
GPU-Based Neighbor Search Algorithm for Fluid
Simulations

Peter Gergely
FMFI UK, 2011

Outline

 Introduction

 Smoothed Particle Hydrodynamics

 Neighbor search

 Zhao’s GPU-Based Neighbor search (GPU-BNS)

 Conclusion, Performance and future work

Introduction
 This presentation serves as a quick introduction into

the problematic of efficient fluid simulation

 It is based primarily on the following papers:

 Efficient Neighbor Search for Particle-based Fluids
[Onderik, Ďurikovič; 2007] [1]

 GPU-Based Neighbor-Search Algorithm for Particle
Simulations [Serkan Bayraktar a.o.; 2007] [2]

 A New GPU-Based Neighbor Search Algorithm for Fluid
Simulations [Xiangkun Zhao a.o; 2010] [3]

Introduction – Fluid system

 Can be defined as physic based simulations of natural
phenomena like rain, waves, smoke, etc.

 These motions can be described by Navier-Stokes
equations

 There are two main different solutions for tracking the
motions of fluid:

 The Eulerian method

 The Lagrangian method

Introduction – Eulerian method
 The Eulerian approach looks at fixed points in the volume

and measures how the fluid quantities (density, velocity,
pressure etc.) change in time, which corresponds to using a
fixed grid that doesn’t change in space even as the fluid
flows through it.

 Fixed mesh-based computation domain

 Regular / Hierarchical grids, Tetrahedral meshes, etc.

 Suitable for full 3D Navier-Stokes equations

 Commonly used algorithms:
 Marker and Cell (MAC)
 Volume of Fluid (VOF)
 Lattice-Boltzmann Method (LBM)

Introduction – Lagrangian method

 The lagrangian approach represents the motion as a
finite interpolated system like a given number of
particles. The fluid quantities are interpolated at
special location by weighted sum contributions from
the particles.

 Free mesh-based and mesh-less computation domains

 Particles, tetrahedral meshes

 Suitable for full 3D Navier-Stokes equations

 Commonly used algorithms:
 Smoothed Particle Hydrodynamics (SPH)
 Moving Particle Semi-implicit (MPS)

Smoothed Particle Hydrodynamics
(SPH)

 An interpolated method for fluid simulation.

 Fluid is represented by a set of particles that carry various
fluid properties. These properties are distributed around
the particles and locating particle neighbors dominates the
real-time of a particle-based simulation system.

Benefits

•Mesh-less (grid-less)
•No convection term
•Inherently mass conserving
•Straightforward multiphase extension
•Simple implementations
•Unlimited simulation space
•Suitable Interactive Applications

Drawbacks

•100% incompressible hard to achieve
•Time consuming Surface extraction.

Smoothed Particle Hydrodynamics
(SPH) - Principles

 Represent fluid with finite number of particles

 Store all quantities only on particle positions

 Approximate field quantities by convolution

 Uses Lagrangian formulation of Navies-Stokes equations for particle
dynamics

 To find all neighbors of a special particle in certain radius range, space
subdivision method is often used.

 Different particles are distributed into different grids.

 Particles in the same grid are recognized as neighbors of each other.

Neighbor search
 Method of collision detection

 Space subdivision is one of the ways to speed up the
SPH force computation.

 Search for potential inter-particle contacts is done
within the grid cells and between immediate
neighbors, thus improving the whole simulation
speed.

 Why should we use a GPU instead of a CPU?
 GPU has the ability to process multiple particles in parallel

 What kind of problems while using GPU have to be
overcome?
 Fragment shaders, that are used as the main processing unit,

are not capable of scatter.
 They cannot write a value to a memory location for a computed

address since fragment programs run using precomputed texture
addresses only, and these addresses cannot be changed by the
fragment program itself.

 This limitation makes several basic algorithmic operations (such as
counting, sorting, finding maximum and minimum) difficult.

GPU-Based Neighbor Search

 How to overcome the outlined problems?

 One of the common methods is to use a uniform grid to
subdivide the simulation space.

 A stencil buffer can be used for dealing with multiple
photons residing in the same cell.

 Bucket textures can be used to represent a 3D grid
structure

 Zhao’s [3] method being described next is based on
Bayraktar’s method [2]

GPU-Based Neighbor Search

Zhao’s GPU-Based Neighbor Search

 Summary of Zhao’s algorithm[3]
as shown in Figure 1:
1. Construct a grid map from the

position attribute texture

2. Backup grid map texture from
the previous step as grid map
source

3. Sort grid map texture from the
first step

4. Construct neighbor map using
the output from the position
attribute texture, grid map
source and sorted grid map

Figure 1

1. Construct a Grid Map
 Compute a one dimensional grid coordinate of each

particle

 Discretize particle coordinates with respect to a virtual
grid of cell size h and obtain integral positions (ix,iy,iz)

 Convert to 1D coordinates by:
gridIdx = ix + iy × sizeX + iz × sizeX × sizeY

(sizeX, sizeY are the total number of grids in the horizontal and vertical direction)

1. Construct Grid Map
 The shader then calculates the grid index of each particle

 The particle index is stored in the red channel

 The grid index is stored in the green channel

 The output:

 A texture called SortMap[source]

 SortMap is a texture array of two members for next GPU sorting

 Source in initialized as source=0

2. Backup Grid Map
 Backup before sorting

 Step 3 will use the grid map texture source as input and
sorts it as ascending with respect to the grid index

 Step 4 uses the grid map texture which is arranged as
ascending according to the particle index

3. Sort Grid Map
 Sort the grid map texture to aggregate the particles within

the same grid.

 Odd-even merge sort algorithm used

 Sorting the grid map texture with respect to grid
coordinates stored in the green channel

 In the sorted grid map texture, the particles within the
same grid are arranged in adjacent texels

(A texel, or texture element is the fundamental unit of texture space; textures are
arrays of texels)

4. Construct Neighbor Map
 What is known:

 The particles within in the same grid cell are now adjacent to
each other

 Neighbors of a particle in a given radius include also particles
within other advanced 26 grid cells

 What needs to be done:
 The intention is to create a neighbor map texture whose width is

the number of particles neighbors and height is the number of
total particles

 In this arrangement all the neighbors of a particle will be
arranged in the same row.

 Because the neighbor map must be a rectangle, we assume that
all particles have the same number of neighbors

4. Construct Neighbor Map
 In the neighbor map texture the

 texture coordinate y means the particle index

 the texture coordinate x stores the current particles
neighbor index

 Let us assume that one neighbor texture holds 4096
particles. Then the particle index equals the sum of page
number multiplied by 4096 and texture coordinate y:
partSrcIdx = y + itNum×4096

4. Construct Neighbor Map
 Using the particle index, we can get particle’s affiliated

grid cell from grid map source texture of step 2.

1. Transfer an integer array with 27 member which stored
intervals of any grid cell’s adjacent neighbor cell to GPU
 Use binary search (GPU) to get all the neighbor grid cells

of a particle’s affiliated grid cell

2. Use binary search (GPU) on the sorted grid map to get
the start position of neighbors grid cell of the particle’s
affiliated grid cell

3. Use the start position of the neighbor grid cell to get the
first neighbor particle index stored in the red channel

4. Construct Neighbor Map
 The part where we overcome the GPU incapability of

scatter.

 We assume that the number of particles in all grid cells
are the same

4. Divide texture coordinate x corresponding to the 27 grid
cells

4. Construct Neighbor Map
5. Using gridStep to determine the neighbor grid cell of

the current particle’s affiliated grid cell
gridStep = (int) x / (int) maxPartNum

6. Adding the partStep to the start position of neighbor
cell, we can determine which particle index in current
neighbor cell is selected
partStep=(int)x−←gridStep∗←(int)maxPartNum
(maxPartNum means the max number of particles within the same grid cell)

4. Construct Neighbor Map
7. Calculate the distance between the pairs of the particle

and its neighbor particle, those pairs whose distance is
less than the smooth radius can be written to texture.

8. Write the pairs of the particle index to red channel and
its neighbor particle index to green

Zhao’s GPU-Based algorithm

 The before mentioned algorithm
does not transfer data between
the GPU and CPU except when
being initialized as shown in
Figure 1

 Therefore the algorithm is called
GPU-based and not GPU-
accelerated

Figure 1

Performance
Waving pool simulation

 Relevant PC specifications:

 GPU: NVIDIA™9600GT

 CPU: Intel core2 duo CPU E4400

Performance + Future work
 The algorithm yields optimum performance if the

neighbors of a particle is scattered in large range and
particles within a grid cell is fewer.

 Zhao’ algorithm can be used for ray-tracing and global
illumination

 The method in itself proposes the means to overcome
the inability of fragment shaders to do scatter
operations

Thank you for your attention

Appendix 1.
 S. Bayraktar, U. Güdükbay, and B. Özgüc.; Gpu-based neighbor-search

algorithm for particle simulations. Journal of graphics, gpu, and game
tools, 14(1):31–42, 2007.

 Onderik J., Ďurikovič R.; Efficient Neighbor Search for Particle-based
Fluids; Journal of the Applied Mathematics, Statistics and Informatics,
Faculty of Natural Sciences, UCM Press, Trnava, Slovakia, 2008. To
Appear

 Xiangkun Zhao Fengxia Li Shouyi Zhan; A New GPU-Based Neighbor
Search Algorithm for Fluid Simulations; Beijing Laboratory of
Intelligent Information Technology, School of Computer Science and
TechnologyBeijing Institute of Technology, Beijing 100081, PRC

Appendix 2.
 Pixel shader for constructing neighbor map texture

