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In Graphics

art 7: Surfaces
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Surface

1 2D set of points, embedded in space E
1 R2Y B
1 Parametric surfaces

Set of all points X E3 such thatX = f(u,V),
U <UpU>V <V,,V>

Plane: 1{,)= S + uD + vD,
Sphere: 1f,V)=(r.coqu).cos(v)r.cogu).sin(v)r.sin(v)),
u <0,2 >v <0, >

+ Implicit surfaces
Set of all points X E3 such thatf(X)=0
Planeax+by+cz+d= 0
Sphere: (35,)% +(y-§))* + (z-s)* &r*= 0
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Parametric surface
1 Two parameters in surfackeinction

+ Similar properties, algorithms like in curve césgutting
one parameter constant leads tsocurve
1 Visualization
Sampling domain using 2D grid points
Computing surface points using sampled points and f

Connecting surface points based on domain grid connections
and forming triangle or quad mesh

Uniform sampling
Adaptivesampling
Raytracing
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Polynomial surface

} fis polynomial function in both parameters

+ Monomial basis
@) B B woL

1 Bezier surface
"@oh) B B wdé 66 U
Square domaii N Tip hoN  Tip
Bernstein basisi  (0) (8 P 0 0
Tensor product surface
Approximation surface
Interpolatingw hw ho  hw
Boundary curves are Bezier curves
Algorithms adopted from curve case
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Polynomial surface

} Bezier triangle
@) B f r @ 6 olblp 6 U
Triangle domaino™ mp N 1P B 0 p
Generalized Bernstein basis:  (6hvh)) 2600
6hh) 8 barycentriccoordinates in domain
Approximation surface of ordeg

Interpolating  hw  hw
Special adaptation of curve algorithn
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Polynomial surface

1 Hermite bicubicsurface
"woh) YO w
Y 6 o0 o6 pB W 0 U p

C ¢ P P
. O O
0 ¢ P
m T p T
p T T -
¥ ¥ U U
- 0 0 0 0 .
L 5 5 5 5
U ¥ U U
0 0 0 0
0 W D h -interpolated corner points
0 h -tangent vectors in corner points
0 - second order derivatives, twists, in corner points

Square domaii ¥ Tip MON  Tip
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Polynomial surface

} Coons surface (patch)
Given four boundary parametric curves
P(6hmM(ohp) M () phd meeting at four corners
@) O ) NGO Qe 0)
n(phw)o nmm(p o)(p v) nEP)(p o)v
n(pmo(p v) n(pip)o v
Squaredomaino ™ Tip hO N Tip

/\_/ \
N
,—-"’f \I'"-\
llll'u
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Spline surface

} Plecewise polynomial in both parametric directions
} Segments are polynomial surfaces with small order
} Expecting order of continuity in both directions
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Bezier spline surface

} Each segment is represented as Bezier surface
+ Usually linear, quadratic or cubic segments

+ Continuity guaranteed by constraints on control points
near boundary

BICUBIC SURFACE TATCHES
Bicubic Beaiev Rtel: & ctvl. pts.
P

/\aldu‘u, a
secone potch [
with G4 continaty,
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Hermite Dbicubic spline surface

}

Given 2D grid of vertex pointso MQ Tipt8 EEMQ mipks8 ha
grid of tangent vectors for vertex points in both directions
w ho NQ T[I1DhB e Q0 T[hprB m , grid of twist vectors for
each vertex pointo  NQ mipHs. e rQ T[hDI’B b two
vectors of knot parameters 0 E oh 0 E
U

Interpolation surface, interpolating each given verexand
maintaining tangent vectors and twistsuat

Interpolation of tangents and twistC! continuity

Each segment is representedHermite cubic surface form

Forov oM N 0O | pick spanQ&uch thatd N
6 o Ny 0h

6 —h™ ——

Compute point onHermite bicubicspline surface usirtdermite
bicubicsurface for cornerso ho  ho  hw and parameters
o~
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Hermite cubic spline surface

} Automatic computation of tangent vectors, knots from
given points and knot parameters

} Automatic computation of knot vectors

} Using approaches frorwurve Hermite cubic splinecase for
each parameter separately

} Twistsd zero vectorso Ferguson surface
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Curved PN triangles
}
1 Given triangular mesh with vertexormals

} Creating surface interpolating vertices of mesh and havin
givennormalsin that vertices

} Plecewise polynomial mesh, creating one Bezier triangle
each triangle of mesh

} Interpolating geometry) cubic Bezier triangle
1 Interpolatingnormalsd quadratic Bezier triangle
} Implemented in hardware

Geometric Modeling in Graphics


https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf
https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf

Curved PN triangles

A 0 ho 0 ho 0
10 (0 0)8

W -0 -0 —0
W -0 -0 —0
A -0 -0 —0
A -0 -0 —0
A -0 -0 —0
A -0 -0 —0
1w -0 -0 -0

10 - - - - - -
1O -0 -V
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B-spline surface

} Compact representation of approximating spline surfaces
} Tensor product surface
+ Input

Polynomial degreeQ hQ

N

2D grid of control pointso MQ 18 FE I
2 vectors ofknot parameterg(o0 o B o )h(U
a e Q ph e Q p
1OYY (o) B B w0 ()0 (V)
1 Rectangle domaio:y 6 D Ny 0
} Using Bspline basis function same as in curve case
+ Similar properties and algorithms as in curve case, treatir
each parameter separately
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B-spline surface
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Surface subdivision algorithms

} Producing extended set of control points without change
In shape of original surface

+ Knot insertion, Boehm algorithm, degree elevation

1 Doo-Sabin subdivision
Corner and edge cutting algorithm
Uniform knot insertion into biquadratic8pline surface
Originally for regular 2D grid of control points extended for
arbitrary meshes, producing polygons of arbitrary size

1 CatmullClark subdivision
Uniform knot insertion intobicubicB-spline surface

Originally for regular 2D grid of control points extended for
arbitrary meshes, producinanly quads
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Surface subdivision algorithms
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NURBS surface

} Non-Uniform Rational Bspline surface
1 Defining weights (real numberg) for each control point

} Embedding Bpline surface into space with additional
dimensiond into projective, homogenous space

w (oo )O0w 0 O O ¢ h
} Evaluation, algorithms in projective space
1 Projection of result point back to affine space
0 & (chddh)° @ —h-h-

() ()
B B () ()

1 Y8 Y'Y (6h))
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NURBS ruled surface

} For each point there is line (segment) passing through th:
point and lying on surface

} Connecting two NURBS curves using line segments

} Compacting both curves to have same degree and same
knot vector 0 linear transformation of parameter, knot
Insertion, degree elevation

} Putting control points of curves into 2D
P Qo p o
1 Knot vector for v direction- TiTipip
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NURBS surface of revolution

} Rotating NURBS curve around line (coordinate axis)
0-direction d given NURBS curve
L-direction d parameters of circular arc as NURBS curve

Control points o rotated control points of given NURBS
curve around given line forming control points for circular
arc as NURBS curve

—_r A
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Implicit  surface

} Setof all pointsw N [ such thatQdw T

Sphere: %+y?>+7%-r°=0
Easy computation if some point is on surface
Defininginterior, exterior, border regions by sign of2
Hard to generate points osurface
"Metaballs", "Blobbies","Saftb | ect s O

—— et md d
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