

Narrow Phase

Collision Detection Le
ss

on 06

Lecture 06 Outline

 Problem definition and motivations

 Proximity queries for convex objects
 Minkowski space, CSO, Support function

 GJK based algorithms (GJK, EPA, ISA-GJK)

 Voronoi Clipping Algorithm (V-Clip)

 Signed Distance Maps for collision detection

 Demos / tools / libs

Narrow-Phase Collision Detection

 Input: List of pairs of potentially colliding objects.

 Problem1: Find which sub-objects are really
intersecting and remove all non-colliding pairs.

 Problem2: Determine the proximity/contact
information, i.e. exact points where objects are
touching (interpenetrating), surface normal at
that contact point and separating / penetrating
distance of objects.

 Problem3: Recognize persistent contacts, i.e.
topologically equivalent contacts from previous
time steps

Narrow-Phase Collision Detection

 Output: List of contact regions with necessary
proximity information between colliding objects

 Strategies:
 Simplex based traversal of CSO – GJK based algorithms
 Feature tracking base algorithms as Lin-Canny or V-Clip
 Signed Distance Maps for collision detection
 Persistent clustering for contact generation and reduction

 Proximity Queries
 for Convex Objects

Minkowski Space

 Convex Bounded Point Set
 A set S of points p ∈ Rn is called convex and bounded if for

any two points a and b the line segment ab lies entirely in S
and the distance |a - b| is finite (at most β)

 a S b S t (0, 1) (1 − t)a + tb S |a - b| ≤ ∈ ∧ ∈ ∧ ∈ ⇒ ∈ ∧ β
 S must be continuous, but needs not to be smooth

a

b

a

b

Convex set Non-convex set

Minkowski Space

 Given any two convex objects A and B we define
Minkowski Sum, Difference and Translation as

 Minkowski Sum A B⊕
 A B = {a + b | a A b B}⊕ ∈ ∧ ∈

 Minkowski Difference A ⊖ B (known as CSO)
 A ⊖ B = A ⊕ (-B) = {a − b | a A b B}∈ ∧ ∈

 Minkowski Translation A t⊕
 A t = A {t} = {a + t | a A}⊕ ⊕ ∈

Minkowski Space

B

A
A ⊕ B

0 -B

B

A

A B

0

A

A ⊕ t

t
0

Difference TranslationSum

Touching Vectors

 Touching Contact
 Two convex objects A and B are in touching contact, iff their

intersection (as a point set) is a subset of some (contact)
plane β. Formally: A ∩ B β⊂

 Touching Vector
 The touching vector t

AB
 between two convex objects A and B

is any shortest translational vector t moving objects into the
touching contact.

 t
AB

 {t | A ∩ (B t) β t R∈ ⊕ ⊂ ∧ ∈ 3 |t| = d∧
AB

}

 Touching Distance
 Touching distance d

AB
 is the length of touching vector t

AB
.

 d
AB

 = min {|t| | A ∩ (B t) β t R⊕ ⊂ ∧ ∈ 3 }

Touching Vectors and CSO

b

a
b

A

t

B

a

A

t

B

a

b

A

B

t

a - b

CSO

a - b

CSO

a - b

CSO

Touching vector Penetration vector Separation vector

Touching Vectors

 Objects are in close proximity if their touching
distance is smaller than a defined threshold

 If objects are disjoint touching vector (distance) is
usually called as separation vector (distance)

 If objects are intersecting touching vector
(distance) is usually called as penetration vector
(depth)

 Separation vector is unique. Penetration vector is
usually not unique (co-centric circles)

Support Set and Boundary

 Support Set
 The set of points from a convex object C which have a

minimal projection onto a direction axis d is the support set
of C

 Sd
C
 = { p | p C d∈ ∧ Tp = min{ dTc | c C } }∈

 Support Boundary
 The set of all support points from a convex object C with

respect to any direction d is the boundary of C
 ∂(C) = { p | p S∈ d

C
 d R∧ ∈ 3 }

Support Set and Boundary

-v

Support Planes

A B

+v

Support Points

Support Set

Minimal Projections

Projection Axis

Boundary

Projected Line Segment

Support Scenario

Touching Vectors and Boundary

 Touching Vector Theorem
 Any translational vector t moves two convex objects A and B

into touching contact, iff it lies on the boundary of their CSO
 A ∩ (B t) β t ∂(A ⊕ ⊂ ⇔ ∈ ⊖ B)

 This theorem can simplify the definition of
touching contact, vector and distance, by
replacing (A ∩ (B t) β) with the t ∂(A ⊕ ⊂ ∈ ⊖ B)
 d

AB
 = min { |t| | t ∂(A ∈ ⊖ B) }

 t
AB

 { t | t ∂(A ∈ ∈ ⊖ B) |t| = d∧
AB

 }

Contact Region

Contact Plane

Contact
Points

n

Support
Planes

Contact
Region

Contact
Region

Intersecting
objects

disjoint
objects

Contact Region

 If objects are in touching contact (t
AB

 is zero), their
intersection simply forms the contact region

 If objects penetrate or are disjoint (t
AB

 is non-zero)
contact region is constructed as follows
 Compute two support sets S

A
+tAB and S

B
-tAB for A and B w.r.t t

AB

 Project both sets onto touching vector t
AB

 and take median

 Form contact plane with median as origin and normal as t
AB

 Project both support sets onto contact plane and take their
(ideally) intersection as contact region

 Gilbert - Johnson - Keerthi Algorithm

GJK

Gilbert - Johnson - Keerthi Algorithm

 Key idea of all GJK based algorithms:
iterative search for the touching vector in CSO

 Strategy: Perform a descent traversal of the CSO
surface to find the closest point to the origin

 Problem: Naive construction and traversal of CSO
is expensive and slow

 Solution: Simple support function can select
proper support points on CSO and thus speed up
the traversal to an almost constant time assuming
coherent simulation.

Support Function

 Support function support(C,d) S∈ d
C
 of a convex

object C w.r.t. direction d simply returns any
support point from the respective support set Sd

C

 Support Function Operations
 Assuming support(A, d) S∈ d

A
 and support(B, d) S∈ d

B
, we

define the support functions as follows
 support(-B, d) = -support(B,-d) S∈ d

-B

 support(A B, d) = ⊕ support(A, d) + support(B, d) S∈ d
A B⊕

 support(A ⊖ B, d) = support(A (−B), d)⊕

 = support(A, d) + support(−B, d)
 = support(A,+d) − support(B,−d)

Proximity GJK Algorithm

 The traversal is done by iteratively constructing a
sequence of simplices in 3D
 point or line or triangle or tetrahedron

 In each iteration newly created simplex is closer to
the origin as the one in previous iteration

 New simplex is created by

 1) Adding a support point to the former simplex

 2) Taking the smallest sub-simplex which contains
the closest point to the origin

Proximity GJK Algorithm

A

B

v

w

v

w

a

A

B

CSO

a

b

CSO

b

O

v

Proximity GJK Algorithm

v

w

w

A

B

A

B

a

b

CSO CSO

b a

v

v

O

Proximity GJK Algorithm

w

v

w

A

B

A

B

CSO CSO

b a

b

a

t

v

v

O

Proximity GJK Algorithm Algorithm

v

w

A

B

CSO

b

a

t

v

O

Proximity GJK Algorithm

Computing Support Function

 Searching for the support vertex w heavily
depends on the representation of the convex
objects A and B

 For a simple primitives it can be computed directly

 For convex polytopes
 Naive approach is to project all vertices onto the direction

axis and take any one with the minimal projection
 if we consider a coherent simulation we can use a local

search sometimes called as “hill climbing” and find the
support vertex in almost constant time

Hill Climbing Support Function

 For convex polytopes do a local search to “refine”
the support point from previous simulation state

Simplex Refinement

 Problem: Given a simplex and new vertex form
new simple by adding the vertex and select sub-
simplex closest to the origin

 Bad solution: The simplex can be done by solving a
system of linear equations (slow, numeric issues)

 Good solution: Form new simplex and test in which
external Voronoi region the origin lies.

 The selected Voronoi region directly shows us
which sub-simplex is the desired (closest) one

Voronoi Simplex Refinement

w

W1 W2

W3

e1
e2

e3

n1

n3

n2

v3

u1 v1

u2

v2

u3

w

e1

W1

w

W1
W2

e1
e2

u1 v1n1

Point Simplex

Line Simplex

Triangle Simplex

Voronoi Simplex Refinement

 Empty Simplex: A vertex simplex {w} is formed
 The smallest simplex, which contains the closest point to the

origin is {w} (case 0)

 Vertex Simplex: An edge simplex {W1,w} is formed
 It has 2 vertex regions {W1, w} and one edge region {e1}
 Since W1 lies on support plane which is perpendicular to the

support axis (vector w) origin can not be in the region of W1
 Thus we check only regions of w and e1 by projecting -w onto

the edge e1 (case 1)

Voronoi Simplex Refinement

 Edge Simplex: A face simplex {W1,W2,w} is formed
 It has 3 vertex regions, 3 edge regions and 2 face regions
 The origin can be only in {w, e1, e2, n1} regions
 Construct Voronoi planes with normals {e1, e2, u1, v1} and

test whether the origin is above or below these planes, i.e.
compare signs of -w projections onto these normals

 Face Simplex: A tetrahedron simplex {W1,W2,W3,
w} is formed
 A tetrahedron has 4 vertex regions, 4 face regions, 6 edge

regions and 1 interior region (T)
 Origin can lie only only in regions {w, e1, e2, e3, n1, n2, n3,T}
 Construct Voronoi planes with normals {e1, e2, e3, n1, n2, n3,

u1, u2, u3, v1, v2, v3} and test sign -w projection onto normals

Best Simplex Algorithm

Closest Point on Simplex

 Problem: Given (0 or 1 or 2 or 3) simplex
{W1,W2,W3} find the closest point to the origin

 Empty Simplex: Return 0

 Vertex Simplex: Return W1

 Edge Simplex: Return the closest point on line
{W1,W2} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

 Face Simplex: Return the closest point on plane
{W1,W2,W3} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

Closest Point Algorithm

d

GJK Overlap Test

 Incremental Separating-Axis GJK (ISA-GJK)
 A subtle modification to the proximity GJK
 Descent overlap test for convex objects
 Iteratively searches for some separating axis
 Average constant time complexity in coherent simulation

 Principle: Similar traversal to Proximity GJK
 Reports overlap: When the best simplex is tetrahedron
 Reports no-overlap: When the signed distance of the support

plane to the origin is positive

 vTw = vT support(A ⊖ B, v) = vT support(A,+v) - vT support(B,-v) > 0

ISA-GJK Algorithm

V-Clip
Algorithm

 Voronoi Clipping Algorithm

External Voronoi Regions

 Interior Set:
 The set of all interior points int(C) of a convex polytope C is

the intersection of negative half-spaces formed by all faces
of C (surface points are not included)

 int(C) = { c R3 | ds(c, F) < 0 F C }∈ ∧ ∈

 Distance:
 The distance d(c,X) between a feature X and some point c is

the minimum distance between c and any point of X

 d(c,X) = min { |x − c| | x X }∈

External Voronoi Regions

 Signed Distance
 The signed distance d

s
(c, F) between a point c and a plane F,

defined by a unit normal n
F
 and a reference point o

F
 is the

projection of the reference vector (c − o
F
) onto planes normal

 ds(c, F) = nT
F
 (c − o

F
)

 Having two incident features X, Y: if X has a lower
dimension than Y, then X must be a subset of Y and
therefore the distance of any point c to X is less
than or equal to Y

 X ∩ Y dim(X) < dim(Y) X Y d(c,X) ≤ d(c,Y)∧ ⇒ ⊂ ⇒

External Voronoi Regions

 External Voronoi Region
 The Voronoi region VR(X) of a feature X on some convex

polytope C is a set of external points which are closer (≤) to X
than to any other feature Y in C

 VR(X) = { c ∉ int(C) | d(c,X) ≤ d(c, Y) Y C } ∧ ∈

 External Voronoi Plane
 The Voronoi plane VP(X,Y) of two incident features X and Y is

the plane containing the intersection of their Voronoi regions.
 VP(X,Y) = β VR(X) ∩ VR(Y) β∧ ⊂

 Inter-feature Distance
 The inter-feature distance d(X, Y) between features X and Y

is the minimum distance between any points x X and y Y∈ ∈
 d(X,Y) = min { |x − y| | x X y Y }∈ ∧ ∈

External Voronoi Regions

VP (V,E)

Vertex Voronoi Region

V
VR (V)

VP (E,F)

VP (V,E)

Edge Voronoi Region

E
VR (E)

VP (E,F)

Face Voronoi Region

F

VR (F)

E

Voronoi Region Theorem

 Let X A and Y B be a pair of features from ∈ ∈
disjoint convex polytopes A and B.

 Let x X and y Y be the closest points between ∈ ∈
X and Y

 Points x and y are the (globally) closest points
between A and B iff x VR(Y) y VR(X)∈ ∧ ∈

Voronoi Region Theorem

VR (Y)

VR (X)A

B
X

Y

x

y

Voronoi region theorem

V-Clip Algorithm

 Key idea of the V-Clip algorithm is an efficient
search for two closest features.

 Obviously an exhaustive search is a very
expensive solution

 Fortunately the following Voronoi Region Theorem
allows as to find the global minimum of the inter-
feature distance, by performing usually only a
few iterations of a local search

V-Clip Algorithm

 Given two convex polytopes A, B and any two
features X A, Y B∈ ∈

 In each iteration V-Clip checks if they satisfy the
Voronoi Region Theorem.
 If they don’t, it changes X and Y to some (usually incident)

features X' and Y', so that either the sum their dimensions or
the inter-feature distance strictly decreases.

 Assuming a finite number of features the algorithm can
never cycle

 If we initialize X and Y with the closest features from the
previous time-step and the simulation is coherent, then we
probably need only a few iterations to find new closest
features.

Vertex Clipping

 Given a vertex V from one object, some ”old”
feature N from another object and a set of
feature pairs S

n

 The vertex clipping simply marks X (Y) if the
vertex V lies above (below) the VP(X,Y) for each
feature pair XY S∈

N

 First it clears all features among SN (ClearAll(S
N
))

 Next it tests the side (w.r.t. Voronoi plane) of V and mark
”further” features.

 Finally it updates N with some unmarked feature
(UpdateClear(N, SN)) and returns true if N was changed.

Vertex Clipping Cases

d≤0

- +

E/FV/E

V

a

E/F

- +
b

V/E

d>0
V

β β

ClipVertex and UpdateClear

 In: A feature N to be updated and a set of clipping feature pairs SN

 Out: Test if the feature N was updated (true/false)

 function UPDATECLEAR(N, SN) : bool
 1: M ← N; /* store old feature */
 2: foreach XY in SN do
 3: if (X is “clear”) then N ← X; break; /* update old to closest feature */
 4: if (Y is “clear”) then N ← Y; break; /* update old to closest feature */
 5: end
 6: return N != M; /* true if feature changed */
 end

Edge Clipping

 Take an edge E, the ”old” feature N, a set of
respective feature pairs S

N
 and perform a

sequence of local tests to properly mark
”further” features

 Let d
1
, d

2
 represent signed distances of the

endpoint vertices V
1
E , V

2
E to the Voronoi plane β =

VP(X,Y) of a particular feature pair XY S∈
N

 If both vertices lie on the same side of the clipping
plane (sgn(d

1
d

2
) > 0), we simply mark the feature

of the opposite side as in vertex clipping

Edge Clipping

 If vertices lie on different sides (sgn(d
1
d

2
) < 0),

edge E intersects the clipping plane in some point
p = (1 - λ)V

1
E + λV

2
E, where λ = d

2
/(d

1
-d

2
) and we must

consider two sub-cases depending on the type of
the feature pair

 Let vector u = sgn(d
2
)(V

2
E − V

1
E) represent the edge

E pointing out of the negative half-space to the
positive half-space of β

 If XY is a ”VE” pair, the local test depends on the
sign of the (X − p) projection onto the edge vector
u, i.e. +sgn(uT(X − p))

Edge Clipping

 If XY is a ”EF”pair, there are another two sub-
cases.

 If p lies above the face Y, the local test depends
on the angle between edge vector u and the face
normal vector n

 If p lies below the face Y we use the similar local
test, but mark opposite features

 Therefore the final local test (handling both sub-
cases) can be written as: - sgn(nTu)sgn(d

s
(p,Y))

Edge Clipping Cases

d1≤0

>90˚

- +

EV

d2>0

u

d2>0

<90˚

EV

d1≤0

u

- +

d1≤0

<90˚

- +

FE

d2>0

u

p

p

+
-

n

d2>0

>90˚

FE

d1≤0

u

- +

p

+
-

n

d1≤0

<90˚

- +

FE

d2>0

u

+
-

n

- +

FE+
-

n

d2>0

>90˚

d1≤0

up

d

c

f

e

h

g

p

p
d1≤0

- +

E/F

d2≤0

u

E/F

- +
b

a

d1>0

d2>0

u

V/E

V/E

β

β

β

β

β

β

β

β

ClipEdge Algorithm

Signed
Distance
Maps

for collision detection

Signed Distance Map

 Signed distance map: SDM
N
(V) is N×N×N regular

grid, where each unit cell with a center point p
stores the signed distance to the closest point on
the surface of some volume V.

 This signed distance is a combination of a sign
function sgn

V
(p) and the unsigned distance

function d(p, V) w.r.t. V.

 SDM
N
(V) = { sgn

V
(p)d(p,V) | p = (i + 0.5, j + 0.5 , k + 0.5) ∧

 1 ≤ i, j, k ≤ N }

Signed Distance Maps

 Signed distance maps (SDM) become recently a
popular technique for approximate collision
detection and distance computation.

 Pros: Efficient overlap test, fast contact
generation and penetration depth computation
for arbitrary shaped, non-convex objects with
complex and highly tessellated geometry

 Suitable even for real-time applications as games

 Cons: Huge amount of memory necessary for
massive scenarios and a large number of
redundant (unnecessary) contacts generated
during the collision detection

Distance Map Construction

 Brute force construction
 For each grid cell we need to compute the distance of its center

to each surface triangle and store the shortest distance
 Assuming N is the grid size and M is the number of triangles, we

have to call the primitive point-to-triangle distance function
N×N×N×M times

 Other Efficient Methods
 Lower-Upper Bound Tree (LUB-Tree)
 Characteristic/Scan Conversion (CSC)
 Chamfer and Vector Distance Transform (CDT, VDT)
 Fast Marching Method (FMM)

Proximity Queries with SDM

 Performing proximity queries using SDM involves
simple point location tests.

 The key idea is to sample several points on the
surface and store it together with the SDM.

 During the collision detection sample points of one
object are transformed into the local space of the
other object and are ”looked-up” in the SDM of the
other object and vice versa.

 Surface points located inside other object (lie
under the zero level (SDM

A
(p

B
) ≤ 0)) are used to

create necessary contact information (contact
point, contact normal, penetration depth, etc.)

 The End

