Lecture 1: First-Order Logic 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

25 Sep 2012

FOL: Syntax

Definition (Alphabet)

An alphabet contains

- Set of variables $V = \{x, y, z, \dots\}$
- Set of function symbols $F = \{f, g, h, \dots\}$
- Set of predicate symbols $P = \{p, q, r, ...\}$
- Logical connectives $\neg, \lor, \land, \rightarrow, \leftrightarrow$
- Quantifiers∀ ∃
- Auxiliary symbols() .

Definition (Arity)

Given an alphabet with function symbols F and predicate symbols P, arity is any function arity: $F \cup P \mapsto \mathbb{N}_0$.

Note:

- Arity specifies how many "arguments" each function and predicate required.
- Functions (predicates) of arity 0, 1, 2, 3, and so on are called: nullary, unary, binary, ternary, etc.
- Nullary predicates are also called logical constants propositional variables.
- Nullary functions are also called constant terms constants.

Definition (Term)

Given an alphabet and an arity function, a term is any of the following:

- a variable;
- a constant;
- an expression $f(t_1, ..., t_n)$ if f is a function symbol with arity n and $t_1, ..., t_n$ are terms.

Definition (Atom)

Given an alphabet and an arity function, an atom is an expression $p(t_1, \ldots, t_n)$ where p is a predicate symbol with arity n and t_1, \ldots, t_n are terms.

Definition (Formulae)

Given an alphabet and an arity function, a formula is any expression of the following forms:

where Φ, Ψ are formulae, and x is a variable.

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set \mathcal{L} of all formulae.

Note: from now on we will always assume some fixed FOL language $\mathcal L$ over some alphabet with the respective arity function.

Definition (Ground expressions)

A term, atom, or a formula is ground if it does not contain any variables.

Definition (Free vs. bounded variable occurrence)

An occurrence of some variable x in a formula Φ is free if it is not preceded by $(\exists x)$ nor by $(\forall x)$. The occurrence is bounded otherwise.

Definition (Closed formulae)

A formula Φ is closed if it does not contain any free occurrence of any variable.

Note: from now on we will assume that all formulae are closed.

Definition (Theory)

A first order theory (or just theory) T is a finite set of (closed) formulae.

Note: we will look at theories as knowledge bases: a theory T is a set of formulae that describes some situation or some problem.

Example

Let us assume the following situation: Jack killed John. If someone killed somebody else, he is a murderer. Murderers go to jail. We may encode this in FOL theory T:

$$\begin{aligned} & \mathsf{Killed}(\mathsf{Jack},\mathsf{John}) \\ (\forall \mathsf{x})((\exists \mathsf{y})\mathsf{Killed}(\mathsf{x},\mathsf{y}) &\to \mathsf{Murderer}(\mathsf{x})) \\ (\forall \mathsf{x})(\mathsf{Murderer}(\mathsf{x}) &\to \mathsf{Jail}(\mathsf{x})) \end{aligned}$$

FOL: Semantics

Definition (First order interpretations)

An structure interpretation is a pair $\mathcal{D} \mathcal{I} = (D, I)$ where

- D, called domain, is a nonempty set;
- I is an interpretation interpretation function s.t.:
 - I(f) is a function $f^I: D^{arity(f)} \to D$;
 - I(t) is $t^l = f^l(t_1^l, \dots, t_n^l)$ for any ground term of the form $t = f(t_1, \dots, t_n)$;
 - I(p) is a relation $p^I \subseteq D^{arity(p)}$.

Note: $D^0 = \{\emptyset\}$, hence there are two possible interpretations of each propositional variable p: either $p^l = \{\emptyset\}$ (i.e., p is true) or $p^l = \emptyset$ (i.e., p is false).

Note: similarly for a constant $c: c^I: D^0 \to D$, i.e., each constant term is interpreted by a constant function which returns one of the elements of D.

FOL: Semantics (cont.)

Definition (Interpretation extension)

An extension of an interpretation $\mathcal{I} = (D, I)$ w.r.t. a variable x is an interpretation $\mathcal{I}' = (D, I')$ where I' is identical to I except for in addition I'(x) = d for some element $d \in D$.

FOL: Semantics (cont.)

Definition (Satisfaction \models)

A formula Π is satisfied w.r.t. an interpretation $\mathcal I$ (denoted by $\mathcal I \models \Phi$) based type of Π :

$$\rho(t_{1}, \ldots, t_{n}): \mathcal{I} \models \rho(t_{1}, \ldots, t_{n}) \text{ iff } (t_{1}^{I}, \ldots, t_{n}^{I}) \in \rho^{I}; \\
\neg \Phi: \mathcal{I} \models \neg \Phi \text{ iff } \mathcal{I} \not\models \Phi; \\
\Phi \land \Psi: \mathcal{I} \models (\Phi \land \Psi) \text{ iff } \mathcal{I} \models \Phi \text{ and } \mathcal{I} \models \Psi; \\
\text{if } \Phi \lor \Psi: \mathcal{I} \models (\Phi \lor \Psi) \text{ iff } \mathcal{I} \models \Phi \text{ or } \mathcal{I} \models \Psi; \\
\Phi \rightarrow \Psi: \mathcal{I} \models (\Phi \rightarrow \Psi) \text{ iff } \mathcal{I} \not\models \Phi \text{ or } \mathcal{I} \models \Psi; \\
\Phi \leftrightarrow \Psi: \mathcal{I} \models (\Phi \leftrightarrow \Psi) \text{ iff } (\mathcal{I} \models \Phi \text{ iff } \mathcal{I} \models \Psi); \\
(\exists x) \Phi: \mathcal{I} \models (\exists x) \Phi \text{ iff } \mathcal{D}' \models \Phi \text{ for some ext. } \mathcal{I}' \text{ of } \mathcal{I} \text{ w.r.t. } x; \\
(\forall x) \Phi: \mathcal{I} \models (\forall x) \Phi \text{ iff } \mathcal{D}' \models \Phi \text{ for all ext. } \mathcal{I}' \text{ of } \mathcal{I} \text{ w.r.t. } x;$$

where Φ, Ψ are any formulae and $p(t_1, \ldots, t_n)$ is any ground atom.

Semantics (cont.)

Definition (Model)

An interpretation \mathcal{I} is a model of Φ if $\mathcal{I} \models \Phi$; \mathcal{I} is a model of a theory \mathcal{T} (denoted $\mathcal{I} \models \mathcal{T}$) if $\mathcal{I} \models \Phi$ for all $\Phi \in \mathcal{T}$.

Definition (Satisfiability)

A formula (or theory) is satisfiable, if it has a model.

Semantics (cont.)

Definition (Entailment)

A theory T entails a formula Φ (denoted $T \models \Phi$) if for each model \mathcal{I} of T we have $\mathcal{I} \models \Phi$.

Is there a model of our theory T? T was:

$$\begin{aligned} & \mathsf{Killed}(\mathsf{Jack},\mathsf{John}) \\ (\forall \mathsf{x})((\exists \mathsf{y})\mathsf{Killed}(\mathsf{x},\mathsf{y}) &\to \mathsf{Murderer}(\mathsf{x})) \\ (\forall \mathsf{x})(\mathsf{Murderer}(\mathsf{x}) &\to \mathsf{Jail}(\mathsf{x})) \end{aligned}$$

Is there a model of our theory T? T was:

Is there a model of our theory T? T was:

 $\mathsf{Jail}^I = \{\langle s \rangle\}$

Is \mathcal{I} a model of T?

Is there a model of our theory T? T was:

$$\begin{array}{c} {\sf Killed(Jack, John)} \\ (\forall {\sf x})((\exists {\sf y}) {\sf Killed}({\sf x}, {\sf y}) \to {\sf Murderer}({\sf x})) \\ (\forall {\sf x})({\sf Murderer}({\sf x}) \to {\sf Jail}({\sf x})) \\ \\ {\sf Let \ us \ construct \ } {\cal I} = (\{s\}, I) \ {\sf with} : \\ \\ {\sf Jack}^I = s \\ \\ {\sf John}^I = s \\ \\ {\sf Killed}^I = \{\langle s, s \rangle\} \end{array}$$

 $Murderer' = \{\langle s \rangle\}$

 $\mathsf{Jail}^I = \{\langle s \rangle\}$

Is is our indented model of T?

Is there a model of our theory T? T was:

Does if holds $T \models Murderer(Jack)$?

