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Lesson 08 Outline

 Problem definition and motivations

 Modeling deformable solids with mass-spring 
model

 Position based dynamics

 Modeling cloths with mass-spring model 

 Modeling hair with mass-spring model

 Demos / tools / libs



    

Simulation of Deformable Solids

 Lagrangian Mesh Based Methods
 Continuum Mechanics Based Methods
 Mass-Spring Systems

 Lagrangian Mesh Free Methods
 Loosely Coupled Particle Systems
 Smoothed Particle Hydrodynamics (SPH)
 Mesh Free Methods for the solution of PDEs

 Reduced Deformation Models and Modal Analysis

 Eulerian and Semi-Lagrangian Methods
 Fluids and Gases
 Melting Objects
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Mass-spring Model

 Each deformable solid is modeled as a graph 
(mesh) of particles (with mass) connected with 
mass-less springs

 Particle Model
 Each particle is defined at least by its Mass (mi), Position (pi), 

Velocity (vi)
 Additionally there can be force, acceleration, momentum …
 Usually particles can be incident to any number of springs  

 Spring Model
 Springs usually connects 2 particles and exerts force on them
 Usually sprigs have non-zero rest length and some constant  

material properties



    

Hook's Spring Model

 Hook's Law: Strain is directly proportional to stress

 Formally: f = - k
s
 x

 x is the displacement of the end of the spring from its 
equilibrium position

 f is the restoring force exerted by the material 
 k

s
 is a material constant called spring stiffness

 Using rest length and velocity damping

 f = - [k
s
(|l| – l

0
) + k

d
(v

a 
- v

b
)/|l|] (l/|l|)

 k
d
 is damping factor 

f = - k
s
 x

x = l - l
0

l
0

a b
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Position based Dynamics

 Traditional force based dynamics must solve ODE 
using some integration scheme. Using simple and 
fast explicit methods can lead simulation to 
inaccuracy and instability

 This can be prevented by solving large systems of 
equations (using implicit methods) or

 Using more geometric approach by directly modify 
positions into stable and more accurate states.

 Such approach (position based dynamics) gives 
more control over animation and easily models 
constraints.



    

Position based Dynamics

 Object Representation
 We represent dynamic object with a set N vertices
 Each vertex has: Mass (m

i
), Position (p

i
), velocity (v

i
)

 Constraint Representation
 Let p = (p

1
, …, p

N
) be the generalized position 

 The constraint is a functions C
j
(p) = C

j
(p

1
, …, p

N
): R3N → R

 Cardinality m
j
 is the number of “used” parameters

 Stiffness parameter k
j
 € {0…1} is a material property

 We define equality (bilateral) constraint as: C
j
(p) = 0

 We define inequality (unilateral) constraint as: C
j
(p) ≥ 0



    

PBD: Algorithm

 1: forall vertices i: initialize p
i
 = p

i
0;  v

i
 = v

i
0;  w

i
 = 1/m

i

 2: loop
 3: forall vertices i do { v

i
 ← v

i
 + Δt w

i
 f

ext
(x

i
) }

 4: DampVelocities(v
1
, …, v

N
)

 5: forall vertices i do { q
i
 ← p

i
 + Δt v

i 
}

 6: forall vertices i do { CreateCollisionConstraints(x
i
 → p

i
) }

 7: loop n
S
 times { ProjectConstraints(C1, …, C

M+Q
, q

1
, …, q

N
) }

 8: forall vertices I do { v
i
 ← (q

i
 – p

i
)/Δt;  p

i
 ← q

i
; }

 9: VelocityUpdate(v
1
, …, v

N
)

 10: endloop



    

PBD: Algorithm

 First all masses, positions and velocities are 
initialized to rest state

 With each simulation frame we do
 First we modify velocities due to external forces (3:)
 Next we add artificial damping to the system (4:)
 Then we predict new positions (q

i
) with simple Euler step (5:)

 Next we detect and construct all collision constraints (6:)
 We apply “projection” several times on all constraints (7:)
 We find correct velocities and set projected positions (8:)
 We apply friction and restitution impulses on velocities (9:)



    

PBD: Constraint Projection

 Assuming constraint is violated ie. C(p) != 0 (<0) we 
must find correction Δp such that C(p + Δp) = 0 (≥0)

 By linearization we get: C(p+Δp) ≈ C(p) + ∇
p
C(p)∙Δp

 To conserve both momentums correction must be along 
direction of constraint function gradient ∇

p
C(p) ie:

 Δp = λ ∇
p
C(p); λ (Lagrange multiplier) is a scalar

 λ = - C(p) / |∇
p
C(p)|2f

 For i-th particle with mass m
i
 (w

i
 = 1/m

i
)

 Δp
i
 = λ w

i
 ∇

p
C(p

1
, …, p

N
)

 λ = - w
i 
C(p

1
, …, p

N
) / ∑

j
w

j
|∇

pj
C(p

1
, …, p

N
)|2

Roman
Cross-Out



    

PBD: Distance Constraint

 Let C(p) = C(p
1
, p

2
) = |p

1
 – p

2
| - d = 0

 ∇
p1
C(p

1
, p

2
) = (p

1
 – p

2
)/|p

1
 – p

2
|

 ∇
p2

C(p
1
, p

2
) = (p

1
 – p

2
)/|p

1
 – p

2
|

 λ = (|p
1
 – p

2
| - d) / w

1
 + w

2
     where w

1
 = 1/m

1
 and w

2
 = 1/m

2

 Δp
1
 = (w

1
 / (w

1
 + w

2
))(|p

1
 – p

2
| - d)(p

1
 – p

2
)/|p

1
 – p

2
|

 Δp
2
 = (w

2
 / (w

1
 + w

2
))(|p

1
 – p

2
| - d)(p

1
 – p

2
)/|p

1
 – p

2
|

 For equality constraints we always do projection

 For Inequality we project only when C(p) < 0

 Finally we multiply Δp with stiffness k ( Δpk )
 Due to iterations use k' = 1 – (1 – k)1/ns . Stiffness is applied 

linearly after n
s
 iterations



    

PBD: Collisions

 Given old position pi and predicted position qi we 
detect if a ray (p

i
, q

i
) enters some object. If yes we 

compute entry point q
c
 and collision normal n

c

 Next add collision constraint with stiffness k = 1  
C(p) = (p – q

c
) ∙ n

c
 ≥ 0 (ensures non-penetration)

 When scene contains more dynamic bodies we must provide 
constraint from all bodies into one “scene” solver

 For triangle meshes with face (p
1
, p

2
, p

3
): n

c
 = (p

2
 - p

1
) x (p

3 
- p

1
)

 Collision constraint generation is done outside the solver 
loop, to speed up simulation. Artifacts are negligible



    

PBD: Damping

 Velocities are damped

 forall vertices i
 Δv

i
 = v

cm
 + ω x r

i
 - v

i

 v
i
 ←  v

i
 + k

d
Δv

i

 endfor

 Δv
i
 only damps local 

deviations
 Here v

cm
 + ω x r

i
 is the 

velocity due to global body 
motion

 Global “body” variables
 p

cm
 = (∑

i 
p

i 
m

i
)/(∑

i 
m

i
)

 v
cm

 = (∑
i 
v

i 
m

i
)/(∑

i 
m

i
)

 L = ∑
i
r

i
 x (m

i
v

i
)

 J = ∑
i
(rx

i
)(rx

i
)T m

i

 ω = J-1 L
 r

i
 = p

cm
 – p

i

 rx
i
 is cross product matrix



    

Position based Dynamics - Summary

 Control over explicit integration with no typical 
instability problems

 Positions of vertices and objects parts can directly 
be manipulated during the simulation

 Simple handling of general constraints in the 
position based setting

 The explicit position based solver is easy to 
understand and implement.
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Cloth: Representation

 Cloth is represented with arbitrary manifold 
triangular mesh (no need for regular lattice)

 Each mesh vertex become a simulation particle

 Given cloth density and thickness we calculate 
mass of each triangle.

 Mass of each particle is sum of 1/3 of the mass of 
each adjacent triangle.

 Constraints are defined along edges and faces

 Cloth tearing is performed on vertices with large 
deformations



    

Cloth: Constraints
 Stretching Constraints

 Along each mesh edge we define fixed stretching constraint 
as simple equality distance constraint (spring)

 C
s
(p

1
, p

2
) = |p

1
 – p

2
| – l

0
    where l

0
 is rest length

 Stiffness k
s
 is usually higher to overcome springiness 

 Bending Constraints
 For each pair of adjacent triangles (p

1
, p

3
, p

2
) and (p

1
, p

2
, p

4
) we 

define a bending constraint
 C

b
(p

1
, p

2
, p

3
, p

4
)= acos(n

1
, n

2
) – φ

0
 where

 n
1
 = ((p2 - p1) x (p3 - p1)) / |(p2 - p1) x (p3 – p1)|

 n
2
 = ((p2 - p1) x (p4 - p1)) / |(p2 - p1) x (p4 – p1)|

n1

n2
p3

p1

p2

p4



    

Cloth: Collisions and Tearing

 Inequality collision constraints is defined as  

 C
b
(q, p

1
, p

2
, p

3
) = (q – p1) ∙ n – h

 q is collided point with face (p
1
, p

2
, p

3
)

 n is face normal
 h – distance to the face.

 Collision with rigid body exerts impulse m
i
p

i
/Δt at p

i

 More involved self-collision detection must be done 
cloth becomes to be tangled



    

Cloth: Overpressure and Tear

 Overpressure inside the closed mesh is modeled as
 C(p

1
, …, p

N
) = ∑

j
(p

j1
 x p

j2
) ∙ p

j3
 – k

p
V

0

 ∇
p1
C = ∑

j
(p

j2
 x p

j3
) + ∑

j
(p

j3
 x p

j1
) + ∑

j
(p

j1
 x p

j2
)

 Cloth Tearing Process
 Whenever the stretching of an edge exceeds a specified 

threshold value, we select one of the edge’s adjacent vertices
 We then put a split plane through that vertex perpendicular to 

the edge direction and split the vertex into 2 new vertices
 All triangles above the split plane are assigned to the original 

vertex while all triangles below are assigned to the duplicate



    

Cloth: Stiffness and Bending

(k
s
; k

b
) = (1; 1)               (k

s
; k

b
) = (0.5; 1)             (k

s
; k

b
) = (0.01; 1)

(k
s
; k

b
) = (1; 0)               (k

s
; k

b
) = (0.5; 0)             (k

s
; k

b
) = (0.01; 0)



    

Cloth: Self Collisions and Balloons



    

Cloth: Examples



    

Modeling 

Hair



    

Hair: Representation

 Each hair strand is modeled as a set of vertices 
connected by edges into series of line segments

 Each vertex is used as simulation particle

 Given material density and strand thickness we 
can calculate volume/mass of each segment. 
Particle mass is average of incident edge masses

 Strand constraints are applied along edges, 
additional (virtual) edges and newly created 
particles

 Hair tearing is performed on vertices with large 
deformations



    

Hair: Constraints

 We model Curly Hair and Straight Hair 

 Stretching Constraints (springs)
 Linear springs between every consecutive particle

 Bending Constraints (springs)
 Linear springs between every other particle
 The edge springs and bending springs together form 

triangles that implicitly represent the orientation of the hair

 Torsion Constraints (springs)
 Twist is modeled by attaching torsion springs that connect 

each particle to a particle three particles away from it

 Altitude Constraints (springs)
 See figure



    



    

Hair: Altitude Springs

 Point/Face Altitude Springs
 Perpendicular to the face starting from the given point
 Length is l = 6V/|u x v| where u and v are the vectors of the 

base triangle and V is the signed volume of the tetrahedron

 Edge/Edge Altitude Springs
 Perpendicular to common spring and bending spring
 Length is l = 6V/|u x v| where u and v are the stretch and 

bend spring and V is the signed volume of the tetrahedron
 For any tetrahedron, the edge/edge or point/face spring 

with minimal length is guaranteed to have all non-negative 
barycentric weights, preventing unbounded forces



    



    

Hair: Linear Strands



    

Hair: Curly Strands



    

The
End


