

and

soft bodies

Lesson 08 Outline

- * Problem definition and motivations
- Modeling deformable solids with mass-spring model
- * Position based dynamics
- Modeling cloths with mass-spring model
- Modeling hair with mass-spring model
- Demos / tools / libs

Simulation of Deformable Solids

*Lagrangian Mesh Based Methods

- Continuum Mechanics Based Methods
- Mass-Spring Systems
- * Lagrangian Mesh Free Methods
 - Loosely Coupled Particle Systems
 - Smoothed Particle Hydrodynamics (SPH)
 - Mesh Free Methods for the solution of PDEs

* Reduced Deformation Models and Modal Analysis

- * Eulerian and Semi-Lagrangian Methods
 - Fluids and Gases
 - Melting Objects

Mass-spring

Mass-spring Model

 Each deformable solid is modeled as a graph (mesh) of particles (with mass) connected with mass-less springs

* Particle Model

- Each particle is defined at least by its Mass (mi), Position (pi), Velocity (vi)
- Additionally there can be force, acceleration, momentum ...
- Usually particles can be incident to any number of springs

* Spring Model

- Springs usually connects 2 particles and exerts force on them
- Usually sprigs have non-zero rest length and some constant material properties

Hook's Spring Model

*Hook's Law: Strain is directly proportional to stress

- Formally: f = k_s x
 - x is the displacement of the end of the spring from its equilibrium position
 - f is the restoring force exerted by the material
 - \rightarrow k_s is a material constant called spring stiffness
- * Using rest length and velocity damping
- * f = $[k_{s}(|l| l_{0}) + k_{d}(v_{a} v_{b})/|l|] (l/|l|)$
 - $\rightarrow k_d$ is damping factor

Position based Dynamics

Position based Dynamics

- Traditional force based dynamics must solve ODE using some integration scheme. Using simple and fast explicit methods can lead simulation to inaccuracy and instability
- This can be prevented by solving large systems of equations (using implicit methods) or
- Using more geometric approach by directly modify positions into stable and more accurate states.
- Such approach (position based dynamics) gives more control over animation and easily models constraints.

Position based Dynamics

* Object Representation

We represent dynamic object with a set N vertices
 Each vertex has: Mass (m_i), Position (p_i), velocity (v_i)

Constraint Representation

- -> Let $\rho = (\rho_1, ..., \rho_N)$ be the generalized position
- → The constraint is a functions $C_i(\rho) = C_i(\rho_1, ..., \rho_N) : \mathbb{R}^{3N} \rightarrow \mathbb{R}$
- Cardinality m, is the number of "used" parameters
- → Stiffness parameter $k_i \in \{0...1\}$ is a material property
- We define equality (bilateral) constraint as: $C_i(\rho) = 0$
- → We define inequality (unilateral) constraint as: $C_{i}(\rho) \ge 0$

PBD: Algorithm

- * 1: forall vertices i: initialize $\rho_i = \rho_i^0$; $v_i = v_i^0$; $w_i = 1/m_i$
- * 2: loop
 - → 3: forall vertices i do { $v_i \leftarrow v_i + \Delta t w_i f_{ext}(x_i)$ }
 - → 4: DampVelocities $(v_1, ..., v_N)$
 - → 5: forall vertices i do { $q_i \leftarrow p_i + \Delta t \vee_i$ }
 - → 6: forall vertices i do { CreateCollisionConstraints ($x_i \rightarrow \rho_i$) }
 - \rightarrow 7: loop n_s times { ProjectConstraints (C1, ..., C_{M+Q}, q₁, ..., q_N) }
 - → 8: forall vertices I do { $v_i \leftarrow (q_i \rho_i)/\Delta t$; $\rho_i \leftarrow q_i$; }
 - → 9: VelocityUpdate ($v_1, ..., v_N$)
- * 10: endloop

PBD: Algorithm

 First all masses, positions and velocities are initialized to rest state

* With each simulation frame we do

- First we modify velocities due to external forces (3:)
- Next we add artificial damping to the system (4:)
- -> Then we predict new positions (q_i) with simple Euler step (5:)
- Next we detect and construct all collision constraints (6:)
- We apply "projection" several times on all constraints (7:)
- We find correct velocities and set projected positions (8:)
- We apply friction and restitution impulses on velocities (9:)

PBD: Constraint Projection

- * Assuming constraint is violated ie. $C(\rho) != 0$ (<0) we must find correction $\Delta \rho$ such that $C(\rho + \Delta \rho) = 0$ (≥0)
- * By linearization we get: $C(\rho + \Delta \rho) \approx C(\rho) + \nabla_{\rho}C(\rho) \cdot \Delta \rho$
 - → To conserve both momentums correction must be along direction of constraint function gradient $\nabla_{\rho}C(\rho)$ ie:
 - → $\Delta \rho = \lambda \nabla_{\rho} C(\rho); \lambda$ (Lagrange multiplier) is a scalar
 - → $\lambda = -C(\rho) / |\nabla_{\rho}C(\rho)|^{2}$
 - \rightarrow For i-th particle with mass m_i (w_i = 1/m_i)

$$\Delta \rho_{i} = \lambda w_{i} \nabla_{\rho} C(\rho_{1}, ..., \rho_{N})$$

 $\lambda = - w_i C(\rho_1, \dots, \rho_N) / \sum_j w_j | \nabla_{\rho_j} C(\rho_1, \dots, \rho_N) |^2$

PBD: Distance Constraint

* Let C (ρ) = C (ρ_1 , ρ_2) = $|\rho_1 - \rho_2|$ - d = 0

- → $\nabla_{\rho_1} C(\rho_1, \rho_2) = (\rho_1 \rho_2) / |\rho_1 \rho_2|$
- $= \nabla_{\rho_2} C(\rho_1, \rho_2) = (\rho_1 \rho_2) / |\rho_1 \rho_2|$
- → $\lambda = (|\rho_1 \rho_2| d) / w_1 + w_2$ where $w_1 = 1/m_1$ and $w_2 = 1/m_2$
- $\Delta \rho_1 = (w_1 / (w_1 + w_2)) (|\rho_1 \rho_2| d) (\rho_1 \rho_2) / |\rho_1 \rho_2|$
- $\Delta \rho_2 = (w_2 / (w_1 + w_2)) (|\rho_1 \rho_2| d) (\rho_1 \rho_2) / |\rho_1 \rho_2|$

For equality constraints we always do projection

- * For Inequality we project only when $C(\rho) < 0$
- * Finally we multiply $\Delta \rho$ with stiffness k ($\Delta \rho k$)
 - → Due to iterations use k' = 1 $(1 k)^{1/ns}$. Stiffness is applied linearly after n_s iterations

PBD: Collisions

* Given old position pi and predicted position qi we detect if a ray (p_i, q_i) enters some object. If yes we compute entry point q_c and collision normal n_c

- * Next add collision constraint with stiffness k = 1 $C(\rho) = (\rho - q_c) \cdot n_c \ge 0$ (ensures non-penetration)
 - When scene contains more dynamic bodies we must provide constraint from all bodies into one "scene" solver
 - → For triangle meshes with face $(\rho_1, \rho_2, \rho_3): n_c = (\rho_2 \rho_1) \times (\rho_3 \rho_1)$
 - Collision constraint generation is done outside the solver loop, to speed up simulation. Artifacts are negligible

PBD: Damping

- * Velocities are damped
- * forall vertices i
 - $\rightarrow \Delta v_{i} = v_{cm} + \omega \times r_{i} v_{i}$
 - $\rightarrow v_i \leftarrow v_i + k_o \Delta v_i$
- * endfor
- Δv_i only damps local
 deviations
 - Here v_{cm} + ω x r_i is the velocity due to global body motion

* Global "body" variables $\Rightarrow \rho_{cm} = (\sum_{i} \rho_{i} m_{i}) / (\sum_{i} m_{i})$ $\Rightarrow v_{cm} = (\sum_{i} v_{i} m_{i}) / (\sum_{i} m_{i})$ $\Rightarrow L = \sum_{i} r_{i} \times (m_{i} v_{i})$ $\Rightarrow J = \sum_{i} (r_{i}^{*}) (r_{i}^{*})^{T} m_{i}$ $\Rightarrow \omega = J^{-1}L$ $\Rightarrow r_{i} = \rho_{cm} - \rho_{i}$

 $\rightarrow r_{i}^{x}$ is cross product matrix

Position based Dynamics - Summary

- Control over explicit integration with no typical instability problems
- Positions of vertices and objects parts can directly be manipulated during the simulation
- Simple handling of general constraints in the position based setting
- * The explicit position based solver is easy to understand and implement.

Modeling Cloth

Cloth: Representation

- Cloth is represented with arbitrary manifold triangular mesh (no need for regular lattice)
- * Each mesh vertex become a simulation particle
- Given cloth density and thickness we calculate mass of each triangle.
- Mass of each particle is sum of 1/3 of the mass of each adjacent triangle.
- Constraints are defined along edges and faces
- Cloth tearing is performed on vertices with large deformations

Cloth: Constraints

Stretching Constraints

- Along each mesh edge we define fixed stretching constraint as simple equality distance constraint (spring)
- $\rightarrow C_s(\rho_1, \rho_2) = |\rho_1 \rho_2| l_0$ where l_0 is rest length
- \rightarrow Stiffness k_s is usually higher to overcome springiness

*Bending Constraints

- → For each pair of adjacent triangles (ρ_1 , ρ_3 , ρ_2) and (ρ_1 , ρ_2 , ρ_4) we define a bending constraint
- → $C_{b}(\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4})$ = acos (n_{1}, n_{2}) ϕ_{0} where
 - $n_1 = ((\rho 2 \rho 1) \times (\rho 3 \rho 1)) / |(\rho 2 \rho 1) \times (\rho 3 \rho 1)|$
 - $n_2 = ((\rho 2 \rho 1) \times (\rho 4 \rho 1)) / |(\rho 2 \rho 1) \times (\rho 4 \rho 1)|$

Cloth: Collisions and Tearing

Inequality collision constraints is defined as

- * $C_{b}(q, \rho_{1}, \rho_{2}, \rho_{3}) = (q \rho_{1}) \cdot n h$
 - → q is collided point with face (ρ_1 , ρ_2 , ρ_3)
 - n is face normal
 - \rightarrow h distance to the face.

* Collision with rigid body exerts impulse $m_i \rho_i / \Delta t$ at ρ_i

 More involved self-collision detection must be done cloth becomes to be tangled

Cloth: Overpressure and Tear

* Overpressure inside the closed mesh is modeled as

- $\rightarrow C(\rho_1, \dots, \rho_N) = \sum_{j} (\rho_{j1} \times \rho_{j2}) \cdot \overline{\rho_{j3} k_{\rho} V_0}$

Cloth Tearing Process

- Whenever the stretching of an edge exceeds a specified threshold value, we select one of the edge's adjacent vertices
- We then put a split plane through that vertex perpendicular to the edge direction and split the vertex into 2 new vertices
- All triangles above the split plane are assigned to the original vertex while all triangles below are assigned to the duplicate

Cloth: Stiffness and Bending

 $(k_{s}; k_{b}) = (0.5; 1)$ $(k_s; k_b) = (0.01; 1)$ $(k_{s}; k_{b}) = (1; 1)$

 $(k_{s}; k_{b}) = (1; 0)$

Cloth: Self Collisions and Balloons

Cloth: Examples

Modeling Hoir

Hair: Representation

- Each hair strand is modeled as a set of vertices connected by edges into series of line segments
- * Each vertex is used as simulation particle
- Given material density and strand thickness we can calculate volume/mass of each segment.
 Particle mass is average of incident edge masses
- Strand constraints are applied along edges, additional (virtual) edges and newly created particles
- Hair tearing is performed on vertices with large deformations

Hair: Constraints

- * We model Curly Hair and Straight Hair
- Stretching Constraints (springs)
 - Linear springs between every consecutive particle
- *Bending Constraints (springs)
 - Linear springs between every other particle
 - The edge springs and bending springs together form triangles that implicitly represent the orientation of the hair
- Torsion Constraints (springs)
 - Twist is modeled by attaching torsion springs that connect each particle to a particle three particles away from it
- Altitude Constraints (springs)
 - → See figure

Point/Face Altitude Springs

(a) Spring has all non-negative barycentric weights

(b) Spring has negative barycentric weights

(c) Degenerate: all point/face springs have negative barycentric weights

Edge/Edge Altitude Springs

(d) Spring has all non-negative barycentric weights

(e) Spring has negative barycentric weights

(f) Degenerate: all edge/edge springs have negative barycentric weights

Hair: Altitude Springs

* Point/Face Altitude Springs

- Perpendicular to the face starting from the given point
- Length is l = 6V/|u x v| where u and v are the vectors of the base triangle and V is the signed volume of the tetrahedron

*Edge/Edge Altitude Springs

- Perpendicular to common spring and bending spring
- Length is I = 6V/|u x v| where u and v are the stretch and bend spring and V is the signed volume of the tetrahedron
- For any tetrahedron, the edge/edge or point/face spring with minimal length is guaranteed to have all non-negative barycentric weights, preventing unbounded forces

Figure 7: Straight and curly hair models using edge, bending, torsion, and altitude springs preserving the implied tetrahedra.

Figure 8: Triangles define orientations for penalizing twist, and torsion springs "trace" a continuous path through the nondegenerate triangles—but they are blocked at straight hair segments (left). The subdivision and perturbation of our method removes degeneracies so the path becomes continuous (right).

Hair: Linear Strands

Figure 9: A simulation of 10,000 long straight hairs with 50 segments each (1,000,000 total particles) on a character shaking his head from side to side.

Hair: Curly Strands

Figure 14: A simulation of 5,000 long curly hairs with 50 segments each (250,000 total particles) on a character spinning around from back to front.

