

Matthias Müller, Bruno Heidelberger, Marcus Hennix, John Ratcliff 3rd Workshop in Virtual Reality Interactions and Physical Simulation "VRIPHYS" (2006)

Presentation by Daniel Adam 2010/2011

What can you expect?

- To be crushed if you don't pay attention!

Figure 1: A known deformation benchmark test, applied here to a cloth character under pressure.

- Position based approach to simulation of dynamic systems
- The Content
- Motivation
- Algorithm
- Some of the math behind
- Constraint handling
- Usage - Cloth simulation
- Results

Introduction

- Simulation of physical phenomena such as the dynamics of rigid bodies, deformable objects or fluid flow
- Computation science: Accuracy
- Physical-based animation: Stability, robustness, speed and visual plausibility
- Traditional methods - Force or impulse based
- Simple explicit methods: Inaccuracy, instability
- Implicit methods: Large, slow
- Proposed method - Position based
- Directly modify positions
- Similiar approaches have been used before, but no complete framework has been defined

Position based dynamics:

- gives control over explicit integration
- removes the typical instability problems
- allows direct manipulation of objects and its parts
- allows the handling of general constraints

Representation

- Object representation:
- dynamic object is represented with a set of N vertices
- vertex $i \in[1, \ldots, N]$ has a mass m_{i}, a position x_{i} and a velocity v_{i}
- Constraint representation:
- a cardinality n_{j}
- the constraint j is a function $C_{j}(x): R^{3 n_{j}} \rightarrow R$
- set of indices
- stiffness parameter (defines the strength of the constraint)
- equality constraint j is satisfied if: $C_{j}(x)=0$
- inequality constraint j is satisfied if: $\mathrm{C}_{j}(\mathrm{x}) \geq 0$

Algorithm

(1) forall vertices i
(2) initialize $\mathrm{x}_{i}=\mathrm{x}_{i}^{0}, \mathrm{v}_{i}=\mathrm{v}_{i}^{0}, w_{i}=1 / m_{i}$
(3) endfor
(4) loop
(5) forall vertices i do $\mathrm{v}_{i}=\mathrm{v}_{i}+\Delta t w_{i} \mathrm{f}_{\text {ext }}\left(\mathrm{x}_{i}\right)$
(6) dampVelocities $\left(\mathrm{v}_{l}, \ldots, \mathrm{v}_{N}\right)$
(7) forall vertices i do $\mathrm{p}_{i}=\mathrm{x}_{i}+\Delta t \mathrm{v}_{i}$
(8) forall vertices i do generateCollisionConstraints $\left(\mathrm{x}_{i} \rightarrow \mathrm{p}_{i}\right)$
(9) loop solverIterations times
(10) projectConstraints $\left(C_{1}, \ldots, C_{M+M \text { coll }} ; \mathrm{p}_{1}, \ldots, \mathrm{p}_{N}\right)$
(11) endloop
(12) forall vertices i
(13) $\quad \mathrm{v}_{i}=\left(\mathrm{p}_{i}-\mathrm{x}_{i}\right) / \Delta t$
(14) $\quad \mathrm{x}_{i}=\mathrm{p}_{i}$
(15) endfor
(16) velocityUpdate $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{N}\right)$
(17) endloop

Algorithm description

- Initialization:
- (1)-(3) initialize the state variables.
- Velocity manipulation:
- (5) allows to hook up external forces
- (6) damps the velocities if necessary
- (16) the velocities of colliding vertices are modified according to friction and restitution coefficients
- Constraint manipulation:
- (8) generates the $\mathrm{M}_{\text {coll }}$ collision constraints
- (10) projects all of the constraints
- Position based dynamics:
- (7) estimates p_{i} of the vertices are computed using explicit Euler
- (9)-(11) manipulate these position estimates such that they satisfy the constraints
- (13-14) vertices are moved to the optimized estimates and the velocities are updated accordingly
- Input:
- $\quad \mathrm{M}+\mathrm{M}_{\text {coll }}$ constraints
- estimates $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{N}}$
- The solver tries to modify the estimates such that they satisfy all the constraints. The resulting system of equations is non-linear.
- Solution:
- iterative, similiar to the Gauss-Seidel method
- the idea is to solve each constraint independently one after the other
- repeatedly iterate through all the constraints and project the particles to valid locations
- order of constraints is important

Constraint projection

- moving the points such that they satisfy the constraint
- internal constraints must conserve both linear and angular momentum
- The Issue:
- let us have a constraint with cardinality \mathbf{n} on the points $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{N}}$ with constraint function \mathbf{C} and stiffness \mathbf{k}.
- let \mathbf{p} be the concatenation $\left[\mathrm{p}_{1}^{\mathrm{T}}, \ldots, \mathrm{p}_{\mathrm{N}}{ }^{\mathrm{T}}\right]^{\mathrm{T}}$
- for internal constraints rotating or translating the points does not change the value of the constraint function
- The Solution:
- if the correction $\Delta \mathrm{p}$ is chosen to be along the gradient $\nabla_{p} \mathrm{C}(\mathrm{p})$ both momenta are conserved

Constraint projection

- The Correction:
- given \mathbf{p} we want to find a correction $\Delta \mathbf{p}$ such that $\mathbf{C}(\mathbf{p}+\Delta \mathbf{p})=\mathbf{0}(\geq \mathbf{0})$.
- approximation: $\mathbf{C}(\mathbf{p}+\Delta \mathbf{p}) \approx \mathbf{C}(\mathbf{p})+\nabla_{p} \mathbf{C}(\mathrm{p}) . \Delta \mathrm{p}=0$
- to solve the problem one needs to find a scalar λ (lagrange multiplier): $\Delta \mathrm{p}=\lambda \nabla_{p} \mathrm{C}(\mathrm{p})$
- $\lambda=-\frac{C(p)}{\left|\nabla_{p} C(p)\right|^{2}}$
- solving for λ and substituting it into the formula yields the final formula for $\Delta \mathbf{p}$:

$$
\quad \Delta p=-\frac{C(p)}{\left|\nabla_{p} C(p)\right|^{2}} \nabla_{p} C(p)
$$

- The result is a non-linear equation, which can be solved iteratively for each point p_{i} alone

Constraint projection

- For the correction of an individual point p_{i} we have:
- $\Delta p_{i}=-s \nabla_{p_{i}} C\left(p_{1}, \ldots, p_{N}\right)$, where s is the scaling factor (same for all points)
$\circ s=\frac{C\left(p_{1}, \ldots, p_{N}\right)}{\sum_{j}\left|\nabla_{p_{j}} C\left(p_{1}, \ldots, p_{N}\right)\right|^{2}}$
- The methods described so far work if all the points have the same masses

Weighted projection

- If the points have individual masses then the corrections $\Delta \mathbf{p}$ must be weighted by the inverse masses $\mathrm{w}_{\mathrm{i}}=1 / \mathrm{m}_{\mathrm{i}}$
- In this case a point with infinite mass, i.e. $w_{i}=0$, does not move for example as expected
- Adding the inverse mass to the formula:

$$
\begin{aligned}
& \circ \Delta \mathrm{p}_{\mathrm{i}}=\lambda \mathrm{w}_{\mathrm{i}} \nabla_{p_{i}} \mathrm{C}(\mathrm{p}) \\
& \circ \quad s=\frac{C\left(p_{1}, \ldots, p_{N}\right)}{\sum_{j} w_{j}\left|\nabla_{p_{j}} C\left(p_{1}, \ldots, p_{N}\right)\right|^{2}} \\
& \circ \Delta p_{i}=-s w_{i} \nabla_{p_{i}} C\left(p_{1}, \ldots, p_{N}\right)
\end{aligned}
$$

Constraint projection

- Type handling is straightforward:
- For equality constraint always perform a projection
- For inequality constraint perform a projection only when $\mathrm{C}(\mathrm{p})<0$
- Stiffness parameter \mathbf{k} :
- simplest variant is to multiply the corrections $\Delta \mathbf{p}$ by $\mathbf{k} \in[0, \ldots, 1]$
- for multiple iteration loops of the solver, the effect of k is non-linear
- better solution: multiply by $1-(1-k)^{1 / n_{s}} \quad$ where n_{s} is the number of iterations
- resulting material stiffness is applied linearly, but it is still dependent on the time step of the simulation.

Distance constraint

- $\quad \mathbf{C}\left(p_{1}, p_{2}\right)=\left|p_{1}-p_{2}\right|-d=0$
- The gradients:

$$
\begin{aligned}
& \circ \nabla_{\mathrm{p}_{1}} \mathrm{C}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|} \\
& \circ \quad \nabla_{\mathrm{p}_{2}} \mathrm{C}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right)=-\frac{\left(\mathrm{p}_{1}-\mathrm{p}_{2}\right)}{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|}
\end{aligned}
$$

Figure 2: Projection of the constraint $C\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\mid \mathbf{p}_{1}-$ $\mathbf{p}_{2} \mid-d$. The corrections $\Delta \mathbf{p}_{i}$ are weighted according to the inverse masses $w_{i}=1 / m_{i}$.

- The scaling factor \mathbf{s} :

$$
\mathrm{s}=\frac{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|-\mathrm{d}}{\mathrm{w}_{1}+\mathrm{w}_{2}}
$$

- Final formula:
- $\Delta \mathrm{p}_{1}=-\frac{\mathrm{w}_{1}}{\mathrm{w}_{1}+\mathrm{w}_{2}}\left(\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|-\mathrm{d}\right) \frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|}$

Example - Distance Constraint

- Let us consider a 2D case of 3 vertexes $\mathrm{A}, \mathrm{B}, \mathrm{C}$ bound by 2 distance constraints.
- The parameters:
- Weights: $\mathrm{m}_{\mathrm{A}}=10, \mathrm{~m}_{\mathrm{B}}=5, \mathrm{~m}_{\mathrm{C}}=2$
- Inverse weights: $\mathrm{w}_{\mathrm{A}}=1 / 10, \mathrm{w}_{\mathrm{B}}=1 / 5, \mathrm{w}_{\mathrm{C}}=1 / 2$
- Constraints: $\mathrm{C}_{1}(\mathrm{~A}, \mathrm{~B})=|\mathrm{A}-\mathrm{B}|-1, \mathrm{C}_{2}(\mathrm{~A}, \mathrm{C})=|\mathrm{A}-\mathrm{C}|-1$
- New predicted positions: $p_{A}=[1,1], p_{B}=[4,2], p_{C}=[2,3]$
- \quad Stiffness $=1$

Example

- Both constraints are violated: $|A-B|=\sqrt{10}>1 \quad|A-C|=\sqrt{5}>1$
- Constraint projection:
- Lets handle the constraints in order: $\mathrm{C}_{1}, \mathrm{C}_{2}$
- Formulas:

$$
\begin{aligned}
& \text { Formulas: } \mathrm{w}_{1} \\
& \Delta \mathrm{p}_{1}=-\frac{\mathrm{w}_{1}+\mathrm{w}_{2}}{\left.\mathrm{w}_{1}-\mathrm{p}_{1}-\mathrm{p}_{2} \mid-\mathrm{d}\right)} \frac{\mathrm{p}_{2}}{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|} \quad \Delta \mathrm{p}_{2}=\frac{\mathrm{w}_{1}}{\mathrm{w}_{1}+\mathrm{w}_{2}}\left(\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|-\mathrm{d}\right) \frac{\mathrm{p}_{1}-\mathrm{p}_{2}}{\left|\mathrm{p}_{1}-\mathrm{p}_{2}\right|}
\end{aligned}
$$

- $\quad 1^{\text {st }}$ iteration:
$\begin{array}{ll}\text { 1. } \quad \mathrm{C}_{1}: \quad \Delta \mathrm{p}_{\mathrm{A}}=-\frac{1}{3}(\sqrt{10}-1) \frac{[-3,-1]}{\sqrt{10}} \cong[0.68,0.23] \\ 0 & \Delta \mathrm{p}_{\mathrm{B}}=\frac{2}{3}(\sqrt{10}-1) \frac{[-3,-1]}{\sqrt{10}} \cong[-1.37,-0.46]\end{array}$
$\mathrm{C}_{2}:|A-C| \cong 1.8>1$

$$
\begin{aligned}
& \Delta \mathrm{p}_{\mathrm{A}}=-\frac{1}{6}(1.8-1) \frac{[-0.32,-1.77]}{1,8} \cong[0.02,0.13] \mathrm{A}=[1.7,1.36], \mathrm{C}=[1.88,2.35] \\
& \Delta \mathrm{A}-\mathrm{C} \mid=1,0125
\end{aligned}
$$

- New positions:

$$
\begin{array}{ll}
\circ & \mathrm{A}=[1.7,1.36] \\
\circ & \mathrm{B}=[2.63,1.54] \\
- & \mathrm{C}=[1.88,2.35]
\end{array}
$$

- The process is iteratively repeated to get better results

Collision Detection

- Continuous collisions:
- for each vertex \mathbf{i} the ray $\mathbf{x}_{\mathbf{i}} \rightarrow \mathbf{p}_{\mathbf{i}}$ is tested if it enters an object
- compute the entry point $\mathbf{q}_{\mathbf{c}}$ and the surface normal $\mathbf{n}_{\mathbf{c}}$ at this position
- add a new inequality constraint that ensures non-penetration to the list, such constraint has function $\mathbf{C}(\mathbf{p})=\left(\mathbf{p}-\mathbf{q}_{\mathbf{c}}\right) \cdot \mathbf{n}_{\mathbf{c}} \geq \mathbf{0}$ and stiffness $\mathbf{k}=\mathbf{1}$
- Static collisions:
- compute the surface point \mathbf{q}_{s} closest to the point $\mathbf{p}_{\mathbf{i}}$ and the surface normal $\mathbf{n}_{\mathbf{c}}$ at this position
- add add a new inequality constraint with $\mathbf{C}(\mathbf{p})=\left(\mathbf{p}-\mathbf{q}_{s}\right) \cdot \mathbf{n}_{\mathbf{s}} \geq \mathbf{0}$ and stiffness $\mathbf{k}=\mathbf{1}$
- To make the simulation faster, the collision constraint generation is done outside of the solver loop.

Example - Plane Constraint

- Consider a case of a particle (single vertex) that has entered a wall (plane), however the particle is elastic, so it shouldn't penetrate the wall, but bounce off it.
- The parameters:
- Plane given by three points: $\mathrm{A}=[1,0,0], \mathrm{B}=[0,1,0], \mathrm{C}=[0,0,1]$
- Particle X position: $\mathrm{p}_{\mathrm{X}}=[0,0,0]$
- \quad Stiffness $=1$
- Constraint:
$\begin{array}{ll}- & C(p)=\left(p-q_{s}\right) \cdot n_{s} \geq 0 \\ - & n_{s}=\text { normal vector }=(1,1,1) ; \text { normalized }=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)\end{array}$
- $\quad \mathrm{q}_{\mathrm{s}}=$ parallel projection of X to the plane $=[1 / 3,1 / 3,1 / 3]$
- Final form: $\mathrm{C}\left(\mathrm{p}_{\mathrm{X}}\right)=\left(\mathrm{p}_{\mathrm{X}}-[1 / 3,1 / 3,1 / 3]\right) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \geq 0$

Example

- Constraint projection:

$$
\Delta p_{i}=-s w_{i} \nabla_{p_{i}} C\left(p_{1}, \ldots, p_{N}\right) \quad s=\frac{C\left(p_{1}, \ldots, p_{N}\right)}{\sum_{j} w_{j}\left|\nabla_{p_{j}} C\left(p_{1}, \ldots, p_{N}\right)\right|^{2}}
$$

- Our case with a single particle:

$$
\begin{aligned}
& \Delta p_{X}=-\frac{C\left(p_{X}\right)}{\left|\nabla_{p_{X}} C\left(p_{X}\right)\right|^{2}} \nabla_{p_{X}} C\left(p_{X}\right) \\
& C\left(p_{X}\right)=\left([x, y, z]-\frac{1}{3}(1,1,1)\right) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=\frac{1}{\sqrt{3}}(x+y+z-1) \\
& \nabla_{p_{X}} C\left(p_{X}\right)=\left(\frac{\partial C\left(p_{X}\right)}{\partial x}, \frac{\partial C\left(p_{X}\right)}{\partial \mathrm{y}}, \frac{\partial C\left(p_{X}\right)}{\partial \mathrm{z}}\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \\
& \left|\nabla_{p_{X}} C\left(p_{X}\right)\right|^{2}=1
\end{aligned}
$$

Example

$$
\Delta p_{x}=-\frac{1}{\sqrt{3}}(x+y+z-1) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

- Solution:
- $X=[0,0,0]$
- $\Delta p_{X}=-\frac{1}{\sqrt{3}}(-1) \cdot\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- New position: $\mathbf{X}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$
- Friction and restitution can be handled by manipulating the velocities of colliding vertices in step (16) of the algorithm
- The described collision handling is only correct for collisions with static objects, because no impulse is transferred to the collision partners
- Multiple colliding objects:
- Correct response for multiple colliding objects can be achieved by simulating all objects with the simulator
- the \mathbf{N} vertices and \mathbf{M} constraints which are the input to the algorithm simply represent two or more independent objects.

Collision Detection

- Lets consider a case of two dynamic objects
- Let \mathbf{q} be a point of the first object
- Let $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ be a triangle of the second object
- Example: Point \mathbf{q} enters the triangle $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}$
- the algorithm inserts an inequality constraint with constraint function

$$
C\left(\mathbf{q}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)= \pm\left(\mathbf{q}-\mathbf{p}_{1}\right) \cdot\left[\left(\mathbf{p}_{2}-\mathbf{p}_{2}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)\right]
$$

- this keeps the point q on the correct side of the triangle

Figure 5: Constraint function $C\left(\mathbf{q}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)=\left(\mathbf{q}-\mathbf{p}_{1}\right)$. $\mathbf{n}-h$ makes sure that \mathbf{q} stays above the triangle $\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}$ by the the cloth thickness h.

Damping

- the velocities are dampened before they are used for the prediction of the new positions
- local deviations from the global motion is dampened
- Proposed method:
(1) forall vertices i
(2) $\Delta \mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{cm}}+\omega \mathrm{x} \mathrm{r}_{\mathrm{i}}-\mathrm{v}_{\mathrm{i}}$
(3) $\mathrm{v}_{\mathrm{i}} \leftarrow \mathrm{v}_{\mathrm{i}}+\mathrm{k}_{\mathrm{d}} \Delta \mathrm{v}_{\mathrm{i}}$
(4) endfor
- The variables:
- $\quad \mathrm{p}_{\mathrm{cm}}=\left(\Sigma_{\mathrm{i}} \mathrm{p}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right) /\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)$
- $\quad \mathrm{v}_{\mathrm{cm}}=\left(\Sigma_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right) /\left(\Sigma_{\mathrm{i}} \mathrm{m}_{\mathrm{i}}\right)$ (velocity due to global body motion)
- $\quad r_{i}=p_{c m}-p_{i}$
- $\quad \mathrm{L}=\Sigma_{\mathrm{i}} \mathrm{r}_{\mathrm{i}} \mathrm{x}\left(\mathrm{m}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}\right)$
- $\quad \mathrm{J}=\Sigma_{\mathrm{i}}\left(\mathrm{r}_{\mathrm{i}}^{\mathrm{x}}\right)\left(\mathrm{r}_{\mathrm{i}}^{\mathrm{x}}\right)^{\mathrm{T}} \mathrm{m}_{\mathrm{i}}$, where $\mathrm{r}_{\mathrm{i}}^{\mathrm{x}}$ is the cross product matrix
- $\quad \omega=J^{-1} L$

Attachments

- Attaching vertices to static or kinematic objects
- How to model it:
- position of the vertex is simply set to the static target position
- alternatively update the position at every time step to coincide with the position of the kinematic object
- To make sure other constraints containing this vertex do not move it, its inverse mass w_{i} is set to zero

Figure 8: Cloth stripes are attached via one way interaction to static rigid bodies at the top and via two way constraints to rigid bodies at the bottom.

Cloth Simulation

- the position based dynamics framework has been used to implement a real time cloth simulator for games
- Representation of cloth:
- simulator accepts as input arbitrary triangle meshes
- the input mesh must represent a 2-manifold
- each node of the mesh becomes a simulated vertex
- user inputs cloth density and thickness, which are used to calculate the mass of each triangle
- the mass of a vertex is set to the sum of one third of the mass of each adjacent triangle
- constraints are defined along edges and faces

Constraints

- Stretching constraints:
- generated for each edge
- $\quad \mathbf{C}_{\text {stretch }}\left(\mathbf{p}_{1}, \mathbf{p}_{2}\right)=\left|\mathbf{p}_{1}-\mathbf{p}_{2}\right|-\mathbf{l}_{0}=\mathbf{0}$
- \mathbf{I}_{0} is the initial length of the edge
- the stiffness parameter $\mathbf{k}_{\text {stretch }}$ is set by the user
- Bending constraints:
- generated for each pair of adjacent triangles $\left(\mathbf{p}_{1}, \mathbf{p}_{3}, \mathbf{p}_{2}\right)$ and $\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{4}\right)$
- $\quad C_{\text {bend }}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\operatorname{acos}\left(\frac{\left(p_{2}-p_{1}\right) x\left(p_{3}-p_{1}\right)}{\left|\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)\right|} \cdot \frac{\left(p_{2}-p_{1}\right) x\left(p_{4}-p_{1}\right)}{\left|\left(p_{2}-p_{1}\right) \times\left(p_{4}-p_{1}\right)\right|}\right)-\varphi_{0}$
- φ_{0} is the initial dihedral angle between the two triangles
- the stiffness parameter $\mathbf{k}_{\text {bend }}$ is set by the user

Figure 3: With the bending term we propose, bending and stretching are independent parameters. The top row shows $\left(k_{\text {stretching }}, k_{\text {bending }}\right)=(1,1),\left(\frac{1}{2}, 1\right)$ and $\left(\frac{1}{100}, 1\right)$. The bottom row shows $\left(k_{\text {stretching }}, k_{\text {bending }}\right)=(1,0),\left(\frac{1}{2}, 0\right)$ and $\left(\frac{1}{100}, 0\right)$.

- Collision with rigid bodies:
- to get two-way interactions an impulse $\mathbf{m}_{\mathbf{i}} \Delta \mathbf{p}_{\mathbf{i}} / \Delta \mathbf{t}$ is applied at the contact point each time the vertex i is projected due to collision
- Self-collisions:
- assume the triangles all have about the same size and use spatial hashing to find vertex triangle collisions
- if a vertex \mathbf{q} moves through a triangle $\mathbf{p}_{\mathbf{1}}, \mathbf{p}_{\mathbf{2}}, \mathbf{p}_{\mathbf{3}}$, use the constraint function:
- $\quad C\left(\mathbf{q}, \mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{3}\right)= \pm\left(\mathbf{q}-\mathbf{p}_{1}\right) .\left[\left(\mathbf{p}_{2}-\mathbf{p}_{2}\right) \times\left(\mathbf{p}_{3}-\mathbf{p}_{1}\right)\right]-\mathbf{h}$ (h is cloth thickness)
- testing continuous collisions is insufficient if cloth gets into a tangled state

Figure 6: This folded configuration demonstrates stable self collision and response.

Cloth Balloons

- For closed triangle meshes, overpressure inside the mesh can easily be modeled

Figure 7: Simulation of overpressure inside a character:

- The model:
- an equality constraint concerning all \mathbf{N} vertices of the mesh
- compute the actual volume of the closed mesh and compare it against the original volume $\mathbf{V}_{\mathbf{0}}$ times the overpressure factor $\mathbf{k}_{\text {pressure }}$
$C\left(p_{1}, \ldots, p_{N}\right)=\left(\sum_{i=1}^{n_{\text {triangles }}}\left(p_{t_{1}^{i}} \times p_{t_{2}^{i}}\right) \cdot p_{t_{3}^{i}}\right)-k_{\text {pressure }} V_{0}$
- $t_{1}^{i}, t_{2}^{i}, t_{3}^{i}$ are the three indices of the vertices belonging to triangle i

Cloth Tearing

- Tearing is simulated by a simple process:
- When the stretching of an edge exceeds a threshold, select one of the adjacent vertices
- Put a split plane through that vertex perpendicular to the edge direction and split the vertex
- All triangles above the split plane are assigned to the original vertex
- All triangles below are assigned to the new vertex
- Method remains stable even in extreme situations

Figure 10: A piece of cloth is torn open by an attached cube and ripped apart by a thrown ball.

Conclusions

- Position based dynamics framework that can handle general constraints formulated via constraint functions.
- With the position based approach it is possible to manipulate objects directly during the simulation.
- It significantly simplifies the handling of collisions, attachment constraints and explicit integration and it makes direct and immediate control of the animated scene possible.
- The approach presented could quite easily be extended to handle rigid objects as well

Figure 9: Influenced bv collision. self collision and friction. a viece of cloth tumbles in a rotating barrel.

Figure 11: Three inflated characters experience multiple collisions and self collisions.

Figure 12: Extensive interaction between pieces of cloth and an animated game character (left), a geometrically complex game level (middle) and hundreds of simulated plant leaves (right).

The End

Thank you for your attention.

