

LESSON 10 Computer Graphics 1

Drawing Wireframe Models

\square Apply visibility test to edges
\square Discard or draw differently the occluded edges
\square Exploit previous algorithms
\square Draw boundary and delete interior
\square Better solution
\square Front edges (2 front faces)
\square Back edges (2 back faces)
\square Contour edges (back and front face)

Drawing Wireframe Models

\square Back edges
\square Invisible, discard
\square Front edges and contour edges
\square Potentially visible
\square Detect and draw only visible parts
\square Roberts algorithm
\square Clip potentially visible edges by faces
\square Apell algorithm
\square Clip potentially visible edges by contour edges

5
 Visibility Culling

Backface culling, view frustum culling, occlusion culling

Visibility Culling

\square Culling - removing triangles from computation
\square Visibility culling - culling triangles for the purpose of rendering
\square Remove unseen triangles from computation
\square Less triangles $=$ faster computation
\square Fastest polygon to render is the one that is never sent to renderer

Visibility Culling

\square Exact visible set (EVS)
\square All primitives that are partially or fully visible
\square Ideal output of culling
\square Potentially visible set (PVS)
\square Primitives that might be visible
\square Conservative culling
$E V S \subseteq P V S$
\square Approximate (aggressive) culling
$E V S \not \subset P V S$

Visibility Culling

\square Conservative culling
\square Always generate correct images
\square Approximate culling
\square Generates incorrect images
\square Minimizing the error
\square Fast computation

Backface Culling

\square Every polygon has a front and back face
\square Discard backfacing polygons
\square Application: closed surfaces
\square Determine the angle between viewing direction and polygon normal
\square Angle < 90 degrees - discard polygon $\vec{n} \cdot \vec{v}>0$
\square Angle >90 degrees - reserve polygon

$$
\vec{n} \cdot \vec{v}<0
$$

Backface Culling

\square Orientation specified by the order of vertices

\square Compute normal: $n=\left(v_{2}-v_{1}\right) \times\left(v_{3}-v_{1}\right)$

Backface Culling - Conclusion

\square Simple algorithm
\square Can reduce many polygons
\square Suitable for scenes were a lot backfacing polygons appear
\square Very common situation
\square Ineffective for terrains or rooms
\square Only few backfacing polygons
\square Standard part of graphical APIs (OpenGL, DirectX)
\square Need to specify faces which should not be culled

View Frustum Culling

\square Draw only objects in view volume
\square Clip against cut pyramid
\square Clip all objects against clipping edges - O(n)
\square Hierarchical culling
\square Hierarchically subdivide space (e. g. Octree, BVH)
$\square \mathrm{O}(\log \mathrm{n})$
\square Test only bounding volumes
\square Discard if entirely outside view frustum

View Frustum Culling

Detail Culling

\square Sacrifice quality for speed
\square Small detail contribute nothing or very little to the rendered image
\square Cull if area of object projection is below a threshold
\square Usually a number of pixels
\square Sometimes called screen-size culling
\square Usually used by movement of the viewer

Occlusion Culling

\square Back-face culling and view-frustum culling can not reduce enough polygons for today games
\square Solution: occlusion culling
\square Remove occluded polygons

Portal Culling

\square Suitable for architectural models
\square Walls are often large occluders
\square Portal
\square door, window, ...
\square Connecting adjacent rooms
\square View frustum culling through each portal
\square Preprocessing
\square Automated preprocessing Extremely difficult for complex scene
\square Currently done by hand

Portal Culling - Algorithm

$\square 1$. locate cell \vee where the viewer is positioned
\square 2. initialize 2D bounding box P to the rectangle of the screen
\square 3. render the geometry of the cell V
\square Use view frustum culling
\square Frustum emanates from viewer and goes through P

Portal Culling - Algorithm

\square 4. recurse on portals of the cells neighboring V
\square Project each visible portal of the current cell onto the screen
\square Find 2D axis-aligned $B B$ of the projection
\square Compute intersection of and the BB
$\square 5$. for each intersection
\square Empty intersection - not visible, omit from processing
\square Nonempty intersection - resurse to step 3

- V - neighboring cell

■ P - intersection $B B$

Portal Culling - Example

Portals and Mirrors

David Luebke Chris Georges

Portals and Mirrors

David Luebke
Chris Georges

Hierarchical Z-Buffering

\square Scene in octree
\square Z-buffer
\square Image pyramid (Z-pyramid)
\square Occlusion representation of the scene
\square Each z-value represents the farthest z-value of the window
\square Overwrite z-value recursively

9	9	1	1
4	5	2	1
5	2	4	1
6	1	3	7

9	2
6	7

Hierarchical Z-Buffering

\square Hierarchical culling of octree nodes
\square Traverse in front-to-back order
\square Compare the z-pyramid with the screen projection
\square Z-pyramid cell encloses the octree cell

- Compare the smallest depth within the cell ($z_{\text {near }}$)
- If $z_{\text {near }}$ is larger than the value in z-pyramid the cell is occluded
\square Continue recursively down the z-pyramid until
\square Cell is found to be occluded
\square Bottom level of the z-pyramid is reached - cell is visible

Hierarchical Z-Buffering

Graphical Pipeline (Revisited)

Graphical Pipeline

Modeling Coordinates

\square Local coordinates
\square Specific for every object
\square Simplify modeling of object
\square Make the representation easier

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \frac{\left(x-x_{c}\right)^{2}}{a^{2}}+\frac{\left(y-y_{c}\right)^{2}}{b^{2}}=1
$$

World Coordinates

\square Specify position of object
\square User defines object with respect to this coordinates

Viewing Coordinates

\square Camera coordinates
\square Analogy to pinhole camera
\square Specified by:
\square Camera position (vector or view at point)
\square Viewing direction
\square View plane (distance from the camera)
\square Upward vector

Viewing Coordinates - View Plane

\square Viewing plane
\square Perpendicular to the viewing vector
\square Specified by the distance from the camera
\square In front of the camera

Viewing Coordinates - Computation

$\square \mathrm{v}-$ viewing direction
$\square \mathrm{w}$ - upward vector
\square It is difficult to define upward vector parallel to the viewing plane
\square Solution
\square Project arbitrary vector onto the viewing plane

$$
\begin{aligned}
& \vec{w}_{u}=\vec{w}+c \vec{n} \\
& 0=\vec{w} \cdot \vec{n}=\vec{w} \cdot \vec{n}+c \vec{n} \cdot \vec{n} \quad \vec{n} \cdot \vec{n}=\|\vec{n}\|=1 \\
& c=-\vec{w} \cdot \vec{n} \\
& \vec{w}_{u}=\vec{w}-(\vec{w} \cdot \vec{n}) \vec{n}
\end{aligned}
$$

Viewing Coordinates - Computation

\square Origin p = camera position
\square Upward vector
\square User specified
\square Projection of a vector from the base
\square Coordinate system $\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)$

$$
\begin{aligned}
& u_{3}=\frac{v}{\|v\|} \\
& u_{2}=\frac{w_{u}}{\left\|w_{u}\right\|}, \quad w_{u}=w-\left(w \cdot u_{3}\right) u_{3} \\
& u_{1}=u_{3} \times u_{2}
\end{aligned}
$$

Viewing Transformation

\square World coordinates to viewing coordinates

$$
q \rightarrow(q-p)\left(u_{1}^{T} u_{2}^{T} u_{3}^{T}\right)=(q-p) M
$$

$$
\begin{aligned}
& u_{1}=\left(u_{11}, u_{12}, u_{13}\right) \\
& u_{2}=\left(u_{21}, u_{22}, u_{23}\right) \\
& u_{3}=\left(u_{31}, u_{32}, u_{33}\right)
\end{aligned}
$$

$$
M=\left(\begin{array}{lll}
u_{11} & u_{21} & u_{31} \\
u_{12} & u_{22} & u_{32} \\
u_{13} & u_{23} & u_{33}
\end{array}\right)
$$

Clipping

\square View frustum clipping
\square Far and near clipping planes
\square Limiting visibility
\square Limiting number of triangles

Projection Coordinates

\square Visible space $=$ unit cube
\square Simple to clip against a unit cube
\square Simple equations of clipping planes
\square Clipping algorithm is independent of boundary dimensions
\square Clipping in homogenous coordinates

Projective Transformation

\square See lesson 4
\square Transform clipped frustum to cube
\square Scale, translate, $T_{\text {persp }}$

$$
T_{\text {persp }}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 / d \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Projective Transformation

$$
\begin{aligned}
& (0,0,-d, 1) T_{\text {persp }}=(0,0,-d, 0) \\
& (x, 0,-d-a x, 1) T_{\text {persp }}=\left(x, 0,-d-a x,-\frac{a x}{d}\right)=-\frac{d}{a x}\left(-\frac{d}{a}, 0, d+\frac{d^{2}}{a x}, 1\right) \\
& (x, 0,-d+a x, 1) T_{\text {persp }}=\left(x, 0,-d+a x, \frac{a x}{d}\right)=\frac{d}{a x}\left(\frac{d}{a}, 0, d-\frac{d^{2}}{a x}, 1\right)
\end{aligned}
$$

Workstation Transformation

\square From homogenous to Euclidian
\square Parallel projection along z axis
\square Scale and transform in order to map to viewport

Graphical Pipeline - Conclusion

\square Lighting and shadows
\square Global coordinates
\square Clipping
\square Projection coordinates
\square Visibility
\square Depends on algorithm
\square Image space - workstation coordinates or projection coordinates
\square Object space - viewing coordinates, world coordinates

2D Graphical Pipeline

\square Similar to 3D pipeline
\square Viewing transformation
\square Make window axis aligned
\square Projection coordinates (normalized coordinates)
\square Window is square with side of length $=1$
\square Separate modeling from displaying
\square Clipping
\square Viewing coordinates
\square World coordinates - join viewing and projection (normalization) coordinates

