=\Sigma m_{1} r_{1} \times\left(\omega \times r_{1}+v\right)=\ldots=J \omega$
\rightarrow where matrix J is the current inertia tensor

Mass and Inertia Tensor

* Total mass M and inertial tensor J are defined as

$$
\begin{aligned}
& M=\sum m_{i} \\
& \mathbf{J}=-\sum m_{i} \mathbf{r}_{i}^{\times} \mathbf{r}_{i}^{\times}=\sum m_{i}\left(\begin{array}{lll}
\mathbf{r}_{i j}^{2}+\mathbf{r}_{i z}^{2} & -\mathbf{r}_{i k} \mathbf{r}_{i j} & -\mathbf{r}_{i r^{2}} \mathbf{r}_{i z} \\
-\mathbf{r}_{i j} \mathbf{r}_{i x} & \mathbf{r}_{i x}^{2}+\mathbf{r}_{i z}^{2} & -\mathbf{r}_{i j} \mathbf{r}_{i z} \\
-\mathbf{r}_{i z} \mathbf{r}_{i z} & -\mathbf{r}_{i z} \mathbf{r}_{i j} & \mathbf{r}_{i x}+\mathbf{r}_{i j}^{2}
\end{array}\right)
\end{aligned}
$$

\rightarrow Unlike scalar mass M, inertia tensor J is time dependent

* Initial inertia is $J_{0}=-\Sigma m_{1} r_{0 i}{ }^{x} r_{0 i}{ }^{x}$
\rightarrow Bodies never deform, thus current inertia can be expressed in terms of initial inertia J_{0} and current rotation matrix R
$* J=R J_{0} R^{\top}$ and $J^{-1}=R J_{0}^{-1} R^{\top}$

Mass and Inertia Tensor

* $J_{1}=$ Inertia tensor of sphere with radius r and mass m
* $J_{2}=$ Inertia tensor of solid box with mass m and width w, height h and depth d

$$
\mathbf{J}_{1}=\left|\begin{array}{ccc}
\frac{2 m r^{2}}{5} & 0 & 0 \\
0 & \frac{2 m r^{2}}{5} & 0 \\
0 & 0 & \frac{2 m r^{2}}{5}
\end{array}\right| \quad \mathbf{J}_{2}=\left|\begin{array}{ccc}
\frac{m}{12}\left(h^{2}+d^{2}\right) & 0 & 0 \\
0 & \frac{m}{12}\left(w^{2}+d^{2}\right) & 0 \\
0 & 0 & \frac{m}{12}\left(w^{2}+h^{2}\right)
\end{array}\right|
$$

Mass and Inertia Tensor

* Translated inertia tensor by offset r is
* $J=J_{0}+m\left(r^{\top} r 1-r r^{\top}\right)$
\rightarrow where 1 is 3×3 identity matrix and r is a column vector, ie. transposed $r^{T}=\left(r_{x}, r_{y}, r_{z}\right)$ is row vector, thus
$\rightarrow r^{\top} r$ (inner or dot product) is scalar
$\rightarrow r r^{\top}$ (outer product) is a 3×3 matrix
* Given body with n solid parts with mass m_{i}, center of mass c_{i} and inertia tensor $J_{0 ;}$, total body
\rightarrow Mass $m=\Sigma m_{i}$
\rightarrow Inertia $J=\Sigma J_{i}=\Sigma\left(J_{0 i}+m_{i}\left(c_{i}^{\top} c_{i} 1-c_{i} c_{i}^{\top}\right)\right)$
\rightarrow Center of mass $c=\left(\Sigma m_{i} c_{i}\right) /\left(\Sigma m_{1}\right)$

Linear and Angular Acceleration

* The time derivative of inertia J (and J^{-1}) is
$* J^{\prime}=\left(R J_{0} R^{T}\right)^{\prime}=R^{\prime} J_{0} R^{T}+R J_{0} R^{\prime T}=\ldots=\omega^{x} J-J \omega^{x}$
* $J^{\prime-1}=\left(R J_{0}^{-1} R^{\top}\right)^{\prime}=R^{\prime} J_{0}^{-1} R^{\top}+R J_{0}^{-1} R^{\prime \top}=\ldots=\omega^{\times} J^{-1}-J^{-1} \omega^{x}$
* Linear acceleration " a " is defined as
* $a=v^{\prime}=\left(M^{-1} P\right)^{\prime}=M^{-1} P^{\prime}=M^{-1} f$
\rightarrow Where f is force - time derivative of linear momentum P
* Angular acceleration " α " is defined as
* $\alpha=\omega^{\prime}=\left(J^{-1} L\right)^{\prime}=J^{\prime-} L+J^{-1} L^{\prime}=\ldots=0-J^{-1} \omega^{x} J \omega+J^{-1} T$
\rightarrow Where T is torque - time derivative of angular momentum L

Force and Torque

*Force fi and torque ti of i-th particle are

* $f_{1}=m_{1} a_{i}$ (i-th force)
* $T_{1}=r_{1} \times f_{1}=m_{1} r_{1} \times a_{1}$ (i-th torque)
* Summing up over all particles we get the famous Newton-Euler equations for total force and torque
*f $=\Sigma f_{i}=\Sigma m_{1} a_{i}=\ldots=M v^{\prime}=P^{\prime}$
* $T=\Sigma T_{1}=\Sigma m_{1} r_{1} \times a_{1}=\ldots=J \omega+\omega^{\times} J \omega=\ldots=L^{\prime}$

Summary of Rigid Body Concepts

* We can summarize main physical properties (quantities) of rigid bodies as either
\rightarrow Kinematical (pure geometrical, mass "independent")
\rightarrow Dynamical (physical, mass "dependent")

	Kinematical Properties	Dynamical Properties		
lin	Position	$c(t) \in R^{3 \times 1}$	Mass	$M \in R^{\times \times 1}$
ang	Orientation	$q(t) \in R^{4 \times 1}$	Inertia Tensor	$J(t) \in R^{3 \times 3}$
lin	Linear velocity	$v(t) \in R^{3 \times 1}$	Linear Momentum	$P(t) \in R^{3 \times 1}$
ang	Angular velocity	$\omega(t) \in R^{3 \times 1}$	Angular Momentum	$L(t) \in R^{3 \times 1}$
lin	Linear acceleration	$a(t) \in R^{3 \times 1}$	Force	$f(t) \in R^{3 \times 1}$
ang	Angular acceleration	$\alpha(t) \in R^{3 \times 1}$	Torque	$T(t) \in R^{3 \times 1}$

Rigid Body Equation of Motion

* The rigid body equation of unconstrained motion can be summarized as the following ODE

$$
\frac{d}{d t} \mathbf{x}(t)=\frac{d}{d t}\left(\begin{array}{c}
\mathbf{c}(t) \\
\mathbf{q}(t) \\
\mathbf{P}(t) \\
\mathbf{L}(t)
\end{array}\right)=\left(\begin{array}{c}
\mathbf{v}(t) \\
\frac{1}{2} \mathbf{Q}(t) \boldsymbol{\omega}(t) \\
\mathbf{f}(t) \\
\boldsymbol{\tau}(t)
\end{array}\right)
$$

* Where auxiliary variables are

$$
\mathbf{Q}(t)=\left(\begin{array}{ccc}
+\mathbf{q}_{w}(t) & -\mathbf{q}_{z}(t) & +\mathbf{q}_{y}(t) \\
+\mathbf{q}_{z}(t) & +\mathbf{q}_{w}(t) & -\mathbf{q}_{x}(t) \\
-\mathbf{q}_{y}(t) & +\mathbf{q}_{x}(t) & +\mathbf{q}_{w}(t) \\
-\mathbf{q}_{x}(t) & -\mathbf{q}_{y}(t) & -\mathbf{q}_{z}(t)
\end{array}\right) \quad \begin{gathered}
\mathbf{v}(t)=M^{-1} \mathbf{P}(t) \\
\boldsymbol{\omega}(t)=\mathbf{J}^{-1}(t) \mathbf{L}(t) \\
\mathbf{J}^{-1}(t)=\mathbf{R}(t) \mathbf{J}_{0}^{-1} \mathbf{R}^{\mathbf{T}}(t)
\end{gathered}
$$

User and Time control

* According to the time control of the simulation, we can split the overall simulation process into three nested layers
\rightarrow The Presentation Layer
\rightarrow The Collision Layer
\rightarrow The Simulation Layer.

Time control: Presentation Layer

* From users point-of-view the overall simulation must be present (rendered) in a sequence of animation frames
* The size of the frame is obviously application dependent:
* In time-critical and interactive applications (VR) it is usually fixed and defined by the user/device (min. 25 frames per seconds)
* In large, complex offline simulations it can vary upon the computational expenses

Time control: Collision Layer

* Within each frame the motion solver perform some sub-steps to advance the motion correctly.
* Due to collision and constraint resolution discontinuities arise in the motion
* Depending on the time of collision detection (resolution) the number (size) of "collision steps" can be fixed or adaptive
* When handling multiple penetrating objects in one step fixed time stepping is usually suitable
* If only one collision is resolved at once adaptive time stepping technique should be used

Backtracking Approach

* We want to advance the simulation form t_{0} to t_{1}
* Use bisection to find the first collision occurrence
\rightarrow First check for collisions at t_{1}, next at mid time $t_{m}=0.5\left(t_{0}+t_{1}\right)$
\rightarrow If there is some collision proceed similar back in ($\mathrm{t}_{0}, \mathrm{t}_{\mathrm{m}}$)
\rightarrow Otherwise proceed in second half interval (t_{m}, t_{1})
\rightarrow Proceed similar until desired number of iterations
* if we know the time derivative of the separation distance the search can be even faster
* It is simple, robust, can have slow convergence and tunneling problem (some collisions are missed)

One-Side Approach

* The One-Side Approach is a more conservative technique. We always advance the simulation forward in time.
\rightarrow This is possible, since between collisions objects move along ballistic trajectories and we can estimate the lower bound of their Time of Impact (TOI)
* Given upper bounds on angular and linear velocities we can estimate maximal translation of any surface point (on both estimated bodies) w.r.t. some direction axis d
*Find earliest time when bodies may penetrate. If no collision occurs, we advance bodies

User and Time control

* During both methods full collision detection is performed on estimated times
* Alternative solution is to use continuous collision detection

Time control: Simulation Layer

* Within each "collision" step the motion solver must integrate the motion equation
* Numerical ODE solver usually requires several integration steps to achieve desired accuracy and stability
* Again we can choose a fixed or adaptive time stepping scheme

