

Lesson 08 Outline

* Problem definition and motivations
*Modeling deformable solids with mass-spring model
* Position based dynamics
* Modeling cloths with mass-spring model
* Modeling hair with mass-spring model
* Demos / tools / libs

Simulation of Deformable Solids

*Lagrangian Mesh Based Methods
\rightarrow Continuum Mechanics Based Methods
\rightarrow Mass-Spring Systems

* Lagrangian Mesh Free Methods
\rightarrow Loosely Coupled Particle Systems
\rightarrow Smoothed Particle Hydrodynamics (SPH)
\rightarrow Mesh Free Methods for the solution of PDEs
* Reduced Deformation Models and Modal Analysis
*Eulerian and Semi-Lagrangian Methods
\rightarrow Fluids and Gases
\rightarrow Melting Objects

Mass-spring

Mass-spring Model

*Each deformable solid is modeled as a graph (mesh) of particles (with mass) connected with mass-less springs

* Particle Model
\rightarrow Each particle is defined at least by its Mass (mi), Position (pi), Velocity (vi)
\Rightarrow Additionally there can be force, acceleration, momentum ...
\rightarrow Usually particles can be incident to any number of springs
* Spring Model
\rightarrow Springs usually connects 2 particles and exerts force on them
\rightarrow Usually sprigs have non-zero rest length and some constant material properties

Hook's Spring Model

*Hook's Law: Strain is directly proportional to stress
*Formally: $f=-k_{s} x$
$\rightarrow x$ is the displacement of the end of the spring from its equilibrium position
$\rightarrow f$ is the restoring force exerted by the material
$\rightarrow k_{s}$ is a material constant called spring stiffness

* Using rest length and velocity damping
* $f=-\left[k_{s}\left(|l|-l_{0}\right)+k_{d}\left(v_{a}-v_{b}\right) /|l|\right](l /|l|)$
$\rightarrow k_{d}$ is damping factor

Position based

 Dynamics

 Dynamics}
2^{x}

Position based Dynamics

* Traditional force based dynamics must solve ODE using some integration scheme. Using simple and fast explicit methods can lead simulation to inaccuracy and instability
* This can be prevented by solving large systems of equations (using implicit methods) or
* Using more geometric approach by directly modify positions into stable and more accurate states.
* Such approach (position based dynamics) gives more control over animation and easily models constraints.

Position based Dynamics

* Object Representation
\rightarrow We represent dynamic object with a set N vertices
\rightarrow Each vertex has: Mass $\left(m_{i}\right)$, Position (p_{i}), velocity (v_{i})
* Constraint Representation
\rightarrow Let $\rho=\left(\rho_{1}, \ldots, \rho_{N}\right)$ be the generalized position
\rightarrow The constraint is a functions $C_{j}(\rho)=C_{j}\left(\rho_{1}, \ldots, \rho_{N}\right): R^{3 N} \rightarrow R$
\rightarrow Cardinality m_{j} is the number of "used" parameters
\rightarrow Stiffness parameter $k_{j} \in\{0 \ldots 1\}$ is a material property
\rightarrow We define equality (bilateral) constraint as: $C_{j}(\rho)=0$
\rightarrow We define inequality (unilateral) constraint as: $C_{j}(\rho) \geq 0$

PBD: Algorithm

* 1: forall vertices i: initialize $\rho_{i}=\rho_{i}^{0} ; v_{i}=v_{i}^{0} ; w_{i}=1 / m_{i}$
*2: loop
\rightarrow 3: forall vertices i do $\left\{v_{i} \leftarrow v_{i}+\Delta t w_{i} f_{\text {ext }}\left(x_{i}\right)\right\}$
$\rightarrow 4$: DampVelocities $\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\right)$
\rightarrow 5: forall vertices i do $\left\{q_{i} \leftarrow \rho_{i}+\Delta t v_{i}\right\}$
\rightarrow 6: forall vertices i do \{ CreateCollisionConstraints $\left(x_{i} \rightarrow p_{i}\right)$ \}
$\rightarrow 7$: loop n_{S} times $\left\{\right.$ ProjectConstraints $\left.\left(C 1, \ldots, C_{M+Q}, q_{1}, \ldots, q_{N}\right)\right\}$
\rightarrow 8: forall vertices I do $\left\{v_{i} \leftarrow\left(q_{i}-p_{i}\right) / \Delta t ; p_{i} \leftarrow q_{i}\right\}$
\rightarrow 9: VelocityUpdate $\left(\mathrm{V}_{1}, \ldots, \mathrm{v}_{\mathrm{N}}\right)$
* 10: endloop

PBD: Algorithm

* First all masses, positions and velocities are initialized to rest state
* With each simulation frame we do
\rightarrow First we modify velocities due to external forces (3:)
\rightarrow Next we add artificial damping to the system (4:)
\rightarrow Then we predict new positions (q_{1}) with simple Euler step (5:)
\rightarrow Next we detect and construct all collision constraints (6:)
\rightarrow We apply "projection" several times on all constraints (7:)
\rightarrow We find correct velocities and set projected positions (8:)
\rightarrow We apply friction and restitution impulses on velocities (9:)

PBD: Constraint Projection

*Assuming constraint is violated ie. $C(\rho)!=0(<0)$ we must find correction $\Delta \rho$ such that $C(\rho+\Delta \rho)=0(\geq 0)$
*By linearization we get: $C(\rho+\Delta \rho) \approx C(\rho)+\nabla_{\rho} C(\rho) \cdot \Delta \rho$
\rightarrow To conserve both momentums correction must be along direction of constraint function gradient $\nabla_{\rho} C(\rho)$ ie:
$\rightarrow \Delta \rho=\lambda \nabla_{\rho} C(\rho) ; \lambda$ (Lagrange multiplier) is a scalar
$\rightarrow \lambda=-C(\rho) /\left|\nabla_{\rho} C(\rho)\right|^{2 f}$
\rightarrow For i -th particle with mass $\mathrm{m}_{\mathrm{i}}\left(\mathrm{w}_{\mathrm{i}}=1 / \mathrm{m}_{\mathrm{i}}\right)$
$\rightarrow \Delta \rho_{\mathrm{i}}=\lambda \mathrm{w}_{\mathrm{i}} \nabla_{\rho} C\left(\rho_{\mathrm{p}}, \ldots, \rho_{N}\right)$
$\rightarrow \lambda=-w_{i} C\left(\rho_{p}, \ldots, \rho_{N}\right) / \sum_{j} w_{j}\left|\nabla_{\rho j} C\left(\rho_{p}, \ldots, \rho_{N}\right)\right|^{2}$

PBD: Distance Constraint

$$
\begin{aligned}
& \text { * Let } C(\rho)=C\left(\rho_{1}, \rho_{2}\right)=\left|\rho_{1}-\rho_{2}\right|-d=0 \\
& \quad \rightarrow \nabla_{\rho 1} C\left(\rho_{1}, \rho_{2}\right)=\left(\rho_{1}-\rho_{2}\right) /\left|\rho_{1}-\rho_{2}\right| \\
& \quad \rightarrow \nabla_{\rho 2} C\left(\rho_{1}, \rho_{2}\right)=\left(\rho_{1}-\rho_{2}\right) /\left|\rho_{1}-\rho_{2}\right| \\
& \quad \rightarrow \lambda=\left(\left|\rho_{1}-\rho_{2}\right|-d\right) / w_{1}+w_{2} \quad \text { where } w_{1}=1 / m_{1} \text { and } w_{2}=1 / m_{2} \\
& \rightarrow \Delta \rho_{1}=\left(w_{1} /\left(w_{1}+w_{2}\right)\right)\left(\left|\rho_{1}-\rho_{2}\right|-d\right)\left(\rho_{1}-\rho_{2}\right) /\left|\rho_{1}-\rho_{2}\right| \\
& \quad \rightarrow \Delta \rho_{2}=\left(w_{2} /\left(w_{1}+w_{2}\right)\right)\left(\left|\rho_{1}-\rho_{2}\right|-d\right)\left(\rho_{1}-\rho_{2}\right) /\left|\rho_{1}-\rho_{2}\right|
\end{aligned}
$$

*For equality constraints we always do projection
*For Inequality we project only when $C(\rho)<0$
*Finally we multiply $\Delta \rho$ with stiffness k ($\Delta \rho k$)
\rightarrow Due to iterations use $k^{\prime}=1-(1-k)^{\text {vns }}$. Stiffness is applied lineorly after n_{s} iterations

PBD: Collisions

* Given old position pi and predicted position qi we detect if a ray $\left(\rho_{i}, q_{i}\right)$ enters some object. If yes we compute entry point a_{c} and collision normal n_{c}
*Next add collision constraint with stiffness $k=1$
$C(\rho)=\left(\rho-q_{c}\right) \cdot n_{c} \geq 0$ (ensures non-penetration)
\rightarrow When scene contains more dynamic bodies we must provide constraint from all bodies into one "scene" solver
\rightarrow For triangle meshes with face $\left(\rho_{1}, \rho_{2}, \rho_{3}\right): n_{c}=\left(\rho_{2}-\rho_{1}\right) \times\left(\rho_{3}-\rho_{1}\right)$
\rightarrow Collision constraint generation is done outside the solver loop, to speed up simulation. Artifacts are negligible

PBD: Damping

*Velocities are damped *Global "body" variables

* forall vertices i
$\rightarrow \Delta \mathrm{v}_{\mathrm{i}}=\mathrm{v}_{\mathrm{cm}}+\omega \times r_{\mathrm{i}}-\mathrm{v}_{\mathrm{i}}$
$\rightarrow \mathrm{v}_{\mathrm{i}} \leftarrow \mathrm{v}_{\mathrm{i}}+\mathrm{k}_{\mathrm{d}} \Delta \mathrm{v}_{\mathrm{i}}$
* endfor
* $\Delta \mathrm{v}_{\mathrm{i}}$ only damps local deviations
\rightarrow Here $v_{c m}+\omega \times r_{i}$ is the velocity due to global body motion
$\rightarrow \rho_{\mathrm{cm}}=\left(\sum_{i} \rho_{i} m\right) /\left(\sum_{i} m\right)$
$\rightarrow v_{\mathrm{cm}}=\left(\sum_{i} v_{i} \mathrm{~m}_{1}\right) /\left(\sum_{i} \mathrm{~m}_{1}\right)$
$\rightarrow L=\sum_{i} r_{i} \times\left(m_{i} v_{i}\right)$
$\rightarrow J=\sum_{i}\left(r^{x}\right)\left(r_{i}^{x}\right)^{\top} m_{i}$
$\rightarrow \omega=J^{-1} \mathrm{~L}$
$\rightarrow r_{i}=\rho_{\mathrm{cm}}-\rho_{\mathrm{i}}$
$\rightarrow r_{i}^{x}$ is cross product matrix

Position based Dynamics - Summary

* Control over explicit integration with no typical instability problems
* Positions of vertices and objects parts can directly be manipulated during the simulation
*Simple handling of general constraints in the position based setting
*The explicit position based solver is easy to understand and implement.

Modeling Cloth

Cloth: Representation

* Cloth is represented with arbitrary manifold triangular mesh (no need for regular lattice)
*Each mesh vertex become a simulation particle
* Given cloth density and thickness we calculate mass of each triangle.
* Mass of each particle is sum of $1 / 3$ of the mass of each adjacent triangle.
* Constraints are defined along edges and faces
* Cloth tearing is performed on vertices with large deformations

Cloth: Constraints

* Stretching Constraints
\rightarrow Along each mesh edge we define fixed stretching constraint as simple equality distance constraint (spring)
$\rightarrow C_{s}\left(\rho_{1}, \rho_{2}\right)=\left|\rho_{1}-\rho_{2}\right|-l_{0}$ where I_{0} is rest length
\rightarrow Stiffness K_{s} is usually higher to overcome springiness
* Bending Constraints
\rightarrow For each pair of adjacent triangles $\left(\rho_{1}, \rho_{3}, \rho_{2}\right)$ and $\left(\rho_{1}, \rho_{2}, \rho_{4}\right)$ we define a bending constraint
$\rightarrow C_{b}\left(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}\right)=\operatorname{acos}\left(n_{1}, n_{2}\right)-\varphi_{0}$ where
- $n_{1}=((\rho 2-\rho 1) \times(\rho 3-\rho 1)) /|(\rho 2-\rho 1) \times(\rho 3-\rho 1)|$
- $n_{2}=((\rho 2-\rho 1) \times(\rho 4-\rho 1)) /|(\rho 2-\rho 1) \times(\rho 4-\rho 1)|$

Cloth: Collisions and Tearing

* Inequality collision constraints is defined as
$* C_{b}\left(q, \rho_{1}, \rho_{2}, \rho_{3}\right)=(q-\rho 1) \cdot n-h$
$\rightarrow q$ is collided point with face $\left(\rho_{1}, \rho_{2}, \rho_{3}\right)$
$\rightarrow n$ is face normal
$\rightarrow h$ - distance to the face.
* Collision with rigid body exerts impulse $m_{i} \rho_{i} / \Delta t$ at ρ_{i}
* More involved self-collision detection must be done cloth becomes to be tangled

Cloth: Overpressure and Tear

* Overpressure inside the closed mesh is modeled as
$\rightarrow C\left(\rho_{1}, \ldots, \rho_{N}\right)=\sum_{j}\left(\rho_{11} \times \rho_{\rho}\right) \cdot \rho_{\beta}-k_{\rho} V_{0}$
$\Rightarrow \nabla_{\rho 1} C=\sum_{j}\left(\rho_{R} \times \rho_{\beta}\right)+\sum_{j}\left(\rho_{\beta 3} \times \rho_{j}\right)+\sum_{j}\left(\rho_{j 1} \times \rho_{\beta}\right)$
* Cloth Tearing Process
\rightarrow Whenever the stretching of an edge exceeds a specified threshold value, we select one of the edge's adjacent vertices
\rightarrow We then put a split plane through that vertex perpendicular to the edge direction and split the vertex into 2 new vertices
\rightarrow All triangles above the split plane are assigned to the original vertex while all triangles below are assigned to the duplicate

Cloth: Stiffness and Bending

$\left(K_{s} ; k_{b}\right)=(1 ; 0)$
$\left(k_{s} ; k_{b}\right)=(0.5 ; 0)$
$\left(k_{s} ; k_{b}\right)=(0.01 ; 0)$

Cloth: Self Collisions and Balloons

Cloth: Examples

Modeling Hair

Hair: Representation

* Each hair strand is modeled as a set of vertices connected by edges into series of line segments
*Each vertex is used as simulation particle
* Given material density and strand thickness we can calculate volume/mass of each segment. Particle mass is average of incident edge masses
* Strand constraints are applied along edges, additional (virtual) edges and newly created particles
* Hair tearing is performed on vertices with large deformations

Hair: Constraints

* We model Curly Hair and Straight Hair
* Stretching Constraints (springs)
\rightarrow Linear springs between every consecutive particle
* Bending Constraints (springs)
\rightarrow Linear springs between every other particle
\rightarrow The edge springs and bending springs together form triangles that implicitly represent the orientation of the hair
* Torsion Constraints (springs)
\rightarrow Twist is modeled by attaching torsion springs that connect each particle to a particle three particles away from it
* Altitude Constraints (springs)
\rightarrow See figure

Point/Face Altitude Springs

(a) Spring has all non-negative
barycentric weights
(b) Spring has negative barycentric weights
(coplanar)

(c) Degenerate: all point/face springs have negative barycentric weights

Edge/Edge Altitude Springs

(d) Spring has all non-negative barycentric weights

(e) Spring has negative barycentric weights

(f) Degenerate: all edge/edge springs have negative barycentric weights

Hair: Altitude Springs

*Point/Face Altitude Springs
\rightarrow Perpendicular to the face starting from the given point
\rightarrow Length is $\mathrm{l}=6 \mathrm{~V} /|\mathrm{u} \times v|$ where u and v are the vectors of the base triangle and V is the signed volume of the tetrahedron
*Edge/Edge Altitude Springs
\rightarrow Perpendicular to common spring and bending spring
\rightarrow Length is $\mathrm{l}=6 \mathrm{~V} /|\mathrm{u} \times \mathrm{v}|$ where u and v are the stretch and bend spring and V is the signed volume of the tetrahedron
\rightarrow For any tetrahedron, the edge/edge or point/face spring with minimal length is guaranteed to have all non-negative barycentric weights, preventing unbounded forces

(a) Curly Hair Springs

2 Tetrahedra

Edge Springs (desired hair curve)
Extra Edge Springs (form triangles)
Bending Springs (prevent bend)
Torsion Springs (prevent twist)
Tetrahedral Altitude Springs (prevent collapse)
(b) Straight Hair Springs

Figure 7: Straight and curly hair models using edge, bending, torsion, and altitude springs preserving the implied tetrahedra.

Torsion Spring Path Interrupted

Continuous Torsion Spring Path

Figure 8: Triangles define orientations for penalizing twist, and torsion springs "trace" a continuous path through the nondegenerate triangles - but they are blocked at straight hair segments (left). The subdivision and perturbation of our method removes degeneracies so the path becomes continuous (right).

Hair: Linear Strands

Figure 9: A simulation of 10,000 long straight hairs with 50 segments each (1,000,000 total particles) on a character shaking his head from side to side.

Hair: Curly Strands

Figure 14: A simulation of 5,000 long curly hairs with 50 segments each (250,000 total particles) on a character spinning around from back to front.

