MODELLING AND RENDERING TECHNIQUES

FOURIER TRANSFORM

Discreate Fourier transform

Signal 10 Hz sampling frequency 100 Hz

Discreate Fourier Transform

$$X(t) = \sum_{n=0}^{N-1} x(n)e^{-i2\pi kn/N}$$

Inverse transform

$$X(t) = \frac{1}{N} \sum_{n=0}^{N-1} X(n) e^{i2\pi kn/N}$$

- We created a signal containing one sinusoid of frequency 10 Hz.
- Fourier transform of the signal is displayed
 - We are using only abs(X) because results are complex numbers, and we care only about their magnitude.
 - We can see that X(t) is symmetrical so we can only use half

$$X(t) = X(N - t)$$

- That's why we can only see frequencies below fs/2 (fs is sampling frequency).
- Inverse transform of FT will reconstruct original signal.

We can determine frequencies contained in complex signals

2D FFT (Fast Fourier transform)

Fourier transform can be applied to 2D object

- In simplification we apply FT to rows and than again to columns
- For visualization frequency 0 is in the middle of image. Image is symmetric and has four identical segments

Finding object in image

Task is to find smaller image in the big picture

Blue

- Result of algorithm using faze correlation (one possible use of DFT)
- Green
 - Result of closest sum algorithm
 - We compute sum of subimages and the one with closest value to window image wins
- Red
 - Result of algorithm with maximum value
 - We go along image with object and we compute sum of product of image and object.
 Position with maximum value is the result.

Image classification

BA

 In the Fourier transform picture we can clearly see that image contains Some characteristics of letter B and letter A

Filters

- We can create Filter using FT
- Filter will take only some frequencies from original image and reconstruct new image with them
- Proces:
 - Create filter -> only use high/low frequencies
 - 2. Apply FT to image
 - 3. Multiply FT of image with filter
 - 4. IFFT result
- Two main types of filters:
 - High pass we will see contours and corners of objects
 - Low pass we will see blurred image, details will be lost

Low pass filter

High pass filter

Assignment

- Use High and low pass filter to one image
- Try to manipulate size of filters
- Send results
- Download assignment.ipynb
- Use colab.research.google.com to open assignment