Lecture 1: First-Order Logic 2-AIN-108 Computational Logic

Martin Baláž, Martin Homola

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

24 Sep 2013

FOL: Syntax

Definition (Alphabet)

An alphabet contains

- Set of variables $V=\{x, y, z, \ldots\}$
- Set of function symbols $F=\{f, g, h, \ldots\}$
- Set of predicate symbols $P=\{p, q, r, \ldots\}$
- Logical connectives
$\neg, \vee, \wedge, \rightarrow, \leftrightarrow$
- Quantifiers
$\forall \exists$
- Auxiliary symbols () ,

FOL: Syntax (cont.)

Definition (Arity)

Given an alphabet with function symbols F and predicate symbols P, arity is any function arity: $F \cup P \mapsto \mathbb{N}_{0}$.

Note:

- Arity specifies how many "arguments" each function and predicate requires.
- Functions (predicates) of arity $0,1,2,3$, and so on are called: nullary, unary, binary, ternary, etc.

FOL: Syntax (cont.)

Definition (Term)

Given an alphabet and an arity function, a term is any of the following:

- a variable;
- an expression $f\left(t_{1}, \ldots, t_{n}\right)$ if f is a function symbol with arity n and t_{1}, \ldots, t_{n} are terms.

Definition (Atom)

Given an alphabet and an arity function, an atomic formula (atom) is an expression $p\left(t_{1}, \ldots, t_{n}\right)$ where p is a predicate symbol with arity n and t_{1}, \ldots, t_{n} are terms.

Note: Given nullary f, p, the term $f()$ is called a constant and the atom $p()$ is called a propositional variable.
Note: In such a case we often omit the brackets and write just f, p instead of $f(), p()$.

FOL: Syntax (cont.)

Definition (Formula)

Given an alphabet and an arity function, a formula is any expression of the following forms:

- an atom;
- $(\Phi \rightarrow \Psi)$;
- \neg;
- $(\Phi \wedge \Psi)$;
- $(\Phi \leftrightarrow \Psi)$;
- $(\forall x) \Phi$;
- $(\Phi \vee \Psi)$;
- $(\exists x) \Phi$;
where Φ, Ψ are formulae, and x is a variable.
Note: Any occurrence of a variable x in quantified formulae $(\forall x) \Phi$, $(\exists x) \Phi$ is an occurrence within the scope of the respective quantifier.

FOL: Syntax (cont.)

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set \mathcal{L} of all formulae.

FOL: Syntax (cont.)

Definition (Language of FOL)

The language of First Order Logic over some alphabet and the respective arity function is the set \mathcal{L} of all formulae.

Note: from now on we will always assume some fixed FOL language \mathcal{L} over some alphabet with the respective arity function.

FOL: Syntax (cont.)

Definition (Free vs. bounded variable occurrence)

An occurrence of some variable x in a formula Φ is free if it is not within the scope of any quantifier. The occurrence is bounded otherwise.

Definition (Ground term)

A term t is ground if it does not contain any variable.

Definition (Ground formula)

A formula Φ is ground if it does not contain any free occurrence of any variable.

Note: Ground formulae are also called closed formulae or sentences. Note: from now on we will assume that all formulae are ground.

FOL: Syntax (cont.)

Definition (Theory)

A first order theory (or just theory) T is a finite set of (ground) formulae.

Note: we will look at theories as knowledge bases: a theory T is a set of formulae that describes some situation or some problem.

Example

Let us assume the following situation: Jack killed John. If someone killed somebody else, he is a murderer. Murderers go to jail. We may encode this in FOL theory T :

$$
\begin{gathered}
\operatorname{Killed}(\text { Jack, John }) \\
(\forall \mathrm{x})((\exists \mathrm{y}) \operatorname{Killed}(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \text { Jail }(\mathrm{x}))
\end{gathered}
$$

Definition (First order structure)

A structure is a pair $\mathcal{D}=(D, I)$ where

- D, called domain, is a nonempty set;
- I, called interpretation, is a function s.t.:
- $I(f)$ is a function $f^{\prime}: D^{\text {arity }(f)} \rightarrow D$;
- $I(t)$ is $t^{\prime}=f^{\prime}\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right)$ for any ground term of the form $t=f\left(t_{1}, \ldots, t_{n}\right)$;
- $I(p)$ is a relation $p^{\prime} \subseteq D^{\text {arity }(p)}$.

Note: $D^{0}=\{\langle \rangle\}$, hence there are two possible interpretations of each propositional variable p : either $p^{\prime}=\{\langle \rangle\}$ (i.e., p is true) or $p^{\prime}=\emptyset$ (i.e., p is false).
Note: similarly for a constant $c: c^{l}: D^{0} \rightarrow D$, i.e., each constant term is interpreted by a constant function which returns one of the elements of D.

Definition (Structure extension)

An extension of a structure $\mathcal{D}=(D, I)$ w.r.t. a variable x is a structure $\mathcal{D}^{\prime}=\left(D, I^{\prime}\right)$ where I^{\prime} is identical to I except for in addition $I^{\prime}(x)=d$ for some element $d \in D$.

FOL: Semantics (cont.)

Definition (Satisfaction \models)

A formula Π is satisfied w.r.t. a structure $\mathcal{D}=(D, I)$ (denoted by $\mathcal{D} \models \Pi$) based type of Π :

$$
\begin{aligned}
& p\left(t_{1}, \ldots, t_{n}\right): \mathcal{D} \\
& \neg \neg:\left(t_{1}, \ldots, t_{n}\right) \text { iff }\left(t_{1}^{\prime}, \ldots, t_{n}^{\prime}\right) \in p^{\prime} ; \\
& \Phi \wedge \neg \text { iff } \mathcal{D} \not \models \Phi ; \\
& \models \Psi: \mathcal{D} \models(\Phi \wedge \Psi) \text { iff } \mathcal{D} \models \Phi \text { and } \mathcal{D} \models \Psi ;
\end{aligned}
$$

$$
\text { if } \Phi \vee \Psi: \mathcal{D} \models(\Phi \vee \Psi) \text { iff } \mathcal{D} \models \Phi \text { or } \mathcal{D} \models \Psi \text {; }
$$

$$
\Phi \rightarrow \Psi: \mathcal{D} \vDash(\Phi \rightarrow \Psi) \text { iff } \mathcal{D} \not \models \Phi \text { or } \mathcal{D} \mid=\Psi ;
$$

$$
\Phi \leftrightarrow \Psi: \mathcal{D} \models(\Phi \leftrightarrow \Psi) \text { iff }(\mathcal{D} \models \Phi \text { iff } \mathcal{D} \models \Psi) ;
$$

$$
(\exists x) \Phi: \mathcal{D} \models(\exists x) \Phi \text { iff } \mathcal{D}^{\prime} \models \Phi \text { for some ext. } \mathcal{D}^{\prime} \text { of } \mathcal{D} \text { w.r.t. x; }
$$

$(\forall x) \Phi: \mathcal{D} \models(\forall x) \Phi$ iff $\mathcal{D}^{\prime} \models \Phi$ for all ext. \mathcal{D}^{\prime} of \mathcal{D} w.r.t. x;
where Φ, Ψ are any formulae and $p\left(t_{1}, \ldots, t_{n}\right)$ is any ground atom.

Semantics (cont.)

Definition (Model)

A structure \mathcal{D} is a model of Φ if $\mathcal{D} \models \Phi$; \mathcal{D} is a model of a theory T (denoted $\mathcal{D} \models T$) if $\mathcal{D} \models \Phi$ for all $\Phi \in T$.

Definition (Satisfiability)

A formula (or theory) is satisfiable, if it has a model.

Semantics (cont.)

Definition (Entailment)

A theory T entails a formula Φ (denoted $T \models \Phi$) if for each model \mathcal{D} of T we have $\mathcal{D} \vDash \Phi$.

Example (cont.)

Is there a model of our theory T ? T was:

$$
\begin{gathered}
\text { Killed }(\text { Jack, John }) \\
(\forall x)((\exists \mathrm{y}) \operatorname{Killed}(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \operatorname{Jail}(\mathrm{x}))
\end{gathered}
$$

Example (cont.)

Is there a model of our theory T ? T was:

$$
\begin{gathered}
\text { Killed(Jack, John }) \\
(\forall \mathrm{x})((\exists \mathrm{y}) \mathrm{Killed}(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \operatorname{Jail}(\mathrm{x}))
\end{gathered}
$$

Let us construct $\mathcal{D}=(\{s\}, I)$ with:

$$
\begin{aligned}
\text { Jack }^{\prime} & =s \\
\text { John }^{\prime} & =s \\
\text { Killed }^{\prime} & =\{\langle s, s\rangle\} \\
\text { Murderer }^{\prime} & =\{\langle s\rangle\} \\
\text { Jail }^{\prime} & =\{\langle s\rangle\}
\end{aligned}
$$

Example (cont.)

Is there a model of our theory T ? T was:

$$
\begin{gathered}
\text { Killed(Jack, John }) \\
(\forall \mathrm{x})((\exists \mathrm{y}) \mathrm{Killed}(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \operatorname{Jail}(\mathrm{x}))
\end{gathered}
$$

Let us construct $\mathcal{D}=(\{s\}, I)$ with:

$$
\begin{aligned}
\text { Jack' }^{\prime} & =s \\
\text { John }^{\prime} & =s \\
\text { Killed }^{\prime} & =\{\langle s, s\rangle\} \\
\text { Murderer }^{\prime} & =\{\langle s\rangle\} \\
\text { Jail }^{\prime} & =\{\langle s\rangle\}
\end{aligned}
$$

Is \mathcal{D} a model of T ?

Is there a model of our theory T ? T was:

$$
\begin{gathered}
\text { Killed }(\text { Jack, John }) \\
(\forall \mathrm{x})((\exists \mathrm{y}) \operatorname{Killed}(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \operatorname{Jail}(\mathrm{x}))
\end{gathered}
$$

Let us construct $\mathcal{D}=(\{s\}, I)$ with:

$$
\begin{aligned}
\text { Jack }^{\prime} & =s \\
\text { John }^{\prime} & =s \\
\text { Killed }^{\prime} & =\{\langle s, s\rangle\} \\
\text { Murderer }^{\prime} & =\{\langle s\rangle\} \\
\text { Jail }^{\prime} & =\{\langle s\rangle\}
\end{aligned}
$$

Is it our indented model of T ?

Example (cont.)

Is there a model of our theory T ? T was:

$$
\begin{gathered}
\text { Killed (Jack, John }) \\
(\forall \mathrm{x})((\exists \mathrm{y}) \text { Killed }(\mathrm{x}, \mathrm{y}) \rightarrow \text { Murderer }(\mathrm{x})) \\
(\forall \mathrm{x})(\operatorname{Murderer}(\mathrm{x}) \rightarrow \text { Jail }(\mathrm{x}))
\end{gathered}
$$

Let us construct $\mathcal{D}=(\{s\}, I)$ with:

$$
\begin{aligned}
\text { Jack' }^{\prime} & =s \\
\text { John }^{\prime} & =s \\
\text { Killed }^{\prime} & =\{\langle s, s\rangle\} \\
\text { Murderer }^{\prime} & =\{\langle s\rangle\} \\
\text { Jail }^{\prime} & =\{\langle s\rangle\}
\end{aligned}
$$

Does it hold $T \models$ Murderer(Jack)?

