Computer Graphics

- Rasterization -

CG-1 WS03/04

Overview

- So far:
- Clipping
- Today:
- Drawing 1D shapes
- speed
- quality
- consistency
- Filling 2D shapes
- Finding inside pixels
- Ambiguities
- Next:
- RC presentation, computer graphics arts

Cohen-Sutherland revisited

- Unknown case: How to decide against which plane to clip

1. Take one endpoint outside window (outcode $\neq 0000$)
2. Set outcode bits correspond to actual clipping planes
3. From left to right (or right to left): intersect line with set-bit plane, assign intersection point as new end point
4. Switch corresponding bit to 0
5. Trivial accept / reject ? No: repeat from 3. for next set-bit plane

1001	1000		
0001	0000		
0101	0100	A	

You are here

Shapes to Draw

- Shapes to draw
- Lines
- Circles, ellipses
- Spline curves
- ...
- Rasterization is the process of deciding which pixels to fill
- Term comes form the regular raster grid pattern for pixels
- Necessity of pixel displays
- Line is infinitely thin, pixel is not
- Want to draw best approximation to ideal line
- Want to be efficient

Drawing_a Line

- Assumption
- Pixels are sample points on a 2D-integer-grid
- OpenGL: integer-coordinate bottom left; X11, Foley: in the middle
- Simple raster operations
- setting of binary pixels
- antialiasing later
- End points at pixel coordinates
- simple generalization
- On straight lines: gradient $|\mathrm{m}| \leq 1$

- separate handling of horizontal and vertical lines
- otherwise exchange of $x \& y:|1 / m| \leq 1$
- Line width is one pixel
- $|\mathrm{m}| \leq 1$: 1 pixel per column (X-driving axis)
- $|m|>1: 1$ pixel per row (Y-driving axis)
\Rightarrow Jaggies, aliasing !

Lines: As Function

- Specification
- end points: $\left(x_{0}, y_{0}\right),\left(x_{e}, y_{e}\right)$
- functional form: $\mathrm{y}=\mathrm{mx}+\mathrm{B}$
- Goal
- find pixels whose distance to the line is smallest
- Brute-Force-Algorithm
- it is assumed that +X is the driving axis

$$
\begin{aligned}
& \text { for } x_{i}=x_{0} \text { to } x_{e} \\
& \mathbf{y}_{i}=m * x_{i}+B \\
& \text { setpixel }\left(x_{i}, \operatorname{Round}\left(y_{i}\right)\right) \\
& \quad / / \operatorname{Round}\left(y_{i}\right)=\text { Floor }\left(y_{i}+0.5\right)
\end{aligned}
$$

- Comments
- m and y_{i} must be calculated with floating-point precision
- expensive operations per pixel

Lines: DDA Algorithm

- DDA: Digital Differential Analyzer
- Origin: solvers for simple incremental differential equations (the Euler method)
- per step in time: $x^{\prime}=x+d x / d t, y^{\prime}=y+d y / d t$
- Incremental algorithm
- Per pixel
- $\mathbf{x}_{i+1}=\mathbf{x}_{\mathrm{i}}+1$
- $y_{i+1}=m\left(x_{i}+1\right)+B=y_{i}+m$
- setpixel (x_{i+1}, Round $\left(y_{i+1}\right)$)
- Remark
- Utilization of line coherence through incremental calculation
- avoids multiplication
- Cumulative error
- usually negligible for short lines
- double precision is recommended
- Still floating point operations necessary

Lines: Midpoint Line Algorithm

- Bresenham ('63)
- Also incremental, but integer arithmetic only
- Uses a decision variable instead of the actual line equation
- Presented for slope between 0 and 1 , others can be done by symmetry
- Implicit definition of line function: $F(x, y):=a x+b y+c=0$

Bresenham Algorithm: Overview

- Goal: For each x, plot the pixel whose y-value is closest to the line
- Given $\left(x_{i}, y_{i}\right)$, must choose from either $\left(x_{i}+1, y_{i}+1\right)$ or $\left(x_{i}+1, y_{i}\right)$
- Idea: compute a decision variable
- Value that will determine which pixel to draw
- Easy to update from one pixel to the next
- Bresenham algorithm: midpoint algorithm for lines
- Other midpoint algorithms for conic sections (circles, ellipses)

Midpoint Method

- Consider the midpoint between $\left(x_{i}+1, y_{i}+1\right)$ and $\left(x_{i}+1, y_{i}\right)$
- If it's above the line, we choose ($x_{i}+1, y_{i}$), otherwise we choose ($x_{i}+1, y_{i}+1$)

Choose $\left(x_{i}+1, y_{i}\right)$

Choose $\left(x_{i}+1, y_{i+1}\right)$

Midpoint Decision Variable

- Write the line in implicit form:

$$
\begin{aligned}
& -\Delta x=x 2-x 1, \Delta y=y 2-y 1 \\
& \qquad F(x, y)=a x+b y+c=\Delta y \cdot x-\Delta x \cdot y+\left(\Delta x \cdot y_{1}-\Delta y \cdot x_{1}\right)
\end{aligned}
$$

- The value of $F(x, y)$ tells us where pixels are with respect to the line
- $F(x, y)=0$: the point is on the line
- $F(x, y)<0$: The point is above the line
- $F(x, y)>0$: The point is below the line
- The decision variable is the value of

$$
d_{i}=2 F\left(x_{i}+1, y_{i}+0.5\right)
$$

- The factor of two makes the math easier: eliminates fraction

What Can We Decide?

$$
d_{i}=2 \Delta y\left(x_{i}+1\right)-2 \Delta x y_{i}+\Delta x(2 c-1)
$$

- d_{i} negative $=>$ next point at $\left(x_{i}+1, y_{i}\right)$
- d_{i} positive $=>$ next point at $\left(x_{i}+1, y_{i}+1\right)$
- At each point, we compute d_{i} and decide which pixel to draw
- How do we update it? What is d_{i+1} ?

Updating The Decision Variable

- d_{k+1} is the old value, d_{k}, plus an increment:

$$
d_{k+1}=d_{k}+\left(d_{k+1}-d_{k}\right)
$$

- If we chose $y_{i+1}=y_{i}+1$:

$$
d_{k+1}=d_{k}+2 \Delta y-2 \Delta x
$$

- If we chose $y_{i+1}=y_{i}$:

$$
d_{k+1}=d_{k}+2 \Delta y
$$

- What is d_{1} (assuming integer endpoints)?

$$
d_{1}=2 \Delta y-\Delta x
$$

- Notice that we don't need cany more

Bresenham Algorithm

- For integers, slope between 0 and 1:
- $x=x_{1}, y=y_{1}, d=2 d y-d x$, draw (x, y)
- until $x=x_{2}$
- $x=x+1$
- If $d>0$ then $\{y=y+1$; draw $(x, y) ; d=d+2 \Delta y-2 \Delta x ;\}$
- If $d<0$ then $\{y=y$; draw $(x, y) ; d=d+2 \Delta y ;\}$
- Compute the constants ($2 \Delta y-2 \Delta x$ and $2 \Delta y$) once at the start
- Inner loop does only adds and comparisons
- Floating point has slightly more difficult initialization, but is otherwise the same
- Care must be taken to ensure that it doesn't matter which order the endpoints are specified in (make a uniform decision if $d==0$)

Example: $(2,2)$ to $(7,6)$

$$
\begin{aligned}
& x=x 1, y=y 1, d 1=2 d y-d x \\
& \\
& \text { If } d>0 \text { then }\{y=y+1 ; \operatorname{draw}(x, y) ; d=d+2 \Delta y-2 \Delta x ;\} \\
& \\
& \text { If } d<0 \text { then }\{y=y, \operatorname{draw}(x, y) ; d=d+2 \Delta y ;\}
\end{aligned}
$$

Example: $(2,2)$ to $(7,6)$

7	\bigcirc	$\Delta \mathrm{x}=5, \Delta \mathrm{y}=4$									
6	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	0			d
5	0	0	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2	2	3
4	0	0	\bigcirc	\bullet	-	-	\bigcirc	\bigcirc	4	4	-1
3	0	0	9	0	0	\bigcirc	\bigcirc	\bigcirc	5	4	7
2	0	\bigcirc	6	5	5						
1	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			
	1	2	3	4	5	6	7	8			

Lines: Arbitrary Directions

- 8 different cases
- driving (active) axis: $\pm X$ or $\pm Y$
- Increment/decrement of y or x, respectively

Lines: Some Remarks

- Reversed end point order consistency of pixel choices
- $\mathrm{m}>0$: $(\mathrm{d} \leq 0)$?
$-m<0:(d \geq 0)$?

GL_LINE_STIRP

- Dashed lines
- glLineStipple(Factor, 16-BitSample)
- if (BitSample[(n++/Factor)\%16]) then setpixel(...)
- consistent continuation of dashing for line strips and loops
- Weaker intensity of diagonal lines
- Same number of pixel on a larger distance (up to 41%)
- Subpixel-precision
- Clipping, subpixel-coordinates
- Correct initialization of the decision variable

Thick Lines

- Pixel replication
$\stackrel{-}{-}$

- problems with even-numbered widths,
- varying the intensity of a line as a function of slope
- The mpoving pen

- for some pen footprints the thickness of a line might change as a function of its slope
- Filling areas between boundaries

Line Joints

- End point handling

- Avoid multiple drawings
- Local bitmap with already set pixels

Drawing Circles

- Square roots and multiplication and trigonometry. Yuck.
- Symmetry. Yay.
- Similar to line scan conversion. Fine.

Midpoint Circle Algorithm

- Look at top right eighth of circle
- $d=F(x, y)=x^{2}+y^{2}-R^{2}$
- $\mathbf{d}=0$ on circle, < 0 under circle, > 0 over circle
- When have value at (x, y), choose next pixel by calculating $\mathrm{d}=\mathrm{F}(\mathrm{x}+1, \mathrm{y}-.5)$
- Initial d derivation, assuming start point is ($0, R$):

$$
\begin{aligned}
F(1, R-.5)= & 1+\left(R^{2}-R+.25\right)-R^{2} \\
& =1.25-R
\end{aligned}
$$

- Eliminate float:

Define $\mathrm{h}=\mathrm{d}-.25$ and substitute $\mathrm{h}+.25$ for d Initialize $\mathrm{h}=1-\mathrm{R}$ and check for $\mathrm{h}<-.25$ instead of $\mathrm{d}<0$
Since h is always an integer, can just check for $h<0$

Midpoint Circle Algorithm

- How to get next value of d incrementally:
- If didn't go down one line (same y, next x)

$$
\begin{aligned}
\mathrm{d} & =\mathrm{F}(\mathrm{x}+2, \mathrm{y}-.5)=(\mathrm{x}+2)^{2}+(\mathrm{y}-.5)^{2}-\mathrm{R}^{2} \\
& =\mathrm{x}^{2}+4 \mathrm{x}+4+(\mathrm{y}-.5)^{2}-\mathrm{R}^{2} \\
& =\mathrm{x}^{2}+2 \mathrm{x}+1+(\mathrm{y}-.5)^{2}-\mathrm{R}^{2}+2 \mathrm{x}+3 \\
& =(\mathrm{x}+1)^{2}+(\mathrm{y}-.5)^{2}-\mathrm{R}^{2}+(2 \mathrm{x}+3) \\
& =\mathrm{F}(\mathrm{x}+1, \mathrm{y}-.5)+(2 \mathrm{x}+3)
\end{aligned}
$$

So new d is previous d plus $(2 x+3)$

- If did go down one line, similar derivation shows
new d is previous d plus $(2 x-2 y+5)$

Bresenham: Circle

- Eight different cases here $+X, y$ -

Initialization: $x=0, y=R$

$$
\begin{aligned}
& F(x, y)=x^{2}+y^{2}-R^{2} \\
& d=F(x+1, y-1 / 2) \\
& d<0: \\
& d=F(x+2, y-1 / 2) \\
& d>0: \\
& d=F(x+2, y-3 / 2) \\
& y=y-1 \\
& x=x+1
\end{aligned}
$$

- Eight-way symmetry: only one 45° segment is needed to determine all pixels in a full circle

Bresenham: More General

- Midpoint method works well for ellipses and other implicitly definable curves
- Parabolas, hyperbolas, ...

Anti-Aliasing

- Supersampling
- Calculates solution in virtual screen space
- higher resolution
- Downsampling to real screen space
- Grey values for partially covered pixels
- Leaves rendering methodology unaltered

(a) 5 icmasen of a parfact hat

(C) Sirxilusin of a juppot Inc

Polygons

- Types
- triangles
- trapezoids
- rectangles
- convex polygons
- concave polygons
- arbitrary polygons
- holes
- non-coherent
- Two approaches
- polygon tessellation into triangles
- edge-flags for internal edges
- direct scan-conversion

Triangle Filling

- Possible approaches
- first bounding-box, then triangle
- First triangle, then bounding-box
- Brute-Force algorithm

Raster3_box (vertex v[3])
\{

$$
\text { int } x, y ;
$$

$+++++++$
box b;
bound (v, \&b) ;
for ($\mathrm{y}=\mathrm{b} . \mathrm{ymin}$; $\mathrm{y}<\mathrm{b} . \mathrm{ymax}_{\mathrm{m}}^{\mathrm{y}} \mathrm{y}++$) for ($\mathrm{x}=\mathrm{b} . \mathrm{xmin}$; $\mathrm{x}<\mathrm{b} . \mathrm{xmax}$; $\mathrm{x}++$)
if (inside (v, x, y))
fragment (\mathbf{x}, \mathbf{y});
\}

Filling Polygons

- Sampling polygons:
- When is a pixel inside a polygon?
- Given a pixel, which polygon does it lie in? Point location
- Polygon representation:
- Polygon defined by a list of edges
- each edge is a pair of vertices
- All vertices are inside the view volume and map to valid pixels (clipping is behind us now)
- Let's assume integer window coordinates
- to simplify things for now

Inside-Outside Tests

- What is the interior of a polygon?
- Jordan curve
- A planar curve homeomorphic to a circle is called Jordan curve. A Jordan curve separates a plane in two connected components, one of which is bounded.

- Odd-even rule (odd parity rule)
- counting the number of edge crossings with a ray starting at the queried point \mathbf{P}
- inside, if the number of crossings is odd

- Non-zero winding number rule
- signed intersections with a ray
- inside, if the number is not equal to zero

Inside/Outside Rules

Non-zero Winding No.

Non-exterior

Parity

What is Inside?

- Assume sampling with an array of spikes
- If spike is inside, pixel is inside

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

What is Inside?

- Assume sampling with an array of spikes
- If spike is inside, pixel is inside

\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	
\bigcirc	\bullet	-	-	-	-		
\bigcirc	-	\bullet	\bullet	\bullet	-		
\bigcirc	-	\bullet	\bullet	-			
\bigcirc	-	\bullet	\bullet	\bullet	\bullet	-	
\bigcirc	-	\bullet	\bullet	\bullet	\bullet	-	
\bigcirc	O	\bigcirc	O	-	0	\bigcirc	

Ambiguous Cases

- Ambiguous case: What if a pixel lies on an edge?
- Problem because if two polygons share a common edge, we don't want pixels on the edge to belong to both
- Ambiguity would lead to different results if the drawing order was different
- Rule: if $(x+\varepsilon, y+\varepsilon)$ is in, (x, y) is in
- What if a pixel is on a vertex? Does our rule still work?

Ambiguous Case I

- Rule:
- On edge?

If ($x+\varepsilon, y+\varepsilon$) is in, pixel is in

- Which pixels are colored?
- OpenGL origin convention !

\bigcirc							
-	φ						
\bigcirc	ϕ	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ϕ	
\bigcirc	ϕ	\bigcirc	\bigcirc	\bigcirc	-	,	
\bigcirc	Φ	\bigcirc	\bigcirc	0	\bigcirc	ϕ	
\bigcirc							
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	

Ambiguous Case

- Rule:
- Keep left and bottom edges
- Assuming y increases in the up direction
- If rectangles meet at an edge, how often is the edge pixel drawn?

	\bigcirc	\bigcirc				\bigcirc	\bigcirc		
\bigcirc		P	-	-		\bigcirc		-	-
\bigcirc	-	-			\bullet	-			\bigcirc
\bigcirc	-	\bullet	-	-	-	-	¢		-
\bigcirc	-	\bullet		-	\bullet	-			\bigcirc
\bigcirc		-	-	-	-	-			\bigcirc
\bigcirc		\bigcirc	0		\bigcirc	\bigcirc	\bigcirc		

Ambiguous Case II

- Rule:
- On edge?

If ($x+\varepsilon, y+\varepsilon$) is in, pixel is in

- What happens for diagonal edges ?

0	0	0	0	0	0	0	0
0	0	0	a	0	0	0	0
0	0	\varnothing	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	Q	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Ambiguous Case II

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	\bullet	\bullet	0	0	0
0	0	\bullet	\bullet	\bullet	\bullet	0	0
0	0	0	0	\bullet	0	0	0
0	0	0	0	0		0	0
0	0	0	0	0	0	0	0

- \quad| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | \bullet | \bullet | \bullet | 0 | 0 |
| 0 | | \bullet | \bullet | \bullet | \bullet | 0 | 0 |
| 0 | 0 | 0 | | \bullet | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Really Ambiguous

- We will accept ambiguity in such cases
- The center pixel may end up colored by one of two polygons in this case
- Which two?
- Might be solvable using ($x+\varepsilon, y+\varepsilon^{2}$) (?)
- Arbitrarily small, irrational slope
- Rule stays the same

Scanline Conversion

- Fill pixel area inside polygon edges
- Exploiting Coherence when filling a polygon
- Several contiguous pixels along a row tend to be in the polygon - a span of pixels
- Scanline coherence
- Consider whole spans, not individual pixels
- Pixel number and position don't vary much from one span to the next
- Edge coherence
- Incrementally update span endpoints

Spans

- Process - fill the bottom horizontal span of pixels; move up and keep filling
- Have $x_{\text {min }}, x_{\text {max }}$ for each span
- Define:
- floor(x): largest integer < x
- ceiling (x) : smallest integer $>=x$
- Fill from ceiling $\left(x_{m i n}\right)$ up to floor($x_{\text {max }}$)
- Consistent with convention

0	0	0	\bullet	0	0	0	0	0
0	0	0	\bullet		0	0	0	0
0	0	0	\bullet	\bullet	\bullet	0	0	0
0	0	\bullet	\bullet	\bullet	\bullet	\bullet	0	0
0	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	0	0
	\bullet	\bullet	\bullet	\bullet	\bullet	0	0	0
0	\bullet	\bullet	\bullet	\bullet	0	0	0	0
0	0	\bullet	\bullet	\bullet	0	0	0	0
0	0	0	\bullet	0	0	0	0	0
0	0	0	\bullet	0	0	0	0	0

Algorithm

- For each row in the polygon:
- Throw away irrelevant edges
- Obtain newly relevant edges
- Fill span
- Update current edges
- Issues:
- How do we update existing edges?
- When is an edge relevant/irrelevant?
- All can be resolved by referring to our convention about what polygon the pixel belongs to

