
LESSON 10 Computer Graphics 1

Drawing Wireframe Models 2

Drawing Wireframe Models
3

 Apply visibility test to edges
 Discard or draw differently the occluded edges
 Exploit previous algorithms

 Draw boundary and delete interior

 Better solution
 Front edges (2 front faces)
 Back edges (2 back faces)
 Contour edges (back and front face)

Drawing Wireframe Models
4

 Back edges
 Invisible, discard

 Front edges and contour edges
 Potentially visible
 Detect and draw only visible parts

 Roberts algorithm
 Clip potentially visible edges by faces

 Apell algorithm
 Clip potentially visible edges by contour edges

Backface culling, view frustum culling, occlusion
culling

Visibility Culling 5

Visibility Culling
6

 Culling – removing triangles from computation
 Visibility culling – culling triangles for the purpose

of rendering
 Remove unseen triangles from computation
 Less triangles = faster computation
 Fastest polygon to render is the one that is never

sent to renderer

Visibility Culling
7

 Exact visible set (EVS)
 All primitives that are partially or fully visible
 Ideal output of culling

 Potentially visible set (PVS)
 Primitives that might be visible

 Conservative culling

 Approximate (aggressive) culling

PVSEVS ⊆

PVSEVS ⊄

Visibility Culling
8

 Conservative culling
 Always generate correct images

 Approximate culling
 Generates incorrect images
 Minimizing the error
 Fast computation

Backface Culling
9

 Every polygon has a front and back face
 Discard backfacing polygons
 Application: closed surfaces
 Determine the angle between viewing direction and

polygon normal
 Angle < 90 degrees – discard polygon

 Angle > 90 degrees – reserve polygon

0>⋅vn

0<⋅vn

Backface Culling
10

 Orientation specified by the order of vertices

 Compute normal: () ()1312 vvvvn −×−=

Backface Culling – Conclusion
11

 Simple algorithm
 Can reduce many polygons
 Suitable for scenes were a lot backfacing polygons

appear
 Very common situation

 Ineffective for terrains or rooms
 Only few backfacing polygons

 Standard part of graphical APIs (OpenGL, DirectX)
 Need to specify faces which should not be culled

View Frustum Culling
12

 Draw only objects in view volume
 Clip against cut pyramid
 Clip all objects against clipping edges - O(n)
 Hierarchical culling

 Hierarchically subdivide space (e. g. Octree, BVH)
 O (log n)

 Test only bounding volumes
 Discard if entirely outside view frustum

View Frustum Culling
13

Detail Culling
14

 Sacrifice quality for speed
 Small detail contribute nothing or very little to the

rendered image
 Cull if area of object projection is below a threshold

 Usually a number of pixels

 Sometimes called screen-size culling
 Usually used by movement of the viewer

Occlusion Culling
15

 Back-face culling and view-frustum culling can not
reduce enough polygons for today games

 Solution: occlusion culling
 Remove occluded polygons

Portal Culling
16

 Suitable for architectural models
 Walls are often large occluders
 Portal

 door, window, …
 Connecting adjacent rooms

 View frustum culling through each portal
 Preprocessing

 Automated preprocessing Extremely difficult for
complex scene

 Currently done by hand

Portal Culling – Algorithm
17

 1. locate cell V where the viewer is positioned
 2. initialize 2D bounding box P to the rectangle of

the screen
 3. render the geometry of the cell V

 Use view frustum culling
 Frustum emanates from viewer and goes through P

Portal Culling – Algorithm
18

 4. recurse on portals of the cells neighboring V
 Project each visible portal of the current cell onto the

screen
 Find 2D axis-aligned BB of the projection
 Compute intersection of and the BB

 5. for each intersection
 Empty intersection – not visible, omit from processing
 Nonempty intersection – resurse to step 3
 V – neighboring cell
 P – intersection BB

Portal Culling - Example
19

Portals and Mirrors
20

David Luebke
Chris Georges

Portals and Mirrors
21

David Luebke
Chris Georges

Hierarchical Z-Buffering
22

 Scene in octree
 Z-buffer

 Image pyramid (Z-pyramid)
 Occlusion representation of the scene
 Each z-value represents the farthest z-value of the

window
 Overwrite z-value
 recursively

Hierarchical Z-Buffering
23

 Hierarchical culling of octree nodes
 Traverse in front-to-back order
 Compare the z-pyramid with the screen projection

 Z-pyramid cell encloses the octree cell
 Compare the smallest depth within the cell (znear)
 If znear is larger than the value in z-pyramid the cell is

occluded

 Continue recursively down the z-pyramid until
 Cell is found to be occluded
 Bottom level of the z-pyramid is reached – cell is visible

Hierarchical Z-Buffering
24

Graphical Pipeline (Revisited) 25

Graphical Pipeline
26

Modeling Coordinates
27

 Local coordinates
 Specific for every object
 Simplify modeling of object

 Make the representation easier

12

2

2

2

=+
b
y

a
x () () 12

2

2

2

=
−

+
−

b
yy

a
xx cc

World Coordinates
28

 Specify position of object
 User defines object with respect to this coordinates

Viewing Coordinates
29

 Camera coordinates
 Analogy to pinhole camera
 Specified by:

 Camera position (vector or view at point)
 Viewing direction
 View plane (distance from the camera)
 Upward vector

Viewing Coordinates – View Plane
30

 Viewing plane
 Perpendicular to the viewing vector
 Specified by the distance from the camera
 In front of the camera

Viewing Coordinates - Computation
31

 v – viewing direction
 w – upward vector
 It is difficult to define upward vector parallel to the

viewing plane
 Solution

 Project arbitrary vector onto the viewing plane

()nnwww
nwc

nncnwnw
ncww

u

u

u

⋅−=
⋅−=

⋅+⋅=⋅=
+=

0 1==⋅ nnn

Viewing Coordinates - Computation
32

 Origin p = camera position
 Upward vector

 User specified
 Projection of a vector from the base

 Coordinate system (u1, u2 , u3)

()

231

332

3

 ,

uuu

uuwww
w
wu

v
vu

u
u

u

×=

⋅−==

=

Viewing Transformation
33

 World coordinates to viewing coordinates
 ()() ()Mpquuupqq TTT −=−→ 321

=

332313

322212

312111

uuu
uuu
uuu

M
()
()
()3332313

2322212

1312111

,,
,,
,,

uuuu
uuuu
uuuu

=
=
=

Clipping
34

 View frustum clipping
 Far and near clipping planes

 Limiting visibility
 Limiting number of triangles

Projection Coordinates
35

 Visible space = unit cube
 Simple to clip against a unit cube

 Simple equations of clipping planes

 Clipping algorithm is independent of boundary
dimensions

 Clipping in homogenous coordinates

Projective Transformation
36

 See lesson 4
 Transform clipped frustum to cube

 Scale, translate, Tpersp

=

1000
/1100
0010
0001

d
Tpersp

Projective Transformation
37

() ()

()

()

−=

 +−=+−

+−−=

 −−−=−−

−=−

1,,0,,,0,1,,0,

1,,0,,,0,1,,0,

0,,0,01,,0,0

2

2

ax
dd

a
d

ax
d

d
axaxdxTaxdx

ax
dd

a
d

ax
d

d
axaxdxTaxdx

dTd

persp

persp

persp

Workstation Transformation
38

 From homogenous to Euclidian
 Parallel projection along z axis
 Scale and transform in order to map to viewport

Graphical Pipeline - Conclusion
39

 Lighting and shadows
 Global coordinates

 Clipping
 Projection coordinates

 Visibility
 Depends on algorithm
 Image space – workstation coordinates or projection

coordinates
 Object space – viewing coordinates, world coordinates

2D Graphical Pipeline
40

 Similar to 3D pipeline
 Viewing transformation

 Make window axis aligned
 Projection coordinates (normalized coordinates)

 Window is square with side of length = 1
 Separate modeling from displaying

 Clipping
 Viewing coordinates
 World coordinates – join viewing and projection

(normalization) coordinates

Questions ??? 41

	Lesson 10
	Drawing Wireframe Models
	Drawing Wireframe Models
	Drawing Wireframe Models
	Visibility Culling
	Visibility Culling
	Visibility Culling
	Visibility Culling
	Backface Culling
	Backface Culling
	Backface Culling – Conclusion
	View Frustum Culling
	View Frustum Culling
	Detail Culling
	Occlusion Culling
	Portal Culling
	Portal Culling – Algorithm
	Portal Culling – Algorithm
	Portal Culling - Example
	Portals and Mirrors
	Portals and Mirrors
	Hierarchical Z-Buffering
	Hierarchical Z-Buffering
	Hierarchical Z-Buffering
	Graphical Pipeline (Revisited)
	Graphical Pipeline
	Modeling Coordinates
	World Coordinates
	Viewing Coordinates
	Viewing Coordinates – View Plane
	Viewing Coordinates - Computation
	Viewing Coordinates - Computation
	Viewing Transformation
	Clipping
	Projection Coordinates
	Projective Transformation
	Projective Transformation
	Workstation Transformation
	Graphical Pipeline - Conclusion
	2D Graphical Pipeline
	Questions ???

