Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

(

Separating Axis Theorem

$$
\begin{array}{ll}
\operatorname{cov}(x, x)=\frac{1}{3}\left[\left(1-\frac{11}{3}\right)^{2}+\left(3-\frac{11}{3}\right)^{2}+\left(7-\frac{11}{3}\right)^{2}\right]=\frac{(-8)^{2}+(-2)^{2}+10^{2}}{3 \cdot 3^{2}}=\frac{56}{9} & \begin{array}{l}
P_{1}=(1,2) \\
P_{2}=(3,0) \\
P_{3}=(7,6) \\
\operatorname{cov}(x, y)=\operatorname{cov}(y, x)=\frac{1}{3}\left[\left(1-\frac{11}{3}\right)\left(2-\frac{8}{3}\right)+\left(3-\frac{11}{3}\right)\left(0-\frac{8}{3}\right)+\left(7-\frac{11}{3}\right)\left(6-\frac{8}{3}\right)\right]=\frac{44}{9}
\end{array} \\
\operatorname{cov}(y, y)=\frac{1}{3}\left[\left(2-\frac{8}{3}\right)^{2}+\left(0-\frac{8}{3}\right)^{2}+\left(6-\frac{8}{3}\right)^{2}\right]=\frac{(-2)^{2}+(-8)^{2}+10^{2}}{3 \cdot 3^{2}}=\frac{56}{9} & \bar{x}=\frac{1+3+7}{3}=\frac{11}{3} \\
& \bar{y}=\frac{2+0+6}{3}=\frac{8}{3}
\end{array}
$$

Separating Axis Theorem

$$
K=\left(\begin{array}{cc}
\frac{56}{9} & \frac{44}{9} \\
\frac{44}{9} & \frac{56}{9}
\end{array}\right)
$$

$$
\begin{gathered}
K \vec{v}=\lambda \vec{v} \\
K-\lambda I=M \\
M \vec{v}=\mathbf{0} \\
|M|=0
\end{gathered}
$$

Separating Axis Theorem

$$
\begin{aligned}
& |M|=\left|\begin{array}{cc}
\frac{56}{9}-\lambda & \frac{44}{9} \\
\frac{44}{9} & \frac{56}{9}-\lambda
\end{array}\right|=\left(\frac{56}{9}-\lambda\right)^{2}-\left(\frac{44}{9}\right)^{2} \\
& |M|=0 \Rightarrow \frac{56^{2}}{9^{2}}-\frac{112 \lambda}{9}+\lambda^{2}-\frac{44^{2}}{9^{2}}=0 \\
& \lambda_{1,2}=\frac{-\left(-\frac{112}{9}\right) \pm \sqrt{\left(-\frac{112}{9}\right)^{2}-4 \frac{56^{2}-44^{2}}{81}}}{2}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{gathered}
\left(\frac{56}{9}-\lambda\right)^{2}-\left(\frac{44}{9}\right)^{2}=0 \\
\Downarrow
\end{gathered}
$$

$$
\left|\frac{56}{9}-\lambda\right|=\frac{44}{9}
$$

Separating Axis Theorem

$$
\begin{gathered}
\left(\frac{56}{9}-\lambda\right)^{2}-\left(\frac{44}{9}\right)^{2}=0 \\
\Downarrow \\
\left|\frac{56}{9}-\lambda\right|=\frac{44}{9} \Rightarrow \frac{56}{9}-\lambda=-\frac{44}{9} \vee \frac{56}{9}-\lambda=\frac{44}{9}
\end{gathered}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \left(\frac{56}{9}-\lambda\right)^{2}-\left(\frac{44}{9}\right)^{2}=0 \\
& \Downarrow \\
& \left|\frac{56}{9}-\lambda\right|=\frac{44}{9} \Rightarrow \frac{56}{9}-\lambda=-\frac{44}{9} \vee \frac{56}{9}-\lambda=\frac{44}{9} \\
& \lambda_{1}=\frac{100}{9} ; \lambda_{2}=\frac{12}{9}=\frac{4}{3}
\end{aligned}
$$

Separating Axis Theorem

$$
\lambda_{1}=\frac{100}{9}: \quad\left(K+\lambda_{1} I\right)\binom{x}{y}=\binom{0}{0}
$$

$$
\lambda_{2}=\frac{4}{3}: \quad\left(K+\lambda_{2} I\right)\binom{x}{y}=\binom{0}{0}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \lambda_{1}=\frac{100}{9}: \\
& \left(\begin{array}{cc}
\frac{56-100}{9} & \frac{44}{9} \\
\frac{44}{9} & \frac{56-100}{9}
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow \begin{array}{l}
\left(\frac{56}{9}-\frac{100}{9}\right) x+\frac{44}{9} y=0 \\
44 x-44 y=0
\end{array} \quad \Rightarrow \quad x=y \quad \Rightarrow \quad \overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& \lambda_{2}=\frac{4}{3}: \quad\left(K+\lambda_{2} I\right)\binom{x}{y}=\binom{0}{0}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \lambda_{1}=\frac{100}{9}: \\
& \left(\begin{array}{cc}
\frac{56-100}{9} & \frac{44}{9} \\
\frac{44}{9} & \frac{56-100}{9}
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow \begin{array}{l}
\left(\frac{56}{9}-\frac{100}{9}\right) x+\frac{44}{9} y=0 \\
44 x-44 y=0
\end{array} \quad \Rightarrow \quad x=y \quad \Rightarrow \quad \overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& \left.\lambda_{2}=\frac{4}{3}: \begin{array}{l}
\frac{56-12}{9} \\
\frac{44}{9} \\
\frac{56-12}{9}
\end{array}\right)\binom{x}{y}=\binom{0}{0} \Rightarrow \begin{array}{c}
\left(\frac{56}{9}-\frac{12}{9}\right) x+\frac{44}{9} y=0 \\
44 x+44 y=0
\end{array} \quad \Rightarrow \quad-x=y \quad \Rightarrow \quad \overrightarrow{v_{2}}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

$$
\overrightarrow{v_{1}} \cdot(7,6)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{13}{\sqrt{2}}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{v_{1}} \cdot(7,6)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{13}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(3,0)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(3,0)=\frac{3}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(1,2)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(1,2)=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=?
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{v_{1}} \cdot(7,6)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{13}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(3,0)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(3,0)=\frac{3}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(1,2)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(1,2)=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{v_{1}} \cdot(7,6)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{13}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(3,0)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(3,0)=\frac{3}{\sqrt{2}} \\
& \overrightarrow{v_{1}} \cdot(1,2)=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(1,2)=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(1,2)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(1,2)=\frac{1}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(7,6)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{-1}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(3,0)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(3,0)=\frac{-3}{\sqrt{2}}
\end{aligned}
$$

$$
\operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(1,2)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(1,2)=\frac{1}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(7,6)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(7,6)=\frac{-1}{\sqrt{2}} \\
& \overrightarrow{v_{2}} \cdot(3,0)=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot(3,0)=\frac{-3}{\sqrt{2}}
\end{aligned}
$$

$\operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}}$
$\operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}}$

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& c_{1}=\frac{\frac{3}{\sqrt{2}}+\frac{13}{\sqrt{2}}}{2}=\frac{16}{2 \sqrt{2}}=\frac{8}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& c_{1}=\frac{8}{\sqrt{2}} \\
& c_{2}=\frac{\frac{-3}{\sqrt{2}}+\frac{1}{\sqrt{2}}}{2}=\frac{1-3}{2 \sqrt{2}}=\frac{-2}{2 \sqrt{2}}=\frac{-1}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& c_{1}=\frac{8}{\sqrt{2}} \\
& c_{2}=\frac{-1}{\sqrt{2}} \\
& \overrightarrow{c_{B}}=\frac{8}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)+\frac{-1}{\sqrt{2}}\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& c_{1}=\frac{8}{\sqrt{2}} \\
& c_{2}=\frac{-1}{\sqrt{2}} \\
& \overrightarrow{c_{B}}=\left(\frac{8}{2}, \frac{8}{2}\right)+\left(\frac{1}{2}, \frac{-1}{2}\right)
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& c_{1}=\frac{8}{\sqrt{2}} \\
& c_{2}=\frac{-1}{\sqrt{2}} \\
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right)
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right)
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
& \operatorname{Max}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{13}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{1}} \cdot(7,6), \overrightarrow{v_{1}} \cdot(3,0), \overrightarrow{v_{1}} \cdot(1,2)\right\}=\frac{3}{\sqrt{2}} \\
& \operatorname{Max}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{1}{\sqrt{2}} \\
& \operatorname{Min}\left\{\overrightarrow{v_{2}} \cdot(7,6), \overrightarrow{v_{2}} \cdot(3,0), \overrightarrow{v_{2}} \cdot(1,2)\right\}=\frac{-3}{\sqrt{2}} \\
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& 1
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

$$
\begin{aligned}
\overrightarrow{c_{B}} & =\left(\frac{9}{2}, \frac{7}{2}\right) \\
l_{1} & =\frac{10}{\sqrt{2}} \\
l_{2} & =\frac{4}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& l_{1}=\frac{10}{\sqrt{2}} \\
& l_{2}=\frac{4}{\sqrt{2}} \\
& \overrightarrow{d_{1_{\mathrm{B}}}}=\frac{l_{1}}{2} \overrightarrow{v_{1}}=\frac{5}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& l_{1}=\frac{10}{\sqrt{2}} \\
& l_{2}=\frac{4}{\sqrt{2}} \\
& \overrightarrow{d_{1_{\mathrm{B}}}}=\frac{l_{1}}{2} \overrightarrow{v_{1}}=\frac{5}{\sqrt{2}}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& \overrightarrow{d_{2_{\mathrm{B}}}}=\frac{l_{2}}{2} \overrightarrow{v_{2}}=\frac{2}{\sqrt{2}}\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& \overrightarrow{c_{B}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& l_{1}=\frac{10}{\sqrt{2}} \\
& l_{2}=\frac{4}{\sqrt{2}} \\
& \overrightarrow{d_{1_{\mathrm{B}}}}=\left(\frac{5}{2}, \frac{5}{2}\right) \\
& \overrightarrow{d_{2_{\mathrm{B}}}}=(-1,1)
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=\left|\vec{v} \cdot \overrightarrow{d_{1_{A}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2}}\right|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& S_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=|(1,0) \cdot(1,0)|+|(1,0) \cdot(0,1)|
\end{aligned}
$$

Separating Axis Theorem

$$
\text { Test: } \begin{aligned}
\vec{v} & =\overrightarrow{e_{1}}=(1,0) \\
\overrightarrow{r_{A B}} & =\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
s_{A B} & =\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
h_{A} & =1 \\
h_{B} & =\left|\vec{v} \cdot \overrightarrow{d_{1 B}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2}}\right|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=1 \\
& h_{B}=\left|(1,0) \cdot\left(\frac{5}{2}, \frac{5}{2}\right)\right|+|(1,0) \cdot(-1,1)|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{B}=\frac{5}{2}+\frac{2}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{B}=\frac{7}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}+h_{B}=\frac{2+7}{2}=\frac{9}{2} \\
& s_{A B} \stackrel{?}{>} h_{A}+h_{B}
\end{aligned}
$$

Separating Axis Theorem

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{1}}=(1,0)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& S_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(1,0) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{9}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}+h_{B}=\frac{2+7}{2}=\frac{9}{2} \\
& \frac{9}{2}>\frac{9}{2}
\end{aligned}
$$

not true \Rightarrow can't say that they are not in a collision

Separating Axis Theorem

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\left|\vec{v} \cdot \overrightarrow{d_{1_{B}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2}}\right|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\left|\vec{v} \cdot \overrightarrow{d_{1_{B}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2_{B}}}\right| \\
& h_{B}=\left|(0,1) \cdot \overrightarrow{d_{1_{B}}}\right|+\left|(0,1) \cdot \overrightarrow{d_{2_{\mathrm{B}}}}\right|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{C_{B}}-\overrightarrow{C_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& S_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\left|\vec{v} \cdot \overrightarrow{d_{1_{B}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2_{\mathrm{B}}}}\right| \\
& h_{B}=\left|(0,1) \cdot \overrightarrow{d_{1_{B}}}\right|+\left|(0,1) \cdot \overrightarrow{d_{2_{\mathrm{B}}}}\right| \\
& h_{B}=\left|(0,1) \cdot\left(\frac{5}{2}, \frac{5}{2}\right)\right|+|(0,1) \cdot(-1,1)| \\
& a
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\left|(0,1) \cdot\left(\frac{5}{2}, \frac{5}{2}\right)\right|+|(0,1) \cdot(-1,1)| \\
& \mathrm{a} \\
& h_{B}=\frac{5}{2}+\frac{2}{2}=\frac{7}{2}
\end{aligned}
$$

Separating Axis Theorem

$$
\text { Test: } \quad \vec{v}=\overrightarrow{e_{2}}=(0,1)
$$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\left|\vec{v} \cdot \overrightarrow{d_{1_{A}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2}}\right|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\left|\vec{v} \cdot \overrightarrow{d_{1}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2}}\right| \\
& h_{A}=|(0,1) \cdot(1,0)|+|(0,1) \cdot(0,1)|
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\left|\vec{v} \cdot \overrightarrow{d_{1_{\mathrm{A}}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2_{\mathrm{A}}}}\right| \\
& h_{A}=|(0,1) \cdot(1,0)|+|(0,1) \cdot(0,1)| \\
& h_{A}=\frac{2}{2}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& S_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{A}+h_{B}=\frac{2+7}{2}=\frac{9}{2} \\
& S_{A B} \stackrel{?}{>} h_{A}+h_{B}
\end{aligned}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{A}+h_{B}=\frac{2+7}{2}=\frac{9}{2} \\
& s_{A B} \stackrel{?}{>} h_{A}+h_{B}
\end{aligned}
$$

$$
\frac{7}{2}>\frac{9}{2}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{e_{2}}=(0,1)$

$$
\begin{aligned}
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=(0,1) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)=\frac{7}{2} \\
& h_{B}=\frac{7}{2} \\
& h_{A}=\frac{2}{2} \\
& h_{A}+h_{B}=\frac{2+7}{2}=\frac{9}{2} \\
& \frac{7}{2}>\frac{9}{2}
\end{aligned}
$$

not true \Rightarrow can't say that they are not in a collision

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{2}}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{1}{\sqrt{2}}
$$

$$
h_{A}=\frac{2}{\sqrt{2}}
$$

$$
h_{B}=\frac{2}{\sqrt{2}}
$$

$$
h_{A}+h_{B}=\frac{2+2}{\sqrt{2}}=\frac{4}{\sqrt{2}}
$$

$$
s_{A B} \stackrel{?}{>} h_{A}+h_{B}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{2}}=\left(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
S_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{1}{\sqrt{2}}
$$

$$
h_{A}=\frac{2}{\sqrt{2}}
$$

$$
h_{B}=\frac{2}{\sqrt{2}}
$$

$$
h_{A}+h_{B}=\frac{2+2}{\sqrt{2}}=\frac{4}{\sqrt{2}}
$$

$$
\frac{1}{\sqrt{2}}>\frac{4}{\sqrt{2}}
$$

not true \Rightarrow can't say that they are not in a collision

Separating Axis Theorem

$$
\text { Test: } \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\left|\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \cdot\left(\frac{9}{2}, \frac{7}{2}\right)\right|=
$$

$$
=\left|\frac{9}{2 \sqrt{2}}+\frac{7}{2 \sqrt{2}}\right|=\frac{16}{2 \sqrt{2}}=\frac{8}{\sqrt{2}}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}}
$$

$$
h_{A}=\left|\vec{v} \cdot \overrightarrow{d_{1_{\mathrm{A}}}}\right|+\left|\vec{v} \cdot \overrightarrow{d_{2_{\mathrm{A}}}}\right|
$$

Separating Axis Theorem

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}}
$$

$$
h_{A}=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}
$$

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

$$
\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)
$$

$$
s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}}
$$

$$
h_{A}=\frac{2}{\sqrt{2}}
$$

Separating Axis Theorem

Separating Axis Theorem

Test: $\quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
$\overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right)$
$s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}}$
$h_{A}=\frac{2}{\sqrt{2}}$
$h_{B}=\frac{5}{2 \sqrt{2}}+\frac{5}{2 \sqrt{2}}=\frac{5}{\sqrt{2}}$

Separating Axis Theorem

$$
\begin{aligned}
& = \\
& \text { Test: } \quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}} \\
& h_{A}=\frac{2}{\sqrt{2}} \\
& h_{B}=\frac{5}{2 \sqrt{2}}+\frac{5}{2 \sqrt{2}}=\frac{5}{\sqrt{2}} \\
& h_{A}+h_{B}=\frac{2+5}{\sqrt{2}}=\frac{7}{\sqrt{2}} \\
& s_{A B} \stackrel{?}{>} h_{A}+h_{B}
\end{aligned}
$$

Separating Axis Theorem

$$
\begin{aligned}
& { }_{2} \\
& \text { Test: } \quad \vec{v}=\overrightarrow{v_{1}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) \\
& \overrightarrow{r_{A B}}=\overrightarrow{c_{B}}-\overrightarrow{c_{A}}=\left(\frac{9}{2}, \frac{7}{2}\right) \\
& s_{A B}=\left|\vec{v} \cdot \overrightarrow{r_{A B}}\right|=\frac{8}{\sqrt{2}} \\
& h_{A}=\frac{2}{\sqrt{2}} \\
& h_{B}=\frac{5}{2 \sqrt{2}}+\frac{5}{2 \sqrt{2}}=\frac{5}{\sqrt{2}} \\
& h_{A}+h_{B}=\frac{2+5}{\sqrt{2}}=\frac{7}{\sqrt{2}} \\
& s_{A B} \stackrel{?}{>} h_{A}+h_{B} \\
& \frac{8}{\sqrt{2}}>\frac{7}{\sqrt{2}}
\end{aligned}
$$

Separating Axis Theorem

