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Narrow-Phase Collision Detection

 Input: List of pairs of potentially colliding objects.

 Problem1: Find which sub-objects are really 
intersecting and remove all non-colliding pairs.

 Problem2: Determine the proximity/contact 
information, i.e. exact points where objects are 
touching (interpenetrating), surface normal at 
that contact point and separating / penetrating 
distance of objects.

 Problem3: Recognize persistent contacts, i.e. 
topologically equivalent contacts from previous 
time steps



    

Narrow-Phase Collision Detection

 Output: List of contact regions with necessary 
proximity information between colliding objects

 Strategies:
 Simplex based traversal of CSO – GJK based algorithms
 Feature tracking base algorithms as Lin-Canny or V-Clip
 Signed Distance Maps for collision detection
 Persistent clustering for contact generation and reduction



    

 Proximity Queries 
 for Convex Objects 



    

Minkowski Space

 Convex Bounded Point Set
 A set S of points p  ∈ Rn is called convex and bounded if for 

any two points a and b the line segment ab lies entirely in S 
and the distance |a - b| is finite (at most β)

 a  S  b  S  t  (0, 1)  (1 − t)a + tb  S  |a - b| ≤ ∈ ∧ ∈ ∧ ∈ ⇒ ∈ ∧ β
 S must be continuous, but needs not to be smooth
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Minkowski Space

 Given any two convex objects A and B we define 
Minkowski Sum, Difference and Translation as

 Minkowski Sum A  B⊕
 A  B = {a + b | a  A  b  B}⊕ ∈ ∧ ∈

 Minkowski Difference A ⊖ B (known as CSO)
 A  ⊖ B = A ⊕ (-B) = {a − b | a  A  b  B}∈ ∧ ∈

 Minkowski Translation A  t⊕
 A  t = A  {t} = {a + t | a  A}⊕ ⊕ ∈



    

Minkowski Space
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Touching Vectors

 Touching Contact
 Two convex objects A and B are in touching contact, iff their 

intersection (as a point set) is a subset of some (contact) 
plane β.   Formally: A ∩ B  β⊂

 Touching Vector
 The touching vector t

AB
 between two convex objects A and B 

is any shortest translational vector t moving objects into the 
touching contact. 

 t
AB

  {t | A ∩ (B  t)  β  t  R∈ ⊕ ⊂ ∧ ∈ 3  |t| = d∧
AB

}

 Touching Distance
 Touching distance d

AB
 is the length of touching vector t

AB
.

 d
AB

 = min {|t| | A ∩ (B  t)  β  t  R⊕ ⊂ ∧ ∈ 3 }



    

Touching Vectors and CSO
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Touching Vectors

 Objects are in close proximity if their touching 
distance is smaller than a defined threshold

 If objects are disjoint touching vector (distance) is 
usually called as separation vector (distance)

 If objects are intersecting touching vector 
(distance) is usually called as penetration vector 
(depth)

 Separation vector is unique. Penetration vector is 
usually not unique (co-centric circles)



    

Support Set and Boundary

 Support Set
 The set of points from a convex object C which have a 

minimal projection onto a direction axis d is the support set 
of C

 Sd
C
 = { p | p  C  d∈ ∧ Tp = min{ dTc | c  C } }∈

 Support Boundary
 The set of all support points from a convex object C with 

respect to any direction d is the boundary of C
 ∂(C) = { p | p  S∈ d

C
  d  R∧ ∈ 3 }



    

Support Set and Boundary
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Touching Vectors and Boundary

 Touching Vector Theorem
 Any translational vector t moves two convex objects A and B 

into touching contact, iff it lies on the boundary of their CSO
 A ∩ (B  t)  β  t  ∂(A ⊕ ⊂ ⇔ ∈  ⊖ B)

 This theorem can simplify the definition of 
touching contact, vector and distance, by 
replacing (A ∩ (B  t)  β) with the t  ∂(A ⊕ ⊂ ∈ ⊖ B)
 d

AB
 = min { |t| | t  ∂(A ∈  ⊖ B) }

 t
AB

  { t | t  ∂(A ∈ ∈  ⊖ B)  |t| = d∧
AB

 }
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Contact Region

 If objects are in touching contact (t
AB

 is zero), their 
intersection simply forms the contact region

 If objects penetrate or are disjoint (t
AB

 is non-zero) 
contact region is constructed as follows
 Compute two support sets S

A
+tAB and S

B
-tAB for A and B w.r.t t

AB

 Project both sets onto touching vector t
AB

 and take median

 Form contact plane with median as origin and normal as t
AB

 Project both support sets onto contact plane and take their 
(ideally) intersection as contact region



    Gilbert - Johnson - Keerthi Algorithm

GJK



    

Gilbert - Johnson - Keerthi Algorithm

 Key idea of all GJK based algorithms:             
iterative search for the touching vector in CSO

 Strategy: Perform a descent traversal of the CSO 
surface to find the closest point to the origin

 Problem: Naive construction and traversal of CSO 
is expensive and slow

 Solution: Simple support function can select 
proper support points on CSO and thus speed up 
the traversal to an almost constant time assuming 
coherent simulation.



    

Support Function

 Support function support(C,d) S∈ d
C
 of a convex 

object C w.r.t. direction d simply returns any 
support point from the respective support set Sd

C

 Support Function Operations
 Assuming support(A, d)  S∈ d

A
 and support(B, d)  S∈ d

B
, we 

define the support functions as follows
 support(-B, d) = -support(B,-d)  S∈ d

-B

 support(A  B, d) = ⊕ support(A, d) + support(B, d)  S∈ d
A B⊕

 support(A ⊖ B, d) = support(A  (−B), d)⊕

                               = support(A, d) + support(−B, d)
                               = support(A,+d) − support(B,−d)



    

Proximity GJK Algorithm

 The traversal is done by iteratively constructing a 
sequence of simplices in 3D
 point or line or triangle or tetrahedron

 In each iteration newly created simplex is closer to 
the origin as the one in previous iteration

 New simplex is created by 

 1) Adding a support point to the former simplex

 2) Taking the smallest sub-simplex which contains 
the closest point to the origin



    

Proximity GJK Algorithm
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Proximity GJK Algorithm
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Proximity GJK Algorithm
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Proximity GJK Algorithm Algorithm
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Proximity GJK Algorithm



    

Computing Support Function

 Searching for the support vertex w heavily 
depends on the representation of the convex 
objects A and B

 For a simple primitives it can be computed directly

 For convex polytopes
 Naive approach is to project all vertices onto the direction 

axis and take any one with the minimal projection
 if we consider a coherent simulation we can use a local 

search sometimes called as “hill climbing” and find the 
support vertex in almost constant time



    

Hill Climbing Support Function 

 For convex polytopes do a local search to “refine” 
the support point from previous simulation state



    

Simplex Refinement

 Problem: Given a simplex and new vertex form 
new simple by adding the vertex and select sub-
simplex closest to the origin

 Bad solution: The simplex can be done by solving a 
system of linear equations (slow, numeric issues)

 Good solution: Form new simplex and test in which 
external Voronoi region the origin lies.

 The selected Voronoi region directly shows us 
which sub-simplex is the desired (closest) one



    

Voronoi Simplex Refinement
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Voronoi Simplex Refinement

 Empty Simplex: A vertex simplex {w} is formed
 The smallest simplex, which contains the closest point to the 

origin is {w} (case 0)

 Vertex Simplex: An edge simplex {W1,w} is formed
 It has 2 vertex regions {W1, w} and one edge region {e1}
 Since W1 lies on support plane which is perpendicular to the 

support axis (vector w) origin can not be in the region of W1
 Thus we check only regions of w and e1 by projecting -w onto 

the edge e1 (case 1)



    

Voronoi Simplex Refinement

 Edge Simplex: A face simplex {W1,W2,w} is formed
 It has 3 vertex regions, 3 edge regions and 2 face regions
 The origin can be only in {w, e1, e2, n1} regions
 Construct Voronoi planes with normals {e1, e2, u1, v1} and 

test whether the origin is above or below these planes, i.e. 
compare signs of -w projections onto these normals

 Face Simplex: A tetrahedron simplex {W1,W2,W3, 
w} is formed
 A tetrahedron has 4 vertex regions, 4 face regions, 6 edge 

regions and 1 interior region (T)
 Origin can lie only only in regions {w, e1, e2, e3, n1, n2, n3,T}
 Construct Voronoi planes with normals {e1, e2, e3, n1, n2, n3, 

u1, u2, u3, v1, v2, v3} and test sign -w projection onto normals



    

Best Simplex Algorithm



    

Closest Point on Simplex

 Problem: Given (0 or 1 or 2 or 3) simplex 
{W1,W2,W3} find the closest point to the origin

 Empty Simplex: Return 0 

 Vertex Simplex: Return W1

 Edge Simplex: Return the closest point on line 
{W1,W2} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)

 Face Simplex: Return the closest point on plane 
{W1,W2,W3} to the origin.
 No need to check other regions (eg. vertex W1 region etc.)



    

Closest Point Algorithm
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GJK Overlap Test 

 Incremental Separating-Axis GJK (ISA-GJK)
 A subtle modification to the proximity GJK
 Descent overlap test for convex objects
 Iteratively searches for some separating axis
 Average constant time complexity in coherent simulation

 Principle: Similar traversal to Proximity GJK
 Reports overlap: When the best simplex is tetrahedron
 Reports no-overlap: When the signed distance of the support 

plane to the origin is positive

 vTw = vT support(A  ⊖ B, v) = vT support(A,+v) - vT support(B,-v) > 0



    

ISA-GJK Algorithm



    

V-Clip
Algorithm

    Voronoi Clipping Algorithm



    

External Voronoi Regions

 Interior Set:
 The set of all interior points int(C) of a convex polytope C is 

the intersection of negative half-spaces formed by all faces 
of C (surface points are not included)

 int(C) = { c  R3 | ds(c, F) < 0  F  C }∈ ∧ ∈

 Distance:
 The distance d(c,X) between a feature X and some point c is 

the minimum distance between c and any point of X

 d(c,X) = min { |x − c| | x  X }∈



    

External Voronoi Regions

 Signed Distance
 The signed distance d

s
(c, F) between a point c and a plane F, 

defined by a unit normal n
F
 and a reference point o

F
 is the 

projection of the reference vector (c − o
F
 ) onto planes normal

 ds(c, F) = nT
F
 (c − o

F
 )

 Having two incident features X, Y: if X has a lower 
dimension than Y, then X must be a subset of Y and 
therefore the distance of any point c to X is less 
than or equal to Y

 X ∩ Y  dim(X) < dim(Y)  X  Y  d(c,X) ≤ d(c,Y)∧ ⇒ ⊂ ⇒



    

External Voronoi Regions

 External Voronoi Region
 The Voronoi region VR(X) of a feature X on some convex 

polytope C is a set of external points which are closer (≤) to X 
than to any other feature Y in C

 VR(X) = { c ∉ int(C) | d(c,X) ≤ d(c, Y )  Y  C } ∧ ∈

 External Voronoi Plane
 The Voronoi plane VP(X,Y) of two incident features X and Y is 

the plane containing the intersection of their Voronoi regions.
 VP(X,Y) = β  VR(X) ∩ VR(Y )  β∧ ⊂

 Inter-feature Distance
 The inter-feature distance d(X, Y ) between features X and Y 

is the minimum distance between any points x  X and y  Y∈ ∈
 d(X,Y) = min { |x − y| | x  X  y  Y }∈ ∧ ∈



    

External Voronoi Regions
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Voronoi Region Theorem

 Let X  A and Y  B be a pair of features from ∈ ∈
disjoint convex polytopes A and B.

 Let x  X and y  Y be the closest points between ∈ ∈
X and Y

 Points x and y are the (globally) closest points 
between A and B iff x  VR(Y)  y  VR(X)∈ ∧ ∈



    

Voronoi Region Theorem
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V-Clip Algorithm

 Key idea of the V-Clip algorithm is an efficient 
search for two closest features.

 Obviously an exhaustive search is a very 
expensive solution

 Fortunately the following Voronoi Region Theorem 
allows as to find the global minimum of the inter-
feature distance, by performing usually only a 
few iterations of a local search



    

V-Clip Algorithm

 Given two convex polytopes A, B and any two 
features X  A, Y  B∈ ∈

 In each iteration V-Clip checks if they satisfy the 
Voronoi Region Theorem.
 If they don’t, it changes X and Y to some (usually incident) 

features X' and Y', so that either the sum their dimensions or 
the inter-feature distance strictly decreases.

 Assuming a finite number of features the algorithm can 
never cycle

 If we initialize X and Y with the closest features from the 
previous time-step and the simulation is coherent, then we 
probably need only a few iterations to find new closest 
features.



    



    

Vertex Clipping

 Given a vertex V from one object, some ”old” 
feature N from another object and a set of 
feature pairs S

n

 The vertex clipping simply marks X (Y) if the 
vertex V lies above (below) the VP(X,Y) for each 
feature pair XY  S∈

N

 First it clears all features among SN (ClearAll(S
N
))

 Next it tests the side (w.r.t. Voronoi plane) of V and mark 
”further” features.

 Finally it updates N with some unmarked feature 
(UpdateClear(N, SN)) and returns true if N was changed.



    

Vertex Clipping Cases
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ClipVertex and UpdateClear

  In: A feature N to be updated and a set of clipping feature pairs SN

  Out: Test if the feature N was updated (true/false)

  function UPDATECLEAR(N, SN) : bool
   1:    M ← N;                                                        /* store old feature */
   2:    foreach XY in SN do
   3:        if (X  is “clear”) then N ← X; break;     /* update old to closest feature */
   4:        if (Y  is “clear”) then N ← Y; break;     /* update old to closest feature */
   5:    end
   6:    return N  != M;                                            /* true if feature changed */
  end



    

Edge Clipping

 Take an edge E, the ”old” feature N, a set of 
respective feature pairs S

N
 and perform a 

sequence of local tests to properly mark 
”further” features

 Let d
1
, d

2
 represent signed distances of the 

endpoint vertices V
1
E , V

2
E to the Voronoi plane β = 

VP(X,Y) of a particular feature pair XY  S∈
N

 If both vertices lie on the same side of the clipping 
plane (sgn(d

1
d

2
) > 0), we simply mark the feature 

of the opposite side as in vertex clipping



    

Edge Clipping

 If vertices lie on different sides ( sgn(d
1
d

2
) < 0), 

edge E intersects the clipping plane in some point 
p = (1 - λ)V

1
E + λV

2
E, where λ = d

2
/(d

1
-d

2
) and we must 

consider two sub-cases depending on the type of 
the feature pair

 Let vector u = sgn(d
2
)(V

2
E − V

1
E) represent the edge 

E pointing out of the negative half-space to the 
positive half-space of β

 If XY is a ”VE” pair, the local test depends on the 
sign of the (X − p) projection onto the edge vector 
u, i.e. +sgn(uT(X − p))



    

Edge Clipping

 If XY is a ”EF”pair, there are another two sub-
cases.

 If p lies above the face Y, the local test depends 
on the angle between edge vector u and the face 
normal vector n

 If p lies below the face Y we use the similar local 
test, but mark opposite features

 Therefore the final local test (handling both sub-
cases) can be written as: - sgn(nTu)sgn(d

s
(p,Y))



    

Edge Clipping Cases
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ClipEdge Algorithm



    

Signed
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for collision detection



    

Signed Distance Map 

 Signed distance map: SDM
N
(V) is N×N×N regular 

grid, where each unit cell with a center point p 
stores the signed distance to the closest point on 
the surface of some volume V.

 This signed distance is a combination of a sign 
function sgn

V
(p) and the unsigned distance 

function d(p, V) w.r.t. V.

 SDM
N
(V) = { sgn

V
(p)d(p,V) | p = (i + 0.5, j + 0.5 , k + 0.5 )           ∧

                                                  1 ≤ i, j, k ≤ N }



    

Signed Distance Maps

 Signed distance maps (SDM) become recently a 
popular technique for approximate collision 
detection and distance computation. 

 Pros: Efficient overlap test, fast contact 
generation and penetration depth computation 
for arbitrary shaped, non-convex objects with 
complex and highly tessellated geometry

 Suitable even for real-time applications as games

 Cons: Huge amount of memory necessary for 
massive scenarios and a large number of 
redundant (unnecessary) contacts generated 
during the collision detection



    

Distance Map Construction

 Brute force construction
 For each grid cell we need to compute the distance of its center 

to each surface triangle and store the shortest distance
 Assuming N is the grid size and M is the number of triangles, we 

have to call the primitive point-to-triangle distance function 
N×N×N×M times

 Other Efficient Methods
 Lower-Upper Bound Tree (LUB-Tree)
 Characteristic/Scan Conversion (CSC)
 Chamfer and Vector Distance Transform (CDT, VDT)
 Fast Marching Method (FMM)



    

Proximity Queries with SDM

 Performing proximity queries using SDM involves 
simple point location tests.

 The key idea is to sample several points on the 
surface and store it together with the SDM.

 During the collision detection sample points of one 
object are transformed into the local space of the 
other object and are ”looked-up” in the SDM of the 
other object and vice versa.

 Surface points located inside other object (lie 
under the zero level (SDM

A
(p

B
) ≤ 0)) are used to 

create necessary contact information (contact 
point, contact normal, penetration depth, etc.)



    The End


