

Geometric Modeling in Graphics

Part 7: Surfaces

Martin Samuelčik www.sccg.sk/~samuelcik samuelcik@sccg.sk

Surface

- 2D set of points, embedded in space E^{3}
- $\mathrm{f}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathrm{E}^{\mathbf{3}}$
- Parametric surfaces
- Set of all points $X \in E^{3}$ such that $X=f(u, v)$,
$u \in\left\langle u_{0}, u_{1}\right\rangle, v \in\left\langle v_{0}, v_{1}\right\rangle$
- Plane: $f(u, v)=S+u D_{1}+v D_{2}$
- Sphere: $f(u, v)=(r \cdot \cos (u) \cdot \cos (v), r \cdot \cos (u) \cdot \sin (v), r \cdot \sin (v))$,
$u \in<0,2 \pi>, v \in<0, \pi>$
- Implicit surfaces
- Set of all points $X \in E^{3}$ such that $f(X)=0$
- Plane: ax+by+cz+d =0
- Sphere: $\left(x-s_{x}\right)^{2}+\left(y-s_{y}\right)^{2}+\left(z-s_{z}\right)^{2}-r^{2}=0$

Geometric Modeling in Graphics

Parametric surface

- Two parameters in surface function
- Similar properties, algorithms like in curve case - putting one parameter constant leads to isocurve
- Visualization
- Sampling domain using 2D grid points
- Computing surface points using sampled points and f
- Connecting surface points based on domain grid connections and forming triangle or quad mesh
, Uniform sampling
- Adaptive sampling
- Raytracing

Polynomial surface

- f is polynomial function in both parameters
- Monomial basis

$$
f(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} V_{i j} u^{i} v^{j}
$$

- Bezier surface
, $f(u, v)=\sum_{i=0}^{n} \sum_{j=0}^{m} V_{i j} B^{n}{ }_{i}(u) B^{m}{ }_{j}(v)$
- Square domain: $u \in<0,1>, v \in<0,1>$
- Bernstein basis: $B^{n}{ }_{i}(u)=\binom{n}{i}(1-u)^{i} u^{n-i}$
- Tensor product surface
- Approximation surface
- Interpolating $V_{00}, V_{n 0}, V_{0 m}, V_{n m}$
- Boundary curves are Bezier curves
- Algorithms adopted from curve case

Geometric Modeling in Graphics

Polynomial surface

- Bezier triangle
- $f(u, v)=\sum_{i=0, j=0, k=0}^{n} V_{i j k} B_{i j k}(u, v, 1-u-v)$ $i+j+k=n$
- Triangle domain: $u \in<0,1>, v \in<0,1>, u+v \leq 1$
, Generalized Bernstein basis: $B^{n}{ }_{i j k}(u, v, w)=\frac{n!}{i!j!k!} u^{i} v^{j} w^{k}$
- u, v, w - barycentric coordinates in domain
- Approximation surface of order n
- Interpolating $V_{n 00}, V_{0 n 0}, V_{00 n}$
- Special adaptation of curve algorithms

Geometric Modeling in Graphics

Polynomial surface

- Hermite bicubic surface
- $f(u, v)=U H P H^{T} V^{T}$
- $U=\left(\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right), \mathrm{V}=\left(\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right)$
, $H=\left(\begin{array}{cccc}2 & -2 & 1 & 1 \\ -3 & 3 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$
- $P_{00}, P_{10}, P_{01}, P_{11}$ - interpolated corner points

- $P_{i j}{ }^{u}, P_{i j}{ }^{v}$ - tangent vectors in corner points
- $P_{i j}{ }^{u v}$ - second order derivatives, twists, in corner points
- Square domain: $u \in<0,1>, v \in<0,1>$

Geometric Modeling in Graphics

Polynomial surface

- Coons surface (patch)
- Given four boundary parametric curves $\mathrm{p}(u, 0), p(u, 1), p(0, v), p(1, v)$ meeting at four corners
- $f(u, v)=p(u, 0)(1-v)+p(u, 1) w+p(0, v)(1-u)+$ $p(1, v) u-p(0,0)(1-u)(1-v)-p(0,1)(1-u) v-$ $p(1,0) u(1-v)-p(1,1) u v$
- Square domain: $u \in<0,1>, v \in<0,1>$

Spline surface

- Piecewise polynomial in both parametric directions
- Segments are polynomial surfaces with small order
- Expecting order of continuity in both directions

Geometric Modeling in Graphics

Bezier spline surface

- Each segment is represented as Bezier surface
- Usually linear, quadratic or cubic segments
- Continuity guaranteed by constraints on control points near boundary

Geometric Modeling in Graphics

Hermite bicubic spline surface

- Given 2D grid of vertex points $V_{i j} ; i=0,1, \ldots, n ; j=0,1, \ldots, m$, grid of tangent vectors for vertex points in both directions $V_{i j}{ }^{u}, V_{i j}{ }^{v} ; i=0,1, \ldots, n ; j=0,1, \ldots, m$, grid of twist vectors for each vertex point $V_{i j}{ }^{u v} ; i=0,1, \ldots, n ; j=0,1, \ldots, m$ two vectors of knot parameters $u_{0}<u_{1}<\cdots<u_{n}, v_{0}<v_{1}<\cdots<$ v_{m}
- Interpolation surface, interpolating each given vertex $V_{i j}$ and maintaining tangent vectors and twists at $V_{i j}$
- Interpolation of tangents and twists - C^{1} continuity
- Each segment is represented in Hermite cubic surface form
, For $u \in<u_{0}, u_{n}>, v \in<v_{0}, v_{m}>$, pick span $k l$ such that $u \in<$ $u_{k}, u_{k+1}>, v \in<v_{l}, v_{l+1}>$
, $\bar{u}=\frac{u-u_{k}}{u_{k+1}-u_{k}}, \bar{v}=\frac{v-v_{l}}{v_{l+1}-v_{l}}$
- Compute point on Hermite bicubic spline surface using Hermite bicubic surface for corners $V_{k l}, V_{k+1 l}, V_{k l+1}, V_{k+1 l+1}$ and parameters \bar{u}, \bar{v}

Geometric Modeling in Graphics

Hermite cubic spline surface

- Automatic computation of tangent vectors, knots from given points and knot parameters
- Automatic computation of knot vectors
- Using approaches from curve Hermite cubic spline case for each parameter separately
- Twists - zero vectors - Ferguson surface

Curved PN triangles

- https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf
- Given triangular mesh with vertex normals
- Creating surface interpolating vertices of mesh and having given normals in that vertices
- Piecewise polynomial mesh, creating one Bezier triangle for each triangle of mesh
- Interpolating geometry - cubic Bezier triangle
- Interpolating normals - quadratic Bezier triangle
- Implemented in hardware

Geometric Modeling in Graphics

Curved PN triangles

- $b_{300}=P_{1}, b_{030}=P_{2}, b_{003}=P_{3}$
- $w_{i j}=\left(P_{j}-P_{i}\right) . N_{i}$
- $b_{210}=\frac{2}{3} P_{1}+\frac{1}{3} P_{2}-\frac{w_{12}}{3} N_{1}$

- $b_{120}=\frac{2}{3} P_{2}+\frac{1}{3} P_{1}-\frac{w_{21}}{3} N_{2}$
- $b_{021}=\frac{2}{3} P_{2}+\frac{1}{3} P_{3}-\frac{w_{23}}{3} N_{2}$
- $b_{012}=\frac{2}{3} P_{3}+\frac{1}{3} P_{2}-\frac{w_{32}}{3} N_{3}$
- $b_{102}=\frac{2}{3} P_{3}+\frac{1}{3} P_{1}-\frac{w_{31}}{3} N_{3}$
- $b_{201}=\frac{2}{3} P_{1}+\frac{1}{3} P_{3}-\frac{w_{13}}{3} N_{1}$
- $V=\frac{1}{3} P_{1}+\frac{1}{3} P_{2}+\frac{1}{3} P_{3}$

- $E=\frac{1}{6} b_{210}+\frac{1}{6} b_{120}+\frac{1}{6} b_{021}+\frac{1}{6} b_{012}+\frac{1}{6} b_{102}+\frac{1}{6} b_{201}$
- $b_{111}=\frac{3}{2} E-\frac{1}{2} \mathrm{~V}$

Geometric Modeling in Graphics

B-spline surface

- Compact representation of approximating spline surfaces
- Tensor product surface
- Input
- Polynomial degrees d_{u}, d_{v}
- 2D grid of control points $V_{i j} ; i=0, \ldots, n_{u} ; j=0, \ldots, n_{v}$
- 2 vectors of knot parameters $\left(u_{0}, u_{1}, \ldots, u_{m_{u}}\right),\left(v_{0}, v_{1}, \ldots, v_{m_{v}}\right)$

1) $m_{u}=n_{u}+d_{u}+1, m_{v}=n_{v}+d_{v}+1$

- $B S S^{d_{u} d_{v}}(u, v)=\sum_{i=0}^{n_{u}} \sum_{j=0}^{n_{v}} V_{i j} N^{d_{u}}{ }_{i}(u) N^{d_{v}}{ }_{j}(v)$
- Rectangle domain: $\left.\left.u \in<u_{d_{u}}, u_{n_{u}+1}\right), v \in<v_{d_{v}}, v_{n_{v}+1}\right)$
- Using B-spline basis function same as in curve case
- Similar properties and algorithms as in curve case, treating each parameter separately

Geometric Modeling in Graphics

B-spline surface

Geometric Modeling in Graphics

Surface subdivision algorithms

- Producing extended set of control points without change in shape of original surface
- Knot insertion, Boehm algorithm, degree elevation
- Doo-Sabin subdivision
, Corner and edge cutting algorithm
- Uniform knot insertion into biquadratic B-spline surface
- Originally for regular 2D grid of control points extended for arbitrary meshes, producing polygons of arbitrary size
- Catmull-Clark subdivision
- Uniform knot insertion into bicubic B-spline surface
- Originally for regular 2D grid of control points extended for arbitrary meshes, producing only quads

Geometric Modeling in Graphics

Surface subdivision algorithms

Geometric Modeling in Graphics

NURBS surface

- Non-Uniform Rational B-spline surface
- Defining weights (real numbers) $w_{i j}$ for each control point
- Embedding B-spline surface into space with additional dimension - into projective, homogenous space

$$
V_{i j}=\left(x_{i j}, y_{i j}, z_{i j}\right) \rightarrow P V_{i j}=\left(w_{i j} x_{i j}, w_{i j} y_{i j}, w_{i j} z_{i j}, w_{i j}\right)
$$

- Evaluation, algorithms in projective space
- Projection of result point back to affine space
- $P X=(x, y, z, w) \rightarrow X=\left(\frac{x}{w}, \frac{y}{w}, \frac{z}{w}\right)$
$\Rightarrow \operatorname{RBSS}^{d_{u} d_{v}}(u, v)=\frac{\sum_{i=0}^{n_{u}} \sum_{j=0}^{n_{v}} w_{i j} v_{i j} N^{d_{u}}(u) N^{d_{v}}{ }_{j}(v)}{\sum_{i=0}^{n_{u}} \sum_{j=0}^{n_{v}} w_{i j} N^{d_{u}}{ }_{i}(u) N^{d_{v}}{ }_{j}(v)}$

NURBS ruled surface

- For each point there is line (segment) passing through that point and lying on surface
- Connecting two NURBS curves using line segments
- Compacting both curves to have same degree and same knot vector - linear transformation of parameter, knot insertion, degree elevation
- Putting control points of curves into 2D
- $d_{v}=1$
- Knot vector for v direction - $(0,0,1,1)$

Geometric Modeling in Graphics

NURBS surface of revolution

- Rotating NURBS curve around line (coordinate axis)
- u-direction - given NURBS curve
- v-direction - parameters of circular arc as NURBS curve
- Control points - rotated control points of given NURBS curve around given line forming control points for circular arc as NURBS curve

Geometric Modeling in Graphics

Implicit surface

- Set of all points $X \in E^{3}$ such that $f(X)=0$
- Sphere: $x^{2}+y^{2}+z^{2}-r^{2}=0$
- Easy computation if some point is on surface
- Defining interior, exterior, border regions by sign of f
- Hard to generate points on surface
- "Metaballs", "Blobbies", "Soft objects"
- Smooth

Geometric Modeling in Graphics

Implicit surface

- Generation from primitives (points, lines, \ldots) $-P_{1}, P_{2}, \ldots, P_{n}$
- Simulating energy field around primitives
- $D_{i}(X)$ - Distance of point X and primitive P_{i}
- $f(X)=\sum_{i=0}^{n} B\left(D_{i}(X)\right)-\mathrm{F}$
- F - isovalue, field strength
- Blobby molecules
, $B(r)=a e^{-b r^{2}}, B(r)=\frac{a}{r^{2}}$
- Metaballs

$$
\begin{aligned}
& B(r)=a\left(1-\frac{3 r^{2}}{b^{2}}\right) \text { for } 0 \leq r \leq \frac{b}{3} \\
& B(r)=\frac{3 a}{2}\left(1-\frac{b}{b}\right)^{2} \text { for } \frac{b}{3} \leq r \leq b \\
& B(r)=0 \text { for } b \leq r
\end{aligned}
$$

Two point primitives, varying isovalue F

- Soft Objects
- $B(r)=a\left(1-\frac{4 r^{6}}{9 b^{6}}+\frac{17 r^{4}}{9 b^{4}}-\frac{22 r^{2}}{9 b^{2}}\right)$ for $0 \leq r \leq b$
- $B(r)=0$ for $b \leq r$

Geometric Modeling in Graphics

Implicit surface

- Boolean operations on two objects represented as implicit surfaces with functions f_{A}, f_{B}
- Union

$$
\begin{aligned}
\quad f_{A \cup B}(X) & =\min \left(f_{A}(X), f_{B}(X)\right) \\
f_{A \cup B}(X) & =-e^{-b f_{A}(X)}-e^{-b f_{A}(X)}+1
\end{aligned}
$$

- Intersection

$$
\begin{aligned}
f_{A \cap B}(X) & =\max \left(f_{A}(X), f_{B}(X)\right) \\
f_{A \cap B}(X) & =-e^{-b f_{A}(X)}+e^{-b f_{A}(X)}+1
\end{aligned}
$$

- Difference

$$
\begin{aligned}
f_{A-B}(X) & =\max \left(f_{A}(X),-f_{B}(X)\right) \\
f_{A-B}(X) & =e^{b f_{A}(X)}+e^{b f_{A}(X)}+1
\end{aligned}
$$

Implicit surface

- Smooth approximation of several implicit surfaces

$$
f(X)=f_{1}(X) \cdot f_{2}(X) \ldots f_{n}(X)-C
$$

- Morphing, metamorphosis of two surfaces

$$
f(X)=(1-\mu) f_{1}(X)+\mu f_{2}(X), \mu \in<0,1>
$$

Geometric Modeling in Graphics

Implicit surface

- Visualization algorithms
- http://dl.acm.org/citation.cfm?id=2732|97
- Points generation
- Distributing particles over implicit surface
- Spatial decomposition
- Sampling implicit function in finite uniform grid points
- Generating surface triangles for each cell separately
- Marching cubes, marching tetrahedra
- Surface tracing
- Creating triangles by tracing surface from starting point
- Marching triangles
- Ray-tracing
- Simulating rays from eye through screen into scene
- Each ray given in parametric form $X=S+t D, t \in \boldsymbol{R}$
- Finding intersection of ray and surface
- Solving $f(S+t D)=0$ directly or using numerical methods (Newton..)

Geometric Modeling in Graphics

Implicit surface

Geometric Modeling in Graphics

Differential geometry

- Parametric surface
- Tangent vectors $-T_{u}=\frac{\partial f(u, v)}{\partial u}, T_{v}=\frac{\partial f(u, v)}{\partial v}$
- Normal vector $-\mathrm{N}=T_{u} x T_{v}$
- Curvature is based on curve case
- For each direction from tangent plane \rightarrow perpendicular plane to surface \rightarrow intersection curve \rightarrow curvature
- Principal curvatures $=\min$, max curvatures k_{1}, k_{2}
, Mean curvature - $H=\frac{k_{1}+k_{2}}{2}$, Gaussian curvature - $K=k_{1} \cdot k_{2}$
- Implicit surface
, Gradient, normal vector $-\nabla \mathrm{f}=\mathrm{N}=\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)=\left(f_{x}, f_{y}, f_{z}\right)$
- Surface is regular at point if gradient is not zero vector
- Curvatures determined from parametric case

Geometric Modeling in Graphics

The End for today

