Narrow Phase

Collision Detection 06

Lecture 06 Outline

* Problem definition and motivations
* Proximity queries for convex objects
\rightarrow Minkowski space, CSO, Support function
* GJK based algorithms (GJK, EPA, ISA-GJK)
* Voronoi Clipping Algorithm (V-Clip)
* Signed Distance Maps for collision detection
* Demos / tools / libs

Narrow-Phase Collision Detection

* Input: List of pairs of potentially colliding objects.
* Problem1: Find which sub-objects are really intersecting and remove all non-colliding pairs.
*Problem2: Determine the proximity/contact information, i.e. exact points where objects are touching (interpenetrating), surface normal at that contact point and separating / penetrating distance of objects.
*Problem3: Recognize persistent contacts, i.e. topologically equivalent contacts from previous time steps

Narrow-Phase Collision Detection

* Output: List of contact regions with necessary proximity information between colliding objects
* Strategies:
\rightarrow Simplex based traversal of CSO - GJK based algorithms
\rightarrow Feature tracking base algorithms as Lin-Canny or V-Clip
\rightarrow Signed Distance Maps for collision detection
\rightarrow Persistent clustering for contact generation and reduction

Minkowski Space

* Convex Bounded Point Set
$\rightarrow A$ set S of points $p \in R^{n}$ is called convex and bounded if for any two points a and b the line segment ab lies entirely in S and the distance $|a-b|$ is finite (at most β)
$\rightarrow a \in S \wedge b \in S \wedge t \in(0,1) \Rightarrow(1-t) a+t b \in S \wedge|a-b| \leq \beta$
\rightarrow S must be continuous, but needs not to be smooth

Convex set

Non-convex set

Minkowski Space

* Given any two convex objects A and B we define Minkowski Sum, Difference and Translation as
* Minkowski Sum $A \oplus B$
$\rightarrow A \oplus B=\{a+b \mid a \in A \wedge b \in B\}$
* Minkowski Difference $A \ominus B$ (known as CSO)

$$
\rightarrow A \oplus B=A \oplus(-B)=\{a-b \mid a \in A \wedge b \in B\}
$$

*Minkowski Translation $A \oplus t$

$$
\rightarrow A \oplus t=A \oplus\{t\}=\{a+t \mid a \in A\}
$$

Minkowski Space

Translation

Touching Vectors

* Touching Contact
\rightarrow Two convex objects A and B are in touching contact, iff their intersection (as a point set) is a subset of some (contact) plane β. Formally: $A \cap B \subset \beta$
* Touching Vector
\rightarrow The touching vector $t_{A B}$ between two convex objects A and B is any shortest translational vector t moving objects into the touching contact.
$\rightarrow t_{A B} \in\left\{t\left|A \cap(B \oplus t) \subset \beta \wedge t \in R^{3} \wedge\right| t \mid=d_{A B}\right\}$
* Touching Distance
\rightarrow Touching distance $d_{A B}$ is the length of touching vector $t_{A B}$.
$\rightarrow d_{A B}=\min \left\{|t| \mid A \cap(B \oplus t) \subset \beta \wedge t \in R^{3}\right\}$

Touching Vectors and CSO

Touching Vectors

* Objects are in close proximity if their touching distance is smaller than a defined threshold
* If objects are disjoint touching vector (distance) is usually called as separation vector (distance)
* If objects are intersecting touching vector (distance) is usually called as penetration vector (depth)
* Separation vector is unique. Penetration vector is usually not unique (co-centric circles)

Support Set and Boundary

* Support Set
\rightarrow The set of points from a convex object C which have a minimal projection onto a direction axis d is the support set of C
$\rightarrow S_{C}{ }_{C}=\left\{\rho \mid \rho \in C \wedge d^{\top} \rho=\min \left\{d^{\top} C \mid c \in C\right\}\right\}$
* Support Boundary
\rightarrow The set of all support points from a convex object C with respect to any direction d is the boundary of C
$\rightarrow \partial(C)=\left\{\rho \mid \rho \in S_{C}^{d} \wedge d \in R^{3}\right\}$

Support Set and Boundary

Touching Vectors and Boundary

* Touching Vector Theorem
\rightarrow Any translational vector t moves two convex objects A and B into touching contact, iff it lies on the boundary of their CSO
$\Rightarrow A \cap(B \oplus t) \subset \beta \Leftrightarrow t \in \partial(A \ominus B)$
* This theorem can simplify the definition of touching contact, vector and distance, by replacing $(A \cap(B \oplus t) \subset \beta$) with the $t \in \partial(A \oplus B)$

$$
\begin{aligned}
& \Rightarrow d_{A B}=\min \{|t| \mid t \in \partial(A \ominus B)\} \\
& \Rightarrow t_{A B} \in\left\{t|t \in \partial(A \ominus B) \wedge| t \mid=d_{A B}\right\}
\end{aligned}
$$

Contact Region

Contact Region

* If objects are in touching contact ($t_{A B}$ is zero), their intersection simply forms the contact region
* If objects penetrate or are disjoint ($t_{A B}$ is non-zero) contact region is constructed as follows
\rightarrow Compute two support sets $S_{A}^{+t A B}$ and $S_{B}^{-t A B}$ for A and B w.r.t $t_{A B}$
\rightarrow Project both sets onto touching vector $t_{A B}$ and take median
\rightarrow Form contact plane with median as origin and normal as $t_{A B}$
\rightarrow Project both support sets onto contact plane and take their (ideally) intersection as contact region

Gilbert - Johnson - Keerthi Algorithm

Gilbert - Johnson - Keerthi Algorithm

*Key idea of all GJK based algorithms: iterative search for the touching vector in CSO

* Strategy: Perform a descent traversal of the CSO surface to find the closest point to the origin
*Problem: Naive construction and traversal of CSO is expensive and slow
* Solution: Simple support function can select proper support points on CSO and thus speed up the traversal to an almost constant time assuming coherent simulation.

Support Function

* Support function support (C,d) $\in \mathrm{S}^{\mathrm{d}}{ }_{\mathrm{C}}$ of a convex object C w.r.t. direction d simply returns any support point from the respective support set $S^{\circ}{ }_{C}$
* Support Function Operations
\rightarrow Assuming support $(\mathrm{A}, \mathrm{d}) \in S_{\mathrm{A}}^{\mathrm{d}}$ and support $(\mathrm{B}, \mathrm{d}) \in S_{\mathrm{B}}^{\mathrm{d}}$, we define the support functions as follows
\rightarrow support (-B, d) $=$-support $(B,-d) \in S_{\text {d }}^{d}$
$\rightarrow \operatorname{support}(A \oplus B, d)=\operatorname{support}(A, d)+\operatorname{support}(B, d) \in S_{A \in B}^{d}$
\rightarrow support $(A \oplus B, d)=\operatorname{support}(A \oplus(-B), ~ d)$

$$
=\text { support (A, d) + support(-B, d) }
$$

= support(A, +d) - support(B,-d)

Proximity GJK Algorithm

* The traversal is done by iteratively constructing a sequence of simplices in 3D
\rightarrow point or line or triangle or tetrahedron
* In each iteration newly created simplex is closer to the origin as the one in previous iteration
*New simplex is created by
* 1) Adding a support point to the former simplex
*2) Taking the smallest sub-simplex which contains the closest point to the origin

Proximity GJK Algorithm

Proximity GJK Algorithm

Proximity GJK Algorithm

Proximity GJK Algorithm Algorithm

Proximity GJK Algorithm

In: Convex objects A, B and initial simplex W
Out: Touching vector \mathbf{w}
function ProximityGJK (A, B, W) : w
1: $\quad\{\mathbf{v}, \delta\} \leftarrow\{\mathbf{1}, 0\}$
2: while $\left(\|\mathbf{v}\|^{2}-\delta^{2}>\varepsilon\right)$ do
3: $\quad \mathbf{v} \leftarrow$ ClosestPoint (W)
4: $\quad \mathbf{w} \leftarrow \operatorname{Support}(A \ominus B, \mathbf{v})=\operatorname{Support}(A,+\mathbf{v})-\operatorname{Support}(B,-\mathbf{v})$
5: $\quad W \leftarrow \operatorname{BestSimplex}(W, \mathbf{w})$
6: \quad if $(|W|=4)$ then return ProximityEPA (A, B, W);
7: \quad if $\left(\mathbf{v}^{\mathrm{T}} \mathbf{w}>0\right)$ then $\delta^{2} \leftarrow \max \left\{\delta^{2}, \frac{\left(\mathbf{v}^{\mathrm{T}} \mathbf{w}\right)^{2}}{\|\mathbf{v}\|^{2}}\right\}$
8: end
9: return w
end

Computing Support Function

* Searching for the support vertex w heavily depends on the representation of the convex objects A and B
*For a simple primitives it can be computed directly
*For convex polytopes
\rightarrow Naive approach is to project all vertices onto the direction axis and take any one with the minimal projection
\rightarrow if we consider a coherent simulation we can use a local search sometimes called as "hill climbing" and find the support vertex in almost constant time

Hill Climbing Support Function

*For convex polytopes do a local search to "refine" the support point from previous simulation state

```
In: Convex polytope A, initial support vertex w and the direction vector d
Out: New support vertex with minimal projection w
function SupportHC( }A,\mathbf{d},\mathbf{w}):\mathbf{w
1: }{\mu,\mathrm{ Found }}\leftarrow{\mp@subsup{\mathbf{d}}{}{\textrm{T}}\mathbf{w},\mathrm{ false }
2: while not Found do
3: Found }\leftarrow\mathrm{ true
4: foreach w}\mp@subsup{}{}{\prime}\mathrm{ in Neighbours(w) do
5:
6: end
7: end
8: return w
end
```


Simplex Refinement

* Problem: Given a simplex and new vertex form new simple by adding the vertex and select subsimplex closest to the origin
* Bad solution: The simplex can be done by solving a system of linear equations (slow, numeric issues)
* Good solution: Form new simplex and test in which external Voronoi region the origin lies.
* The selected Voronoi region directly shows us which sub-simplex is the desired (closest) one

Voronoi Simplex Refinement

Voronoi Simplex Refinement

* Empty Simplex: A vertex simplex $\{\mathrm{w}\}$ is formed
\rightarrow The smallest simplex, which contains the closest point to the origin is $\{\mathrm{w}\}$ (case 0)
* Vertex Simplex: An edge simplex $\{W 1, w\}$ is formed
\rightarrow It has 2 vertex regions $\{W 1, w\}$ and one edge region $\{\mathrm{el}\}$
\rightarrow Since W1 lies on support plane which is perpendicular to the support axis (vector w) origin can not be in the region of W1
\rightarrow Thus we check only regions of w and el by projecting -w onto the edge el (case 1)

Voronoi Simplex Refinement

* Edge Simplex: A face simplex $\{\mathrm{W} 1, \mathrm{~W} 2, \mathrm{w}\}$ is formed
\rightarrow It has 3 vertex regions, 3 edge regions and 2 face regions
\rightarrow The origin can be only in $\{w, e 1, e 2, n 1\}$ regions
\rightarrow Construct Voronoi planes with normals $\{\mathrm{el}, \mathrm{e} 2, \mathrm{ul}, \mathrm{v} 1\}$ and test whether the origin is above or below these planes, i.e. compare signs of -w projections onto these normals
*Face Simplex: A tetrahedron simplex \{W1,W2,W3, $\mathrm{w}\}$ is formed
\rightarrow A tetrahedron has 4 vertex regions, 4 face regions, 6 edge regions and 1 interior region (T)
\rightarrow Origin can lie only only in regions \{w, el, e2, e3, nl, n2, n3, T\}
\rightarrow Construct Voronoi planes with normals \{e1, e2, e3, n1, n2, n3, ul, u2, u3, v1, v2, v3\} and test sign -w projection onto normals

In: Simplex W and new point on CSO surface \mathbf{w}
Out: New smallest simplex W containing \mathbf{w} and the closest point to the origin
function BestSimplex $(W, \mathbf{w}): W$
1: $\quad \mathrm{d} \leftarrow 0-\mathrm{w}$
2: $\quad \mathbf{e}_{1} \leftarrow \mathbf{W}_{1}-\mathbf{w} ; \quad \mathbf{e}_{2} \leftarrow \mathbf{W}_{2}-\mathbf{w} ; \quad \mathbf{e}_{3} \leftarrow \mathbf{W}_{3}-\mathbf{w}$;
3: $\quad \mathbf{n}_{1} \leftarrow \mathbf{e}_{1} \times \mathbf{e}_{2}$;
$\mathbf{n}_{2} \leftarrow \mathbf{e}_{2} \times \mathbf{e}_{3} ;$
$\mathbf{n}_{3} \leftarrow \mathbf{e}_{3} \times \mathbf{e}_{1} ;$
$\mathbf{u}_{1} \leftarrow \mathbf{e}_{1} \times \mathbf{n}_{1} ; \quad \quad \mathbf{u}_{2} \leftarrow \mathbf{e}_{2} \times \mathbf{n}_{2} ; \quad \mathbf{u}_{3} \leftarrow \mathbf{e}_{3} \times \mathbf{n}_{3} ;$
$\mathbf{v}_{1} \leftarrow \mathbf{n}_{1} \times \mathbf{e}_{2} ; \quad \mathbf{v}_{2} \leftarrow \mathbf{n}_{2} \times \mathbf{e}_{3} ; \quad \mathbf{v}_{3} \leftarrow \mathbf{n}_{3} \times \mathbf{e}_{1} ;$
switch $|W|$ do
case 0
/* empty simplex */
return $\{\mathbf{w}\}$
end
case 1
/* vertex simplex */
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{1}>0\right)$ then return $\{\mathbf{w}\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{1}<0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{w}\right\}$
end
case 2 /* edge simplex */
if $\left(d^{T} \mathbf{e}_{1}<0\right) \wedge\left(d^{T} \mathbf{e}_{2}<0\right)$ then return $\{\mathbf{w}\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{1}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{1}>0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{2}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{1}>0\right)$ then return $\left\{\mathbf{W}_{2}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{1}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{1}<0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{w}\right\}$
end
case $3 \quad / *$ face simplex */
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{1}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{2}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{3}<0\right)$ then return $\{\mathbf{w}\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{1}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{1}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{3}>0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{2}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{2}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{1}>0\right)$ then return $\left\{\mathbf{W}_{2}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{e}_{3}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{3}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{2}>0\right)$ then return $\left\{\mathbf{W}_{3}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{1}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{1}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{1}<0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{2}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{2}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{2}<0\right)$ then return $\left\{\mathbf{W}_{2}, \mathbf{W}_{3}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{3}>0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{u}_{3}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{v}_{3}<0\right)$ then return $\left\{\mathbf{W}_{3}, \mathbf{W}_{1}, \mathbf{w}\right\}$
if $\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{1}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{2}<0\right) \wedge\left(\mathbf{d}^{\mathrm{T}} \mathbf{n}_{3}<0\right)$ then return $\left\{\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}, \mathbf{w}\right\}$
end
end
end

Closest Point on Simplex

* Problem: Given (0 or 1 or 2 or 3) simplex \{W1,W2,W3\} find the closest point to the origin
*Empty Simplex: Return 0
* Vertex Simplex: Return W1
* Edge Simplex: Return the closest point on line \{W1,W2\} to the origin.
\rightarrow No need to check other regions (eg. vertex W1 region etc.)
*Face Simplex: Return the closest point on plane \{W1,W2,W3\} to the origin.
\rightarrow No need to check other regions (eg. vertex W1 region etc.)

Closest Point Algorithm

In: Simplex W
Out: Closest point on simplex to the origin \mathbf{v}
function ClosestPoint $(W): \mathbf{v}$
1: $\quad \mathbf{d} \leftarrow \mathbf{W}_{2}-\mathbf{W}_{1}$
2: $\quad \mathbf{n} \leftarrow\left(\mathbf{W}_{2}-\mathbf{W}_{1}\right) \times\left(\mathbf{W}_{3}-\mathbf{W}_{1}\right)$
3: \quad switch $|W|$ do
4: case 0 return 0 ; /* empty simplex */
5: case 1 return \mathbf{W}_{1}; /* vertex simplex */
6: \quad case 2 return $W_{1}-\frac{\mathbf{d}^{T} \mathbf{W}_{1}}{\mathbf{d}^{\mathrm{T}} \mathbf{d}} \mathbf{d} ; / *$ edge simplex $* /$
7: \quad case 3 return $\frac{\mathbf{n}^{T} W_{1}}{\mathbf{n}^{\mathrm{T}} \mathbf{n}} \mathbf{n} ; \quad / *$ face simplex $* /$
8: end end

GJK Overlap Test

* Incremental Separating-Axis GJK (ISA-GJK)
\Rightarrow A subtle modification to the proximity GJK
\rightarrow Descent overlop test for convex objects
\rightarrow Iteratively searches for some separating axis
\rightarrow Average constant time complexity in coherent simulation
* Principle: Similar traversal to Proximity GJK
\rightarrow Reports overlap: When the best simplex is tetrahedron
\rightarrow Reports no-overlap: When the signed distance of the support plane to the origin is positive
$\rightarrow v^{\top} w=v^{\top}$ support $(A \ominus B, v)=v^{\top}$ support $(A,+v)-V^{\top} \operatorname{support}(B,-v)>0$

ISA-GJK Algorithm

In: Convex objects A, B and initial Simplex W
Out: Overlap check: (true/false)
function OverlapGJK (A, B, W) : bool
1: $\quad\{\mathbf{v}, \mathbf{w}\} \leftarrow\{\mathbf{1}, \mathbf{1}\}$
2: while $\left(\mathbf{v}^{\mathrm{T}} \mathbf{w} \leq 0\right)$ do

3:
4:
$5:$
$6:$
7: end
8: return false end

Voronoi Clipping Algorithm

External Voronoi Regions

* Interior Set:
\rightarrow The set of all interior points int (C) of a convex polytope C is the intersection of negative half-spaces formed by all faces of C (surface points are not included)
$* \operatorname{int}(C)=\{c \in R 3 \mid d s(c, F)<0 \wedge F \in C\}$
* Distance:
\rightarrow The distance $d(c, X)$ between a feature X and some point c is the minimum distance between c and any point of X
* $d(c, X)=\min \{|x-c| \mid x \in X\}$

External Voronoi Regions

* Signed Distance
\rightarrow The signed distance $d_{s}(c, F)$ between a point c and a plane F, defined by a unit normal n_{F} and a reference point o_{F} is the projection of the reference vector ($c-o_{F}$) onto planes normal
* $d s(c, F)=n_{F}^{\top}\left(c-o_{F}\right)$
* Having two incident features X, Y : if X has a lower dimension than Y, then X must be a subset of Y and therefore the distance of any point c to X is less than or equal to Y
* $X \cap Y \wedge \operatorname{dim}(X)<\operatorname{dim}(Y) \Rightarrow X \subset Y \Rightarrow d(c, X) \leq d(c, Y)$

External Voronoi Regions

* External Voronoi Region
\rightarrow The Voronoi region $\operatorname{VR}(X)$ of a feature X on some convex polytope C is a set of external points which are closer (\leq) to X than to any other feature Y in C
$\rightarrow V R(X)=\{c \notin \operatorname{int}(C) \mid d(c, X) \leq d(c, Y) \wedge Y \in C\}$
* External Voronoi Plane
\rightarrow The Voronoi plane VP (X, Y) of two incident features X and Y is the plane containing the intersection of their Voronoi regions.
$\rightarrow \operatorname{VP}(X, Y)=\beta \wedge \operatorname{VR}(X) \cap \operatorname{VR}(Y) \subset \beta$
*Inter-feature Distance
\rightarrow The inter-feature distance $d(X, Y)$ between features X and Y is the minimum distance between any points $x \in X$ and $y \in Y$
$\rightarrow d(X, Y)=\min \{|x-y| \mid x \in X \wedge y \in Y\}$

External Voronoi Regions

Voronoi Region Theorem

* Let $X \in A$ and $Y \in B$ be a pair of features from disjoint convex polytopes A and B.
*Let $x \in X$ and $y \in Y$ be the closest $\rho o i n t s$ between X and Y
* Points x and y are the (globally) closest points between A and B iff $x \in \operatorname{VR}(Y) \wedge y \in \operatorname{VR}(X)$

Voronoi Region Theorem

V-Clip Algorithm

*Key idea of the V-Clip algorithm is an efficient search for two closest features.

* Obviously an exhaustive search is a very expensive solution
*Fortunately the following Voronoi Region Theorem allows as to find the global minimum of the interfeature distance, by performing usually only a few iterations of a local search

V-Clip Algorithm

* Given two convex polytopes A, B and any two features $X \in A, Y \in B$
* In each iteration V-Clip checks if they satisfy the Voronoi Region Theorem.
\rightarrow If they don't, it changes X and Y to some (usually incident) features X^{\prime} and Y^{\prime}, so that either the sum their dimensions or the inter-feature distance strictly decreases.
\rightarrow Assuming a finite number of features the algorithm can never cycle
\rightarrow If we initialize X and Y with the closest features from the previous time-step and the simulation is coherent, then we probably need only a few iterations to find new closest features.

In: A pair of convex polytopes A, B and respective initial features X, Y
Out: A Separation vector \mathbf{w}, or \emptyset if penetration occurred

```
function \(\operatorname{V-Clip}(A, B, X, Y): \mathbf{w}\)
    while (true) do
        switch \(\operatorname{PairType}(X, Y)\) do
            case \(V V\) type : /* Vertex-Vertex */
                    if \(\operatorname{Clip} \operatorname{Vertex}(X, Y,\{Y E \mid E \in \operatorname{Edges}(Y)\})\) then continue
                    if \(\operatorname{Clip} \operatorname{Vertex}(Y, X,\{X E \mid E \in \operatorname{Edges}(X)\})\) then continue
                    return \(X-Y\)
            end
            case VE type :
                                    /* Vertex-Edge */
                    if ClipVertex \(\left(X, Y,\left\{V_{1}^{Y} Y, V_{2}^{Y} Y, Y F_{1}^{Y}, Y F_{2}^{Y}\right\}\right)\) then continue
                    if \(\operatorname{ClipEdge}(Y, X,\{X E \mid E \in \operatorname{Edges}(X)\})\) then continue
                    \(\mathbf{u} \leftarrow V_{2}^{Y}-V_{1}^{Y}\)
                    return \(X-\left(V_{1}^{Y}+\frac{\mathbf{u}^{\mathrm{T}}\left(X-V_{1}^{Y}\right)}{\mathbf{u}^{\mathrm{T}} \mathbf{u}} \mathbf{u}\right)\)
            end
            case \(V F\) type : /* Vertex-Face */
                    if ClipVertex \(\left(X, Y,\left\{E Y, V_{1}^{E} E, V_{2}^{E} E \mid E \in \operatorname{Edges}(Y)\right\}\right)\) then continue
                    if \(\operatorname{ClipFace}(Y, X, A)\) then continue
                    return \(X-\left(X+\frac{\mathbf{n}^{\mathrm{T}}\left(V_{1}^{Y}-X\right)}{\mathbf{n}^{\mathrm{T}} \mathbf{n}} \mathbf{n}\right)\)
            end
            case EE type : /* Edge-Edge */
                    if ClipEdge \(\left(X, Y,\left\{V_{1}^{Y} Y, V_{2}^{Y} Y, Y F_{1}^{Y}, Y F_{2}^{Y}\right\}\right)\) then continue
                    if ClipEdge \(\left(Y, X,\left\{V_{1}^{X} X, V_{2}^{X} X, X F_{1}^{X}, X F_{2}^{X}\right\}\right)\) then continue
                    \(\left\{\mathbf{u}^{X}, \mathbf{u}^{Y}\right\} \leftarrow\left\{V_{2}^{X}-V_{1}^{X}, \quad V_{2}^{Y}-V_{1}^{Y}\right\}\)
                    \(\left\{\mathbf{n}^{X}, \mathbf{n}^{Y}\right\} \leftarrow\left\{\left(\mathbf{u}^{X} \times \mathbf{u}^{Y}\right) \times \mathbf{u}^{Y}, \quad\left(\mathbf{u}^{Y} \times \mathbf{u}^{X}\right) \times \mathbf{u}^{X}\right\}\)
                    return \(\left(V_{1}^{X}+\frac{\left(\mathbf{n}^{Y}\right)^{\mathrm{T}}\left(V_{1}^{Y}-V_{1}^{X}\right)}{\left(\mathbf{n}^{Y}\right)^{\mathrm{T}} \mathbf{u}^{X}} \mathbf{u}^{X}\right)-\left(V_{1}^{Y}+\frac{\left(\mathbf{n}^{X}\right)^{\mathrm{T}}\left(V_{1}^{X}-V_{1}^{Y}\right)}{\left(\mathbf{n}^{X}\right)^{\mathrm{T}} \mathbf{u}^{Y}} \mathbf{u}^{Y}\right)\)
            end
            case \(E F\) type : \(\quad / *\) Edge-Face */
                    if \(\operatorname{Clip} \operatorname{Edge}\left(X, Y,\left\{E Y, V_{1}^{E} E, V_{2}^{E} E \mid E \in \operatorname{EdGEs}(Y)\right\}\right)\) then continue
                    \(\left\{d_{1}, d_{2}\right\} \leftarrow\left\{\mathrm{d}_{\mathrm{s}}\left(V_{1}^{X}, Y\right), \mathrm{d}_{\mathrm{s}}\left(V_{2}^{X}, Y\right)\right\}\)
                    if \(\left(\operatorname{sgn}\left(d_{1} d_{2}\right)<0\right)\) then \(Y \leftarrow \emptyset ;\) continue
                    if \(\left(\left|d_{1}\right|<\left|d_{2}\right|\right)\) then \(X \leftarrow V_{1}^{X}\) else \(X \leftarrow V_{2}^{X}\)
                    continue
            end
            case \(E V, F V, F E\) type : \(\operatorname{SWAP}(X, Y) ; \operatorname{SWAP}(A, B)\); continue ; /* Swap Cases */
        end
        if \((Y=\emptyset)\) then return \(\emptyset\)
    end
end
```


Vertex Clipping

* Given a vertex V from one object, some "old" feature N from another object and a set of feature pairs S_{n}
* The vertex clipping simply marks $X(Y)$ if the vertex V lies above (below) the VP (X,Y) for each feature pair $X Y \in S_{N}$
\rightarrow First it clears all features among SN (ClearAll (S_{N}))
\rightarrow Next it tests the side (w.r.t. Voronoi plane) of V and mark "further" features.
\rightarrow Finally it updates N with some unmarked feature (UpdateClear (N, SN)) and returns true if N was changed.

Vertex Clipping Cases

ClipVertex and UpdateClear

```
In: A vertex }V\mathrm{ , a feature N to be updated and a set of clipping feature pairs }\mp@subsup{\mathcal{S}}{N}{
Out: Test if the feature N was updated (true/false)
function ClipVertex (V,N, S}\mp@subsup{\mathcal{S}}{N}{})\mathrm{ : bool
1: ClearAll( }\mp@subsup{\mathcal{S}}{N}{}
2: foreach }XY\mathrm{ in }\mp@subsup{\mathcal{S}}{N}{}\mathrm{ do
3: Test }\leftarrow\operatorname{sgn}(\mp@subsup{\textrm{d}}{\textrm{s}}{}(V,\mathcal{V}\mathcal{P}(X,Y))
4: if (Test > 0) then Mark ( }X\mathrm{ ) else Mark (Y)
5: end
```



```
end
```

In: A feature N to be updated and a set of clipping feature pairs S_{N}
Out: Test if the feature N was updated (true/false)
function $\operatorname{UpdateClear}\left(N, S_{N}\right)$: bool

```
1: M \leftarrow N; /* store old feature */
2: foreach }XY\mathrm{ in }\mp@subsup{S}{N}{}\mathrm{ do
3: if ( }X\mathrm{ is "clear") then N}\leftarrowX; break; /* update old to closest feature */
4: if (Y is "clear") then N\leftarrowY; break; /* update old to closest feature */
5: end
6: return N != M; /* true if feature changed */
end
```


Edge Clipping

* Take an edge E, the "old" feature N, a set of respective feature pairs S_{N} and perform a sequence of local tests to properly mark "further" features
* Let d_{1}, d_{2} represent signed distances of the endpoint vertices $\mathrm{V}_{1}^{\mathrm{E}}, \mathrm{V}_{2}{ }^{\mathrm{E}}$ to the Voronoi plane $\beta=$ $\mathrm{VP}(X, Y)$ of a particular feature pair $X Y \in S_{N}$
* If both vertices lie on the same side of the clipping plane ($\operatorname{sgn}\left(d_{1} \mathrm{~d}_{2}\right)>0$), we simply mark the feature of the opposite side as in vertex clipping

Edge Clipping

* If vertices lie on different sides ($\left.\operatorname{sgn}\left(\mathrm{d}_{1} \mathrm{~d}_{2}\right)<0\right)$, edge E intersects the clipping plane in some point $\rho=(1-\lambda) V_{1}^{E}+\lambda V_{2}{ }^{E}$, where $\lambda=d_{2} /\left(d_{1}-d_{2}\right)$ and we must consider two sub-cases depending on the type of the feature pair
* Let vector $u=\operatorname{sgn}\left(\mathrm{d}_{2}\right)\left(\mathrm{V}_{2}^{\mathrm{E}}-\mathrm{V}_{1}^{\mathrm{E}}\right)$ represent the edge E pointing out of the negative half-space to the positive half-space of β
*If XY is a "VE" pair, the local test depends on the sign of the $(X-\rho)$ projection onto the edge vector u, i.e. $+\operatorname{sgn}\left(u^{\top}(X-\rho)\right)$

Edge Clipping

*If XY is a "EF" ρ air, there are another two subcases.

* If ρ lies above the face Y, the local test depends on the angle between edge vector u and the face normal vector n
* If ρ lies below the face Y we use the similar local test, but mark opposite features
* Therefore the final local test (handling both subcases) can be written as: - sgn($\left.n^{\top} u\right) \operatorname{sgn}\left(\mathrm{d}_{\mathrm{s}}(\mathrm{\rho}, \mathrm{Y})\right)$

Edge Clipping Cases

ClipEdge Algorithm

In: An edge E, a feature N to be updated and a set of clipping feature pairs \mathcal{S}_{N} Out: Test if the feature N was updated (true/false)
function $\operatorname{Clip} \operatorname{Edge}\left(E, N, \mathcal{S}_{N}\right)$: bool
1: ClearAll $\left(\mathcal{S}_{N}\right)$
2: foreach $X Y$ in \mathcal{S}_{N} do
3: $\quad \beta \leftarrow \mathcal{V} \mathcal{P}(X, Y)$
4: $\quad\left\{d_{1}, d_{2}\right\} \leftarrow\left\{\mathrm{d}_{\mathrm{s}}\left(V_{1}^{E}, \beta\right), \mathrm{d}_{\mathrm{s}}\left(V_{2}^{E}, \beta\right)\right\}$
/* signed distances to β */
5:
6: $\{\mathbf{p}, \mathbf{u}\} \leftarrow\left\{E\left(d_{2} /\left(d_{1}-d_{2}\right)\right), \operatorname{sgn}\left(d_{2}\right)\left(V_{2}^{E}-V_{1}^{E}\right)\right\}$ if $\left(\operatorname{sgn}\left(d_{1} d_{2}\right)>0\right)$ then Test $\leftarrow \operatorname{sgn}\left(d_{1}\right)$
if $\left(\operatorname{sgn}\left(d_{1} d_{2}\right)<0 \wedge X Y\right.$ is "VE") then Test $\leftarrow+\operatorname{sgn}\left(\mathbf{u}^{\mathrm{T}}(X-\mathbf{p})\right)$
if $\left(\operatorname{sgn}\left(d_{1} d_{2}\right)<0 \wedge X Y\right.$ is $\left." E F "\right)$ then Test $\leftarrow-\operatorname{sgn}\left(\mathbf{n}^{\mathrm{T}} \mathbf{u}\right) \operatorname{sgn}\left(\mathrm{d}_{\mathbf{s}}(\mathbf{p}, Y)\right)$ if (Test >0) then $\operatorname{Mark}(X)$ else $\operatorname{Mark}(Y)$
10: end
11: return $\operatorname{UpdateClear}\left(N, \mathcal{S}_{N}\right)$
end

Signed Distance

 Mapsfor collision detection

Signed Distance Map

* Signed distance map: $\mathrm{SDM}_{\mathrm{N}}(\mathrm{V})$ is $\mathrm{N} \times \mathrm{N} \times \mathrm{N}$ regular grid, where each unit cell with a center point ρ stores the signed distance to the closest point on the surface of some volume V .
* This signed distance is a combination of a sign function $\operatorname{sgn}_{v}(\rho)$ and the unsigned distance function d (ρ, V) w.r.t. V.

$$
\begin{aligned}
\rightarrow \operatorname{SDM}_{N}(V)=\left\{\operatorname{sgn}_{V}(\rho) d(\rho, V) \mid\right. & \rho=(i+0.5, j+0.5, k+0.5) \wedge \\
1 & \leq i, j, k \leq N\}
\end{aligned}
$$

Signed Distance Maps

* Signed distance maps (SDM) become recently a popular technique for approximate collision detection and distance computation.
*Pros: Efficient overlap test, fast contact generation and penetration depth computation for arbitrary shaped, non-convex objects with complex and highly tessellated geometry
* Suitable even for real-time applications as games
* Cons: Huge amount of memory necessary for massive scenarios and a large number of redundant (unnecessary) contacts generated during the collision detection

Distance Map Construction

* Brute force construction
\rightarrow For each grid cell we need to compute the distance of its center to each surface triangle and store the shortest distance
\Rightarrow Assuming N is the grid size and M is the number of triangles, we have to call the primitive point-to-triangle distance function $\mathrm{N} \times \mathrm{N} \times \mathrm{N} \times \mathrm{M}$ times
* Other Efficient Methods
\rightarrow Lower-Upper Bound Tree (LUB-Tree)
\rightarrow Characteristic/Scan Conversion (CSC)
\rightarrow Chamfer and Vector Distance Transform (CDT, VDT)
\rightarrow Fast Marching Method (FMM)

Proximity Queries with SDM

* Performing proximity queries using SDM involves simple point location tests.
* The key idea is to sample several points on the surface and store it together with the SDM.
* During the collision detection sample points of one object are transformed into the local space of the other object and are "looked-up" in the SDM of the other object and vice versa.
* Surface points located inside other object (lie under the zero level $\left(\operatorname{SDM}_{A}\left(\rho_{B}\right) \leq 0\right)$) are used to create necessary contact information (contact point, contact normal, penetration depth, etc.)

