

Matthias Müller, Bruno Heidelberger, Marcus Hennix, John Ratcliff 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Presentation by Daniel Adam 2010/2011

What can you expect?

• To be crushed if you don't pay attention!

Figure 1: A known deformation benchmark test, applied here to a cloth character under pressure.

Overview

• Position based approach to simulation of dynamic systems

The Content

- Motivation
- Algorithm
- Some of the math behind
- Constraint handling
- **Usage** Cloth simulation
 - Results

Introduction

- Simulation of physical phenomena such as the dynamics of rigid bodies, deformable objects or fluid flow
- **Computation science:** Accuracy
- **Physical-based animation:** Stability, robustness, speed and visual plausibility
- **Traditional methods** Force or impulse based
 - Simple explicit methods: Inaccuracy, instability
 - Implicit methods: Large, slow
- **Proposed method** Position based
 - Directly modify positions

Features and advantages

Similiar approaches have been used before, but no complete framework has been defined

Position based dynamics:

- gives control over explicit integration
- removes the typical instability problems
- allows direct manipulation of objects and its parts
- allows the handling of general constraints

Representation

- Object representation:
 - o dynamic object is represented with a set of N vertices
 - vertex $i \in [1, ..., N]$ has a mass m_i , a position x_i and a velocity v_i
- Constraint representation:
 - a cardinality n_i
 - the constraint j is a function $C_i(x)$: $R^{3n_j} \rightarrow R$
 - set of indices
 - stiffness parameter (defines the strength of the constraint)
 - equality constraint j is satisfied if: $C_i(x) = 0$
 - inequality constraint j is satisfied if: $C_i(x) \ge 0$

Algorithm

(1) forall vertices *i* initialize $\mathbf{x}_i = \mathbf{x}_i^0$, $\mathbf{v}_i = \mathbf{v}_i^0$, $w_i = 1/m_i$ (2)(3) endfor (4) **loop forall** vertices *i* **do** $v_i = v_i + \Delta t w_i f_{ext}(x_i)$ (5) dampVelocities($v_1, ..., v_N$) (6) **forall** vertices i **do** $\mathbf{p}_i = \mathbf{x}_i + \Delta t \mathbf{v}_i$ (7)**forall** vertices *i* **do** generateCollisionConstraints $(x_i \rightarrow p_i)$ (8) loop solverIterations times (9) projectConstraints($C_1, ..., C_{M+Mcoll}; p_1, ..., p_N$) (10)endloop (11)(12) **forall** vertices *i* (13) $\mathbf{v}_i = (\mathbf{p}_i - \mathbf{x}_i) / \Delta t$ (14) $\mathbf{x}_i = \mathbf{p}_i$ (15) endfor (16) velocityUpdate($v_1, ..., v_N$) (17) endloop

Algorithm description

Initialization:

 \circ (1)-(3) initialize the state variables.

• Velocity manipulation:

- (5) allows to hook up external forces
- (6) damps the velocities if necessary
- (16) the velocities of colliding vertices are modified according to friction and restitution coefficients

Constraint manipulation:

- \circ (8) generates the M_{coll} collision constraints
- (10) projects all of the constraints

Position based dynamics:

- (7) estimates p_i of the vertices are computed using explicit Euler
- (9)-(11) manipulate these position estimates such that they satisfy the constraints
- (13-14) vertices are moved to the optimized estimates and the velocities are updated accordingly

Solver

- Input:
 - \circ M +M_{coll} constraints
 - estimates p_1, \dots, p_N
- The solver tries to modify the estimates such that they satisfy all the constraints. The resulting system of equations is non-linear.
- Solution:
 - iterative, similiar to the Gauss-Seidel method
 - the idea is to solve each constraint independently one after the other
 - repeatedly iterate through all the constraints and project the particles to valid locations
 - o order of constraints is important

- moving the points such that they satisfy the constraint
- internal constraints must conserve both linear and angular momentum

The Issue:

- let us have a constraint with cardinality **n** on the points $p_1, ..., p_N$ with constraint function **C** and stiffness **k**.
- let **p** be the concatenation $[p_1^T, ..., p_N^T]^T$
- for internal constraints rotating or translating the points does not change the value of the constraint function

The Solution:

• if the correction $\Delta \mathbf{p}$ is chosen to be along the gradient $\nabla_p \mathbf{C}(\mathbf{p})$ both momenta are conserved

The Correction:

- given **p** we want to find a correction $\Delta \mathbf{p}$ such that $\mathbf{C}(\mathbf{p} + \Delta \mathbf{p}) = \mathbf{0} \ (\geq \mathbf{0})$.
- approximation: $C(p + \Delta p) \approx C(p) + \nabla_p C(p) \cdot \Delta p = 0$
- to solve the problem one needs to find a scalar λ (lagrange multiplier): $\Delta p = \lambda \nabla_p C(p)$

$$\lambda = -\frac{C(p)}{|\nabla_p C(p)|^2}$$

o solving for λ and substituting it into the formula yields the final formula for Δp :

$$\Delta p = -\frac{C(p)}{|\nabla_p C(p)|^2} \nabla_p C(p)$$

The result is a non-linear equation, which can be solved iteratively for each point p_i alone

For the correction of an individual point p_i we have:

•
$$\Delta p_i = -s \nabla_{p_i} C(p_1, ..., p_N)$$
, where s is the scaling factor (same for all points)

•
$$s = \frac{C(p_1,...,p_N)}{\sum_{j} |\nabla_{p_j} C(p_1,...,p_N)|^2}$$

• The methods described so far work if all the points have the same masses

Weighted projection

- If the points have individual masses then the corrections Δp must be weighted by the inverse masses $w_i = 1 / m_i$
 - In this case a point with infinite mass, i.e. $w_i = 0$, does not move for example as expected
- Adding the inverse mass to the formula:

$$^{\circ} \qquad \Delta \mathbf{p}_{i} = \lambda \mathbf{w}_{i} \nabla_{p_{i}} \mathbf{C}(\mathbf{p})$$

•
$$s = \frac{C(p_1,...,p_N)}{\sum_j w_j |\nabla_{p_j} C(p_1,...,p_N)|^2}$$

• $\Delta p_i = -s w_i \nabla_{p_i} C(p_1,...,p_N)$

- Type handling is straightforward:
 - For equality constraint always perform a projection
 - For **inequality** constraint perform a projection only when C(p) < 0

Stiffness parameter k:

- simplest variant is to multiply the corrections $\Delta \mathbf{p}$ by $\mathbf{k} \in [0, ..., 1]$
- o for multiple iteration loops of the solver, the effect of k is non-linear
- better solution: multiply by $1 (1 k)^{1/n_s}$ where n_s is the number of iterations • resulting material stiffness is applied linearly, but it is still dependent on the time step of the
- resulting material stiffness is applied linearly, but it is still dependent on the time step of the simulation.

Distance constraint

- $C(p_1,p_2) = |p_1 p_2| d = 0$
- The gradients:

•
$$\nabla_{p_1} C(p_1, p_2) = \frac{(p_1 - p_2)}{|p_1 - p_2|}$$

• $\nabla_{p_2} C(p_1, p_2) = -\frac{(p_1 - p_2)}{|p_1 - p_2|}$

Figure 2: Projection of the constraint $C(\mathbf{p}_1, \mathbf{p}_2) = |\mathbf{p}_1 - \mathbf{p}_2| - d$. The corrections $\Delta \mathbf{p}_i$ are weighted according to the inverse masses $w_i = 1/m_i$.

• The scaling factor **s**:

$$\circ \qquad s = \frac{|p_1 - p_2| - d}{w_1 + w_2}$$

Final formula:

•
$$\Delta p_1 = -\frac{W_1}{W_1 + W_2} (|p_1 - p_2| - d) \frac{p_1 - p_2}{|p_1 - p_2|}$$

Example – Distance Constraint

- Let us consider a 2D case of 3 vertexes A, B, C bound by 2 distance constraints.
- The parameters:
 - Weights: $m_A = 10, m_B = 5, m_C = 2$
 - Inverse weights: $w_A = 1/10$, $w_B = 1/5$, $w_C = 1/2$
 - Constraints: $C_1(A, B) = |A B| 1$, $C_2(A, C) = |A C| 1$
 - New predicted positions: $p_A = [1, 1], p_B = [4, 2], p_C = [2, 3]$
 - Stiffness = 1

Example

- Both constraints are violated: $|A-B| = \sqrt{10} > 1$ $|A-C| = \sqrt{5} > 1$
- Constraint projection:
 - Lets handle the constraints in order: C_1, C_2

• Formulas:

$$\Delta p_1 = -\frac{w_1}{w_1 + w_2} (|p_1 - p_2| - d) \frac{p_1 - p_2}{|p_1 - p_2|} \qquad \Delta p_2 = \frac{w_1}{w_1 + w_2} (|p_1 - p_2| - d) \frac{p_1 - p_2}{|p_1 - p_2|}$$

• 1st iteration:
•
$$C_1$$
: $\Delta p_A = -\frac{1}{3}(\sqrt{10} - 1)\frac{[-3, -1]}{\sqrt{10}} \approx [0.68, 0.23]$
• $\Delta p_B = \frac{2}{3}(\sqrt{10} - 1)\frac{[-3, -1]}{\sqrt{10}} \approx [-1.37, -0.46]$
• $\Delta p_B = \frac{2}{3}(\sqrt{10} - 1)\frac{[-3, -1]}{\sqrt{10}} \approx [-1.37, -0.46]$

•
$$C_2: |A-C| \cong 1.8 > 1$$

 $\Delta p_A = -\frac{1}{6}(1.8 - 1) \frac{[-0.32, -1.77]}{1,8} \cong [0.02, 0.13]$ $A = [1.7, 1.36], C = [1.88, 2.35]$
 $|A - C| = 1,0125$
 $\Delta p_C = -\frac{5}{6}(1.8 - 1) \frac{[-0.32, -1.77]}{1,8} \cong [-0.12, -0.65]$

Example

- New positions:
 - A = [1.7, 1.36]
 - B = [2.63, 1.54]
 - C = [1.88, 2.35]
- The process is iteratively repeated to get better results

Collision Detection

- Continuous collisions:
 - o for each vertex i the ray $x_i \rightarrow p_i$ is tested if it enters an object
 - compute the entry point \mathbf{q}_{c} and the surface normal \mathbf{n}_{c} at this position
 - add a new **inequality** constraint that ensures non-penetration to the list, such constraint has function $C(p) = (p q_c) \cdot n_c \ge 0$ and stiffness k = 1
- Static collisions:
 - compute the surface point \mathbf{q}_s closest to the point \mathbf{p}_i and the surface normal \mathbf{n}_c at this position
 - add add a new inequality constraint with $C(p) = (p q_s)$. $n_s \ge 0$ and stiffness k = 1
- To make the simulation faster, the collision constraint generation is done outside of the solver loop.

Example – Plane Constraint

- Consider a case of a particle (single vertex) that has entered a wall (plane), however the particle is elastic, so it shouldn't penetrate the wall, but bounce off it.
- The parameters:
 - Plane given by three points: A = [1, 0, 0], B = [0, 1, 0], C = [0, 0, 1]
 - Particle X position: $p_X = [0, 0, 0]$
 - Stiffness = 1
- Constraint:

•
$$C(p) = (p - q_s) \cdot n_s \ge 0$$

• $n_s = normal vector = (1, 1, 1); normalized = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

• $q_s = parallel projection of X to the plane = [1/3, 1/3, 1/3]$

• Final form:
$$C(p_X) = (p_X - [1/3, 1/3, 1/3]) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \ge 0$$

Example

• Constraint projection:

•
$$\Delta p_i = -s w_i \nabla_{p_i} C(p_1, ..., p_N)$$
 $s = \frac{C(p_1, ..., p_N)}{\sum_j w_j |\nabla_{p_j} C(p_1, ..., p_N)|^2}$

• Our case with a single particle:

$$\begin{split} \Delta p_{X} &= -\frac{C(p_{X})}{|\nabla_{p_{X}}C(p_{X})|^{2}} \nabla_{p_{X}}C(p_{X}) \\ C(p_{X}) &= \left([x, y, z] - \frac{1}{3}(1, 1, 1) \right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) = \frac{1}{\sqrt{3}}(x + y + z - 1) \\ \nabla_{p_{X}}C(p_{X}) &= \left(\frac{\partial C(p_{X})}{\partial x}, \frac{\partial C(p_{X})}{\partial y}, \frac{\partial C(p_{X})}{\partial z} \right) = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}} \right) \\ |\nabla_{p_{X}}C(p_{X})|^{2} &= 1 \end{split}$$

Example

$$\Delta p_{x} = -\frac{1}{\sqrt{3}}(x+y+z-1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

Solution:

$$\Delta p_X = -\frac{1}{\sqrt{3}} (-1) \cdot \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

• New position: **X** =
$$\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

Collision Detection

- Friction and restitution can be handled by manipulating the velocities of colliding vertices in step (16) of the algorithm
- The described collision handling is only correct for collisions with static objects, because no impulse is transferred to the collision partners
- Multiple colliding objects:
 - Correct response for multiple colliding objects can be achieved by simulating all objects with the simulator
 - the N vertices and M constraints which are the input to the algorithm simply represent two or more independent objects.

Collision Detection

- Lets consider a case of two dynamic objects
 - Let **q** be a point of the first object
 - Let $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ be a triangle of the second object
- Example: Point **q** enters the triangle **p**₁, **p**₂, **p**₃
 - the algorithm inserts an **inequality** constraint with constraint function $C(\mathbf{q}, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \pm (\mathbf{q} - \mathbf{p}_1) \cdot [(\mathbf{p}_2 - \mathbf{p}_2) \times (\mathbf{p}_3 - \mathbf{p}_1)]$
 - this keeps the point q on the correct side of the triangle

Figure 5: Constraint function $C(\mathbf{q}, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = (\mathbf{q} - \mathbf{p}_1) \cdot \mathbf{n} - h$ makes sure that \mathbf{q} stays above the triangle $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$ by the the cloth thickness h.

Damping

- the velocities are dampened before they are used for the prediction of the new positions
- local deviations from the global motion is dampened
- Proposed method:

(1) **forall** vertices i

- (2) $\Delta v_i = v_{cm} + \omega x r_i v_i$
- (3) $v_i \leftarrow v_i + k_d \Delta v_i$

(4) endfor

The variables:

$$\circ \qquad p_{cm} = (\Sigma_i p_i m_i) / (\Sigma_i m_i)$$

- $\circ \qquad v_{cm} = (\Sigma_i \ v_i \ m_i) \ / \ (\Sigma_i \ m_i) \ (velocity \ due \ to \ global \ body \ motion)$
- $\circ \qquad r_i = p_{cm} p_i$

•
$$L = \sum_i r_i x (m_i v_i)$$

- $J = \sum_{i} (r_{i}^{x})(r_{i}^{x})^{T} m_{i}$, where r_{i}^{x} is the cross product matrix
- $\circ \qquad \omega = J^{\text{-1}} L$

Attachments

- Attaching vertices to static or kinematic objects
- How to model it:
 - position of the vertex is simply set to the static target position
 - alternatively update the position at every time step to coincide with the position of the kinematic object
 - \circ To make sure other constraints containing this vertex do not move it, its inverse mass w_{i} is set to zero

Figure 8: Cloth stripes are attached via one way interaction to static rigid bodies at the top and via two way constraints to rigid bodies at the bottom.

Cloth Simulation

- the position based dynamics framework has been used to implement a real time cloth simulator for games
- Representation of cloth:
 - simulator accepts as input arbitrary triangle meshes
 - the input mesh must represent a 2-manifold
 - each node of the mesh becomes a simulated vertex
 - user inputs cloth density and thickness, which are used to calculate the mass of each triangle
 - the mass of a vertex is set to the sum of one third of the mass of each adjacent triangle
 - constraints are defined along edges and faces

Constraints

- Stretching constraints:
 - generated for each edge
 - $\circ \qquad C_{stretch}(\mathbf{p}_1, \mathbf{p}_2) = |\mathbf{p}_1 \mathbf{p}_2| \mathbf{l}_0 = \mathbf{0}$
 - \mathbf{l}_0 is the initial length of the edge
 - the stiffness parameter $\mathbf{k}_{\text{stretch}}$ is set by the user

Bending constraints:

• generated for each pair of adjacent triangles $(\mathbf{p}_1, \mathbf{p}_3, \mathbf{p}_2)$ and $(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_4)$

•
$$C_{\text{bend}}(p_1, p_2, p_3, p_4) = \operatorname{acos}(\frac{(p_2 - p_1) x (p_3 - p_1)}{|(p_2 - p_1) x (p_3 - p_1)|} \cdot \frac{(p_2 - p_1) x (p_4 - p_1)}{|(p_2 - p_1) x (p_4 - p_1)|}) - \varphi_0$$

 $\circ \qquad \phi_0$ is the initial dihedral angle between the two triangles

 \circ — the stiffness parameter k_{bend} is set by the user

Cloth simulation

Figure 3: With the bending term we propose, bending and stretching are independent parameters. The top row shows $(k_{stretching}, k_{bending}) = (1, 1), (\frac{1}{2}, 1) and (\frac{1}{100}, 1)$. The bottom row shows $(k_{stretching}, k_{bending}) = (1, 0), (\frac{1}{2}, 0) and (\frac{1}{100}, 0)$.

Collisions

- Collision with rigid bodies:
 - to get two-way interactions an impulse $m_i \Delta p_i / \Delta t$ is applied at the contact point each time the vertex i is projected due to collision
- Self-collisions:
 - assume the triangles all have about the same size and use spatial hashing to find vertex triangle collisions
 - if a vertex \mathbf{q} moves through a triangle $\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3$, use the constraint function:
 - $C(\mathbf{q}, \mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \pm (\mathbf{q} \mathbf{p}_1) \cdot [(\mathbf{p}_2 \mathbf{p}_2) \times (\mathbf{p}_3 \mathbf{p}_1)] \mathbf{h}$ (h is cloth thickness)
 - testing continuous collisions is insufficient if cloth gets into a tangled state

Figure 6: This folded configuration demonstrates stable self collision and response.

Cloth Balloons

• For closed triangle meshes, overpressure inside the mesh can easily be modeled

Figure 7: Simulation of overpressure inside a character.

- The model:
 - an equality constraint concerning all N vertices of the mesh
 - compute the actual volume of the closed mesh and compare it against the original volume V_0 times the overpressure factor $k_{pressure}$

$$\circ \quad C(p_1,...,p_N) = \left(\sum_{i=1}^{n_{triangles}} (p_{t_1^i} \times p_{t_2^i}) \cdot p_{t_3^i}\right) - k_{pressure} V_0$$

• t_1^i, t_2^i, t_3^i are the three indices of the vertices belonging to triangle i

Cloth Tearing

- Tearing is simulated by a simple process:
 - When the stretching of an edge exceeds a threshold, select one of the adjacent vertices
 - Put a split plane through that vertex perpendicular to the edge direction and split the vertex
 - All triangles above the split plane are assigned to the original vertex
 - All triangles below are assigned to the new vertex
 - Method remains stable even in extreme situations

Figure 10: A piece of cloth is torn open by an attached cube and ripped apart by a thrown ball.

Conclusions

- Position based dynamics framework that can handle general constraints formulated via constraint functions.
- With the position based approach it is possible to manipulate objects directly during the simulation.
- It significantly simplifies the handling of collisions, attachment constraints and explicit integration and it makes direct and immediate control of the animated scene possible.
- The approach presented could quite easily be extended to handle rigid objects as well

Figure 9: Influenced by collision. self collision and friction. a piece of cloth tumbles in a rotating barrel.

Figure 11: Three inflated characters experience multiple collisions and self collisions.

Figure 12: Extensive interaction between pieces of cloth and an animated game character (left), a geometrically complex game level (middle) and hundreds of simulated plant leaves (right).

The End

Thank you for your attention.