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Part 7: Surfaces 



Surface 

 2D set of points, embedded in space E3 

 f: R2 → E3 

 Parametric surfaces 

 Set of all points X ϵ E3 such that X = f(u,v),                              

u ϵ <u0,u1>, v ϵ <v0,v1> 

 Plane: f(u,v)= S + uD1 + vD2 

 Sphere: f(u,v)=(r.cos(u).cos(v), r.cos(u).sin(v), r.sin(v)),                

u ϵ <0,2π>, v ϵ <0, π> 

 Implicit surfaces 

 Set of all points X ϵ E3 such that f(X)=0 

 Plane: ax+by+cz+d = 0 

 Sphere: (x-sx)
2 +(y-sy)

2 + (z-sz)
2 –r2 = 0 
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Parametric surface 
 Two parameters in surface function 

 Similar properties, algorithms like in curve case – putting 

one parameter constant leads to isocurve 

 Visualization 

 Sampling domain using 2D grid points 

 Computing surface points using sampled points and f 

 Connecting surface points based on domain grid connections  

and forming triangle or quad mesh 

 Uniform sampling 

 Adaptive sampling 

 Raytracing 
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Polynomial surface 

 f is polynomial function in both parameters 

 Monomial basis 

 𝑓 𝑢, 𝑣 =   𝑉𝑖𝑗𝑢
𝑖𝑣𝑗𝑚

𝑗=0
𝑛
𝑖=0  

 Bezier surface 

 𝑓 𝑢, 𝑣 =   𝑉𝑖𝑗𝐵
𝑛
𝑖(𝑢)𝐵

𝑚
𝑗(𝑣)

𝑚
𝑗=0

𝑛
𝑖=0  

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 

 Bernstein basis: 𝐵𝑛
𝑖 𝑢 =

𝑛
𝑖

(1 − 𝑢)𝑖𝑢𝑛−𝑖 

 Tensor product surface 

 Approximation surface 

 Interpolating 𝑉00, 𝑉𝑛0, 𝑉0𝑚, 𝑉𝑛𝑚 

 Boundary curves are Bezier curves 

 Algorithms adopted from curve case 
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Polynomial surface 

 Bezier triangle 

 𝑓 𝑢, 𝑣 =  𝑉𝑖𝑗𝑘𝐵
𝑛
𝑖𝑗𝑘(𝑢, 𝑣, 1 − 𝑢 − 𝑣)𝑛

𝑖=0,𝑗=0,𝑘=0
𝑖+𝑗+𝑘=𝑛

 

 Triangle domain:  𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 >, 𝑢 + 𝑣 ≤ 1 

 Generalized Bernstein basis:  𝐵𝑛
𝑖𝑗𝑘 𝑢, 𝑣, 𝑤 =

𝑛!

𝑖!𝑗!𝑘!
𝑢𝑖𝑣𝑗𝑤𝑘 

 𝑢, 𝑣, 𝑤 – barycentric coordinates in domain 

 Approximation surface of order 𝑛 

 Interpolating 𝑉𝑛00, 𝑉0𝑛0, 𝑉00𝑛 

 Special adaptation of curve algorithms 
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Polynomial surface 

 Hermite bicubic surface 

 𝑓 𝑢, 𝑣 = 𝑈𝐻𝑃𝐻𝑇𝑉𝑇 

 𝑈 = 𝑢3 𝑢2 𝑢 1 , V = 𝑣3 𝑣2 𝑣 1  

 𝐻 =

2 −2 1 1
−3 3 −2 1
0 0 1 0
1 0 0 0

 

 𝑃 =

𝑃00 𝑃01 𝑃00
𝑣 𝑃01

𝑣

𝑃10 𝑃11 𝑃10
𝑣 𝑃11

𝑣

𝑃00
𝑢 𝑃01

𝑢 𝑃00
𝑢𝑣 𝑃01

𝑢𝑣

𝑃10
𝑢 𝑃11

𝑢 𝑃10
𝑢𝑣 𝑃11

𝑢𝑣

 

 𝑃00, 𝑃10, 𝑃01, 𝑃11- interpolated corner points 

 𝑃𝑖𝑗
𝑢, 𝑃𝑖𝑗

𝑣- tangent vectors in corner points 

 𝑃𝑖𝑗
𝑢𝑣- second order derivatives, twists, in corner points 

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 
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Polynomial surface 

 Coons surface (patch) 

 Given four boundary parametric curves 

p 𝑢, 0 , 𝑝 𝑢, 1 , 𝑝 0, 𝑣 , 𝑝(1, 𝑣) meeting at four corners  

 𝑓 𝑢, 𝑣 = 𝑝 𝑢, 0 1 − 𝑣 + 𝑝 𝑢, 1 𝑤 + 𝑝 0, 𝑣 1 − 𝑢 +
𝑝 1, 𝑣 𝑢 − 𝑝 0,0 1 − 𝑢 1 − 𝑣 − 𝑝 0,1 1 − 𝑢 𝑣 −
𝑝 1,0 𝑢 1 − 𝑣 − 𝑝 1,1 𝑢𝑣 

 Square domain: 𝑢 ∈< 0,1 >, 𝑣 ∈< 0,1 > 
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Spline surface 

 Piecewise polynomial in both parametric directions  

 Segments are polynomial surfaces with small order 

 Expecting order of continuity in both directions 
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Bezier spline surface 
 Each segment is represented as Bezier surface 

 Usually linear, quadratic or cubic segments 

 Continuity guaranteed by constraints on control points 

near boundary 
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Hermite bicubic spline surface 
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 Given 2D grid of vertex points 𝑉𝑖𝑗; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚, 
grid of tangent vectors for vertex points in both directions 
𝑉𝑖𝑗

𝑢, 𝑉𝑖𝑗
𝑣; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚, grid of twist vectors for 

each vertex point 𝑉𝑖𝑗
𝑢𝑣; 𝑖 = 0,1,… , 𝑛; 𝑗 = 0,1,… ,𝑚 two 

vectors of knot parameters 𝑢0 < 𝑢1 < ⋯ < 𝑢𝑛, 𝑣0 < 𝑣1 < ⋯ <
𝑣𝑚 

 Interpolation surface, interpolating each given vertex 𝑉𝑖𝑗 and 
maintaining tangent vectors and twists at 𝑉𝑖𝑗  

 Interpolation of tangents and twists - C1 continuity 

 Each segment is represented in Hermite cubic surface form 
 For 𝑢 ∈< 𝑢0, 𝑢𝑛 >, 𝑣 ∈< 𝑣0, 𝑣𝑚 >, pick span 𝑘𝑙 such that 𝑢 ∈<

𝑢𝑘 , 𝑢𝑘+1 >, 𝑣 ∈< 𝑣𝑙 , 𝑣𝑙+1 > 

 𝑢 =
𝑢−𝑢𝑘

𝑢𝑘+1−𝑢𝑘
, 𝑣 =

𝑣−𝑣𝑙

𝑣𝑙+1−𝑣𝑙
 

 Compute point on Hermite bicubic spline surface using Hermite 
bicubic surface for corners 𝑉𝑘𝑙 , 𝑉𝑘+1𝑙 , 𝑉𝑘𝑙+1, 𝑉𝑘+1𝑙+1 and parameters 
𝑢 , 𝑣  



Hermite cubic spline surface 
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 Automatic computation of tangent vectors, knots from 

given points and knot parameters 

 Automatic computation of knot vectors 

 Using approaches from curve Hermite cubic spline case for 

each parameter separately 

 Twists – zero vectors – Ferguson surface 



Curved PN triangles 

Geometric Modeling in Graphics 

 https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf 

 Given triangular mesh with vertex normals 

 Creating surface interpolating vertices of mesh and having 
given normals in that vertices 

 Piecewise polynomial mesh, creating one Bezier triangle for 
each triangle of mesh 

 Interpolating geometry – cubic Bezier triangle 

 Interpolating normals – quadratic Bezier triangle 

 Implemented in hardware 

https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf
https://www.cise.ufl.edu/research/SurfLab/papers/00ati.pdf


Curved PN triangles 
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 𝑏300 = 𝑃1, 𝑏030 = 𝑃2, 𝑏003 = 𝑃3 

 𝑤𝑖𝑗 = 𝑃𝑗 − 𝑃𝑖 . 𝑁𝑖 

 𝑏210 =
2

3
𝑃1 +

1

3
𝑃2 −

𝑤12

3
𝑁1 

 𝑏120 =
2

3
𝑃2 +

1

3
𝑃1 −

𝑤21

3
𝑁2 

 𝑏021 =
2

3
𝑃2 +

1

3
𝑃3 −

𝑤23

3
𝑁2 

 𝑏012 =
2

3
𝑃3 +

1

3
𝑃2 −

𝑤32

3
𝑁3 

 𝑏102 =
2

3
𝑃3 +

1

3
𝑃1 −

𝑤31

3
𝑁3 

 𝑏201 =
2

3
𝑃1 +

1

3
𝑃3 −

𝑤13

3
𝑁1 

 𝑉 =
1

3
𝑃1 +

1

3
𝑃2 +

1

3
𝑃3 

 𝐸 =
1

6
𝑏210 +

1

6
𝑏120 +

1

6
𝑏021 +

1

6
𝑏012 +

1

6
𝑏102 +

1

6
𝑏201 

 𝑏111 =
3

2
𝐸 −

1

2
V 

 



B-spline surface 
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 Compact representation of approximating spline surfaces 

 Tensor product surface 

 Input 

 Polynomial degrees 𝑑𝑢, 𝑑𝑣 

 2D grid of control points𝑉𝑖𝑗; 𝑖 = 0, … , 𝑛𝑢; 𝑗 = 0, … , 𝑛𝑣  

 2 vectors of knot parameters 𝑢0, 𝑢1, … , 𝑢𝑚𝑢
, 𝑣0, 𝑣1, … , 𝑣𝑚𝑣

  

 𝑚𝑢 = 𝑛𝑢 + 𝑑𝑢 + 1,𝑚𝑣 = 𝑛𝑣 + 𝑑𝑣 + 1 

 𝐵𝑆𝑆𝑑𝑢𝑑𝑣 𝑢, 𝑣 =   𝑉𝑖𝑗𝑁
𝑑𝑢

𝑖 𝑢 𝑁𝑑𝑣
𝑗 𝑣

𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0  

 Rectangle domain: 𝑢 ∈< 𝑢𝑑𝑢
, 𝑢𝑛𝑢+1), 𝑣 ∈< 𝑣𝑑𝑣

, 𝑣𝑛𝑣+1) 

 Using B-spline basis function same as in curve case 

 Similar properties and algorithms as in curve case, treating 
each parameter separately 

 

 



B-spline surface 

Geometric Modeling in Graphics 



Surface subdivision algorithms 
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 Producing extended set of control points without change 
in shape of original surface 

 Knot insertion, Boehm algorithm, degree elevation 

 Doo-Sabin subdivision 

 Corner and edge cutting algorithm 

 Uniform knot insertion into biquadratic B-spline surface 

 Originally for regular 2D grid of control points extended for 
arbitrary meshes, producing polygons of arbitrary size 

 Catmull-Clark subdivision 

 Uniform knot insertion into bicubic B-spline surface 

 Originally for regular 2D grid of control points extended for 
arbitrary meshes, producing only quads 

 



Surface subdivision algorithms 
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NURBS surface 
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 Non-Uniform Rational B-spline surface 

 Defining weights (real numbers) 𝑤𝑖𝑗 for each control point 

 Embedding B-spline surface into space with additional 
dimension – into projective, homogenous space 

 𝑉𝑖𝑗 = 𝑥𝑖𝑗 , 𝑦𝑖𝑗 , 𝑧𝑖𝑗 → 𝑃𝑉𝑖𝑗 = (𝑤𝑖𝑗𝑥𝑖𝑗 , 𝑤𝑖𝑗𝑦𝑖𝑗 , 𝑤𝑖𝑗𝑧𝑖𝑗 , 𝑤𝑖𝑗) 

 Evaluation, algorithms in projective space 

 Projection of result point back to affine space 

 𝑃𝑋 = 𝑥, 𝑦, 𝑧, 𝑤 → 𝑋 = (
𝑥

𝑤
,
𝑦

𝑤
,
𝑧

𝑤
) 

 𝑅𝐵𝑆𝑆𝑑𝑢𝑑𝑣 𝑢, 𝑣 =
  𝑤𝑖𝑗𝑉𝑖𝑗𝑁

𝑑𝑢
𝑖 𝑢 𝑁𝑑𝑣

𝑗 𝑣
𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0

  𝑤𝑖𝑗𝑁
𝑑𝑢

𝑖 𝑢 𝑁𝑑𝑣
𝑗 𝑣

𝑛𝑣
𝑗=0

𝑛𝑢
𝑖=0

 

 
 



NURBS ruled surface 
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 For each point there is line (segment) passing through that 
point and lying on surface 

 Connecting two NURBS curves using line segments 

 Compacting both curves to have same degree and same 
knot vector – linear transformation of parameter, knot 
insertion, degree elevation 

 Putting control points of curves into 2D 

 𝑑𝑣 = 1 

 Knot vector for 𝑣 direction - (0,0,1,1) 



NURBS surface of revolution 
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 Rotating NURBS curve around line (coordinate axis) 

 𝑢-direction – given NURBS curve 

 𝑣-direction – parameters of circular arc as NURBS curve 

 Control points – rotated control points of given NURBS 
curve around given line forming control points for circular 
arc as NURBS curve 



Implicit surface 
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 Set of all points 𝑋 ∈ 𝑬𝟑 such that 𝑓(𝑋) = 0 

 Sphere: x2+y2+z2-r2=0 

 Easy computation if some point is on surface 

 Defining interior, exterior, border regions by sign of 𝑓 

 Hard to generate points on surface 

 "Metaballs", "Blobbies", "Soft objects“ 

 Smooth 



Implicit surface 
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 Generation from primitives (points, lines, …)-𝑃1, 𝑃2, … , 𝑃𝑛 
 Simulating energy field around primitives 
 𝐷𝑖 𝑋  - Distance of point 𝑋 and primitive 𝑃𝑖  

 𝑓 𝑋 =  𝐵(𝐷𝑖 𝑋 )𝑛
𝑖=0 − F 

 F – isovalue, field strength 
 Blobby molecules 

 𝐵 𝑟 = 𝑎𝑒−𝑏𝑟2
, 𝐵 𝑟 =

𝑎

𝑟2 

 Metaballs 

 𝐵 𝑟 = 𝑎(1 −
3𝑟2

𝑏2 ) for 0 ≤ 𝑟 ≤
𝑏

3
 

 𝐵 𝑟 =
3𝑎

2
(1 −

𝑟

𝑏
)2 for 

𝑏

3
≤ 𝑟 ≤ 𝑏 

 𝐵 𝑟 = 0 for 𝑏 ≤ 𝑟 

 Soft Objects 

 𝐵 𝑟 = 𝑎(1 −
4𝑟6

9𝑏6 +
17𝑟4

9𝑏4 −
22𝑟2

9𝑏2 ) for 0 ≤ 𝑟 ≤ 𝑏 

 𝐵 𝑟 = 0 for 𝑏 ≤ 𝑟 

 
 
 
 
 

Two point primitives, varying isovalue F 



Implicit surface 
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 Boolean operations on two objects represented as implicit 
surfaces with functions 𝑓𝐴, 𝑓𝐵 

 Union 

 𝑓𝐴∪𝐵 𝑋 = min (𝑓𝐴(𝑋), 𝑓𝐵(𝑋)) 

 𝑓𝐴∪𝐵 𝑋 = −𝑒−𝑏𝑓𝐴 𝑋 − 𝑒−𝑏𝑓𝐴 𝑋 + 1 

 Intersection 

 𝑓𝐴∩𝐵 𝑋 = max (𝑓𝐴(𝑋), 𝑓𝐵(𝑋)) 

 𝑓𝐴∩𝐵 𝑋 = −𝑒−𝑏𝑓𝐴 𝑋 + 𝑒−𝑏𝑓𝐴 𝑋 + 1 

 Difference 

 𝑓𝐴−𝐵 𝑋 = max (𝑓𝐴(𝑋),−𝑓𝐵(𝑋)) 

 𝑓𝐴−𝐵 𝑋 = 𝑒𝑏𝑓𝐴 𝑋 + 𝑒𝑏𝑓𝐴 𝑋 + 1 

 

 

 



Implicit surface 
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 Smooth approximation of several implicit surfaces 

 𝑓 𝑋 = 𝑓1 𝑋 . 𝑓2 𝑋 …𝑓𝑛 𝑋 − 𝐶 

 Morphing, metamorphosis of two surfaces 

 𝑓 𝑋 = (1 − 𝜇)𝑓1 𝑋 + 𝜇𝑓2 𝑋 , 𝜇 ∈< 0,1 > 

 

 



Implicit surface 
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 Visualization algorithms 
 http://dl.acm.org/citation.cfm?id=2732197 
 Points generation 

 Distributing particles over implicit surface 

 Spatial decomposition 
 Sampling implicit function in finite uniform grid points 
 Generating surface triangles for each cell separately 
 Marching cubes, marching tetrahedra 

 Surface tracing 
 Creating triangles by tracing surface from starting point 
 Marching triangles 

 Ray-tracing 
 Simulating rays from eye through screen into scene 
 Each ray given in parametric form 𝑋 = 𝑆 + 𝑡𝐷, 𝑡 ∈ 𝑹 
 Finding intersection of ray and surface 
 Solving 𝑓 𝑆 + 𝑡𝐷 = 0 directly or using numerical methods 

(Newton..) 

 

http://dl.acm.org/citation.cfm?id=2732197
http://dl.acm.org/citation.cfm?id=2732197


Implicit surface 
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Differential geometry 
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 Parametric surface 

 Tangent vectors – 𝑇𝑢 =
𝜕𝑓 𝑢,𝑣

𝜕𝑢
, 𝑇𝑣 =

𝜕𝑓 𝑢,𝑣

𝜕𝑣
 

 Normal vector – N = 𝑇𝑢𝑥𝑇𝑣 

 Curvature is based on curve case 

 For each direction from tangent plane → perpendicular plane to 
surface → intersection curve → curvature 

 Principal curvatures = min, max curvatures 𝑘1, 𝑘2 

 Mean curvature - 𝐻 =
𝑘1+𝑘2

2
, Gaussian curvature - 𝐾 = 𝑘1. 𝑘2 

 Implicit surface 

 Gradient, normal vector - 𝛻f = N =
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦
,
𝜕𝑓

𝜕𝑧
= (𝑓𝑥, 𝑓𝑦, 𝑓𝑧) 

 Surface is regular at point if gradient is not zero vector 

 Curvatures determined from parametric case 



The End 
for today 
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