Computer Graphics

- Rasterization -

CG-1 WS03/04

Overview

- So far:
 - Clipping
- Today:
 - Drawing 1D shapes
 - speed
 - quality
 - consistency
 - Filling 2D shapes
 - Finding inside pixels
 - Ambiguities
- Next:
 - RC presentation, computer graphics arts

Cohen-Sutherland revisited

- Unknown case: How to decide against which plane to clip
 - 1. Take one endpoint outside window (outcode ≠0000)
 - 2. Set outcode bits correspond to actual clipping planes
 - 3. From left to right (or right to left): intersect line with set-bit plane, assign intersection point as new end point
 - 4. Switch corresponding bit to 0
 - 5. Trivial accept / reject ? No: repeat from 3. for next set-bit plane

You are here ...

Shapes to Draw

Shapes to draw

- Lines
- Circles, ellipses
- Spline curves
- ...
- *Rasterization* is the process of deciding which pixels to fill
 - Term comes form the regular raster grid pattern for pixels

Necessity of pixel displays

- Line is infinitely thin, pixel is not
- Want to draw best approximation to ideal line
- Want to be efficient

Drawing a Line

- Assumption
 - Pixels are sample points on a 2D-integer-grid
 - OpenGL: integer-coordinate bottom left; X11, Foley: in the middle
 - Simple raster operations
 - · setting of binary pixels
 - · antialiasing later
 - End points at pixel coordinates
 - simple generalization
 - On straight lines: gradient $|m| \le 1$
 - · separate handling of horizontal and vertical lines
 - otherwise exchange of x & y: $|1/m| \le 1$
 - Line width is one pixel
 - $|m| \le 1$: 1 pixel per column (X-driving axis)
 - |m| > 1: 1 pixel per row (Y-driving axis)
 - \Rightarrow Jaggies, aliasing !

Lines: As Function

Specification

- end points: (x_0, y_0) , (x_e, y_e)
- functional form: y = mx + B
- Goal
 - find pixels whose distance to the line is smallest

Brute-Force-Algorithm

- it is assumed that +X is the driving axis

```
for x_i = x_0 to x_e

y_i = m * x_i + B

setpixel(x_i, Round(y_i))

// Round(y_i)=Floor(y_i+0.5)
```

Comments

- m and y_i must be calculated with floating-point precision
- expensive operations per pixel

Lines: DDA Algorithm

- DDA: Digital Differential Analyzer
 - Origin: solvers for simple incremental differential equations (the Euler method)
 - per step in time: x' = x + dx/dt, y' = y + dy/dt
- Incremental algorithm
 - Per pixel
 - $\bullet \mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{1}$
 - $y_{i+1} = m (x_i + 1) + B = y_i + m$
 - setpixel(x_{i+1}, Round(y_{i+1}))

Remark

- Utilization of line coherence through incremental calculation
 - · avoids multiplication
- Cumulative error
 - · usually negligible for short lines
 - double precision is recommended
- Still floating point operations necessary

Lines: Midpoint Line Algorithm

• Bresenham ('63)

- Also incremental, but integer arithmetic only
- Uses a decision variable instead of the actual line equation
- Presented for slope between 0 and 1, others can be done by symmetry
- Implicit definition of line function: F(x,y):= ax+by+c = 0

Bresenham Algorithm: Overview

- Goal: For each *x*, plot the pixel whose *y*-value is closest to the line
 - Given (x_i, y_i) , must choose from either (x_i+1, y_i+1) or (x_i+1, y_i)
- Idea: compute a decision variable
 - Value that will determine which pixel to draw
 - Easy to update from one pixel to the next

Bresenham algorithm: *midpoint algorithm* for lines

- Other midpoint algorithms for conic sections (circles, ellipses)

Midpoint Method

- Consider the midpoint between (x_i+1,y_i+1) and (x_i+1,y_i)
- If it's above the line, we choose (x_i+1,y_i), otherwise we choose (x_i+1,y_i+1)

Midpoint Decision Variable

- Write the line in implicit form:
 - Dx=x2-x1, Dy=y2-y1

 $F(x, y) = ax + by + c = \Delta y \cdot x - \Delta x \cdot y + (\Delta x \cdot y_1 - \Delta y \cdot x_1)$

- The value of *F*(*x*,*y*) tells us where pixels are with respect to the line
 - F(x,y)=0 the point is on the line
 - F(x,y) < 0. The point is above the line
 - F(x,y) > 0. The point is below the line
- The decision variable is the value of $d_i = 2F(x_i+1,y_i+0.5)$

- The factor of two makes the math easier: eliminates fraction

What Can We Decide?

$$d_i = 2\Delta y(x_i + 1) - 2\Delta x y_i + \Delta x(2c - 1)$$

- *d_i* negative => next point at (*x_i*+1,*y_i*)
- *d_i* positive => next point at (*x_i*+1,*y_i*+1)
- At each point, we compute *d_i* and decide which pixel to draw
- How do we update it? What is d_{i+1}?

Updating The Decision Variable

• d_{k+1} is the old value, d_k , plus an increment:

$$d_{k+1} = d_k + (d_{k+1} - d_k)$$

If we chose y_{i+1}=y_i+1:

$$d_{k+1} = d_k + 2\Delta y - 2\Delta x$$

If we chose y_{i+1}=y_i:

$$d_{k+1} = d_k + 2\Delta y$$

• What is d₁ (assuming integer endpoints)?

$$d_1 = 2\Delta y - \Delta x$$

Notice that we don't need c any more

CG-1 WS03/04

Bresenham Algorithm

- For integers, slope between 0 and 1:
 - $x = x_1, y = y_1, d = 2dy dx, draw (x, y)$
 - until $x=x_2$
 - x=x+1
 - If *d*>0 then { *y*=*y*+1; draw (*x*, *y*); *d*=*d*+2*Dy* 2*Dx*; }
 - If *d*<0 then { *y*=*y*; draw (*x*, *y*); *d*=*d*+2*Dy*; }
- Compute the constants (2Dy-2Dx and 2Dy) once at the start
 - Inner loop does only adds and comparisons
- Floating point has slightly more difficult initialization, but is otherwise the same
- Care must be taken to ensure that it doesn't matter which order the endpoints are specified in (make a uniform decision if *d*==0)

Example: (2,2) to (7,6)

x=x1, y=y1, d1=2dy - dx If d>0 then { y=y+1; draw (x, y); d=d+2Dy - 2Dx; } If d<0 then { y=y, draw (x, y); d=d+2Dy; }

Example: (2,2) to (7,6)

Lines: Arbitrary Directions

8 different cases

- driving (active) axis: ±X or ±Y
- Increment/decrement of y or x, respectively

Lines: Some Remarks

- Reversed end point order consistency of pixel choices _____
 - m > 0: $(d \le 0)$? - m < 0: $(d \ge 0)$?

Dashed lines

- glLineStipple(Factor, 16-BitSample)
- if (BitSample[(n++/Factor)%16]) then setpixel(...)
- consistent continuation of dashing for line strips and loops

GL LINES

Weaker intensity of diagonal lines

Same number of pixel on a larger distance (up to 41%)

Subpixel-precision

- Clipping, subpixel-coordinates
- Correct initialization of the decision variable

GL LINE STIR

Thick Lines

- Pixel replication
 - •

- problems with even-numbered widths,
- varying the intensity of a line as a function of slope
- The moving pen
 - for some pen footprints the thickness of a line might change as a function of its slope
- Filling areas between boundaries

Line Joints

• End point handling

- Avoid multiple drawings
 - Local bitmap with already set pixels

Drawing Circles

- Square roots and multiplication and trigonometry. Yuck.
- Symmetry. Yay.
- Similar to line scan conversion. Fine.

Midpoint Circle Algorithm

- Look at top right eighth of circle
- $d = F(x,y) = x^2 + y^2 R^2$
- d = 0 on circle, < 0 under circle, > 0 over circle
- When have value at (x,y), choose next pixel by calculating d=F(x+1, y-.5)
- Initial d derivation, assuming start point is (0,R): F(1, R-.5) = 1 + (R² - R + .25) - R² = 1.25 - R
- Eliminate float:

Define h = d - .25 and substitute h + .25 for d Initialize h = 1 - R and check for h<-.25 instead of d<0 Since h is always an integer, can just check for h<0

Midpoint Circle Algorithm

- How to get next value of d incrementally:
 - If didn't go down one line (same y, next x)

$$d = F(x+2, y-.5) = (x+2)^2 + (y-.5)^2 - R^2$$

= x²+4x+4 + (y-.5)² - R²
= x²+2x+1 + (y-.5)² - R² + 2x + 3
= (x+1)² + (y-.5)² - R² + (2x + 3)
= F(x+1, y-.5) + (2x + 3)

So new d is previous d plus (2x + 3)

- If did go down one line, similar derivation shows

new d is previous d plus (2x - 2y + 5)

CG-1 WS03/04

Bresenham: Circle

 Eight-way symmetry: only one 45^o segment is needed to determine all pixels in a full circle

CG-1 WS03/04

Bresenham: More General

- Midpoint method works well for ellipses and other implicitly definable curves
 - Parabolas, hyperbolas, ...

Anti-Aliasing

Supersampling

- Calculates solution in virtual screen space
 - higher resolution
- Downsampling to real screen space
 - Grey values for partially covered pixels
- Leaves rendering methodology unaltered

(a) Simulation of a perfect limit

(c) Simulation of a jagged line

Polygons

- Types
 - triangles
 - trapezoids
 - rectangles
 - convex polygons
 - concave polygons
 - arbitrary polygons
 - holes
 - non-coherent

• Two approaches

- polygon tessellation into triangles
 - edge-flags for internal edges
- direct scan-conversion

Triangle Filling

Possible approaches

- first bounding-box, then triangle
- First triangle, then bounding-box

Brute-Force algorithm

Filling Polygons

- Sampling polygons:
 - When is a pixel inside a polygon?
 - Given a pixel, which polygon does it lie in? Point location

Polygon representation:

- Polygon defined by a list of edges
 - each edge is a pair of vertices
- All vertices are inside the view volume and map to valid pixels (clipping is behind us now)
- Let's assume integer window coordinates
 - · to simplify things for now

Inside-Outside Tests

What is the interior of a polygon?

- Jordan curve
 - A planar curve homeomorphic to a circle is called Jordan curve. A Jordan curve separates a plane in two connected components, one of which is bounded.
- Odd-even rule (odd parity rule)
 - counting the number of edge crossings with a ray starting at the queried point **P**
 - inside, if the number of crossings is odd
- Non-zero winding number rule
 - · signed intersections with a ray
 - inside, if the number is not equal to zero

Inside/Outside Rules

Non-zero Winding No.

Non-exterior

Parity

CG-1 WS03/04

What is Inside ?

- Assume sampling with an array of spikes
- If spike is inside, pixel is inside

What is Inside ?

- Assume sampling with an array of spikes
- If spike is inside, pixel is inside

Ambiguous Cases

- Ambiguous case: What if a pixel lies on an edge?
 - Problem because if two polygons share a common edge, we don't want pixels on the edge to belong to both
 - Ambiguity would lead to different results if the drawing order was different
- Rule: if (x+e, y+e) is in, (x,y) is in
- What if a pixel is on a vertex? Does our rule still work?

Ambiguous Case I

• Rule:

- On edge?
 - If (x+e, y+e) is in, pixel is in
- Which pixels are colored?
 - OpenGL origin convention !

0	0		0	0	0	0	C	2	0
0	ዋ		•	•	•	•	-	P	0
0	(>	0	0	0	0	(þ	0
0	(>	0	0	0	0	(þ	0
0	(>	0	0	0	0	<	þ	0
0	P		0	0	0	0	₹	5	0
0	0		0	0	0	0	C)	0

Ambiguous Case I

- Rule:
 - Keep left and bottom edges
 - Assuming y increases in the up direction
 - If rectangles meet at an edge, how often is the edge pixel drawn?

Ambiguous Case II

- Rule:
 - On edge?
 - If (x+e, y+e) is in, pixel is in
 - What happens for diagonal edges ?

Ambiguous Case II

0	0	0	0	0	0	0	0
0	0	0	þ	∕∖	0	0	0
0	0	×	•	•	•	P	0
0	بر	•	•	•	•	\circ	0
0	0	0	þ	•/	•/	0	0
0	0	0	0	0		0	0
0	0	0	0	0	0	0	0

Really Ambiguous

- We will accept ambiguity in such cases
 - The center pixel may end up colored by one of two polygons in this case
 - Which two?
- Might be solvable using (x+e, y+e²) (?)
 - Arbitrarily small, irrational slope
 - Rule stays the same

Scanline Conversion

- Fill pixel area inside polygon edges
- Exploiting Coherence when filling a polygon
 - Several contiguous pixels along a row tend to be in the polygon - a span of pixels
 - Scanline coherence
 - Consider whole spans, not individual pixels
 - Pixel number and position don't vary much from one span to the next
 - Edge coherence
 - Incrementally update span endpoints

Spans

- Process fill the bottom horizontal span of pixels; move up and keep filling
- Have x_{min}, x_{max} for each span
- Define:
 - floor(x): largest integer < x</p>
 - ceiling(x): smallest integer >=x
- Fill from ceiling(x_{min}) up to floor(x_{max})
- Consistent with convention

Algorithm

• For each row in the polygon:

- Throw away irrelevant edges
- Obtain newly relevant edges
- Fill span
- Update current edges
- Issues:
 - How do we update existing edges?
 - When is an edge relevant/irrelevant?
- All can be resolved by referring to our convention about what polygon the pixel belongs to