Meshless Deformations Based on Shape Matching

 by Matthias Müller, Bruno Heidelberger, Matthias Teschner, Markus GrossPresentation autor: Andrej Čičmanský

Content

- Abstract (3)
- Introduction (4-5)
- Meshless Animation (6-11)
- Extensions (12-16)
- Results (17-21)

Abstract

- new approach for simulating deformable objects
- handles point objects and does not need connectivity information
- does not require any pre-processing
- unconditional stability of the dynamic simulation make the approach particularly interesting for games

INTRODUCTION:
 What we need

- Efficiency
- Stability
- Controllability

INTRODUCTION: Contributions

- pulling a deformed geometry towards a well-defined goal
- degree of details are varied using linear and quadratic deformation modes
- large variety of objects can be handled
- stable under all circumstances and for all deformed geometry configurations

Meshless Animation

- Newton's second law of motion is basis for many physically-based simulation techniques $\mathrm{F}=\mathrm{ma}$
- to compute object locations, the accelerations and velocities are numerically integrated over time
- implicit integration - stability / computationally expensive
- explicit integration - faster to compute / not so stable

Meshless Animation:

 Explicit Numerical Integration

$$
\begin{aligned}
& v(t+h)=v(t)+h \frac{-k\left(x(t)-l_{0}\right)}{m} \\
& x(t+h)=x(t)+h v(t+h),
\end{aligned}
$$

$$
A=\left[\begin{array}{cc}
1 & -\frac{k h}{m} \\
h & 1-\frac{h^{2} k}{m}
\end{array}\right]
$$

Meshless Animation: The Algorithm

- only need set of particles with masses m_{i} and an initial configuration x_{i}
- without particle-particle interactions
- each time step, each particle is pulled towards its goal position g_{i}

Meshless Animation: Shape Matching 1

- two sets of points x_{i}^{0} and x_{i}
- find the rotation matrix R and the translation vectors t and t_{0} which minimize

$$
\sum_{i} w_{i}\left(\mathbf{R}\left(\mathbf{x}_{i}^{0}-\mathbf{t}_{0}\right)+\mathbf{t}-\mathbf{x}_{i}\right)^{2}
$$

- w_{i} are weights of individual points

Meshless Animation:

 Shape Matching 2$\mathbf{A}=\left(\sum_{i} m_{i} \mathbf{p}_{i} \mathbf{q}_{i}^{T}\right)\left(\sum_{i} m_{i} \mathbf{q}_{\mathbf{i}} \mathbf{q}_{i}^{T}\right)^{-1}=\mathbf{A}_{p q} \mathbf{A}_{q q}$.

- $A_{p q}=R S$
- S - symmetric part
- R - rotational part
- Goal position:

$$
\mathbf{g}_{i}=\mathbf{R}\left(\mathbf{x}_{i}^{0}-\mathbf{x}_{\mathrm{cm}}^{0}\right)+\mathbf{x}_{\mathrm{cm}}
$$

Meshless Animation: Integration

$$
\begin{aligned}
\mathbf{v}_{i}(t+h) & =\mathbf{v}_{i}(t)+\alpha \frac{\mathbf{g}_{i}(t)-\mathbf{x}_{i}(t)}{h}+h f_{\mathrm{ext}}(t) / m_{i} \\
\mathbf{x}_{i}(t+h) & =\mathbf{x}_{i}(t)+h \mathbf{v}_{i}(t+h)
\end{aligned}
$$

- $\alpha=[0 . .1]$ - simulates stiffness
difference is the way the internal elastic forces are treated

Extensions: Rigid Body Dynamics

- $\alpha=1$
- points are moved to the goal positions g_{i} exactly at each time step
- positions represent a rotated and translated version of the initial shape

ExTENSIONS: Linear Deformations

- A - matrix of the best linear transformation to match the actual shape in the least squares sense
- $g_{i}=\beta A+(1-\beta) R$
- instead of using just R

Extensions: Quadratic Deformations

- quadratic transformation: $\quad \mathbf{g}_{i}=[\mathbf{A} \mathbf{Q} \mathbf{M}] \tilde{\mathbf{q}}_{i}$
- optimal quadratic transformation:

$$
\tilde{\mathbf{A}}=\left(\sum_{i} m_{i} \mathbf{p}_{i} \tilde{\mathbf{q}}_{i}^{T}\right)\left(\sum_{i} m_{i} \tilde{\mathbf{q}}_{i} \tilde{\mathbf{q}}_{i}^{T}\right)^{-1}=\tilde{\mathbf{A}}_{p q} \tilde{\mathbf{A}}_{q q}
$$

Extensions: Cluster Based Deformation

- extend the range of motion
- regularly subdivide the space around a given surface mesh into overlapping cubical regions

$$
\Delta \mathbf{v}_{i}=\alpha \frac{\mathbf{g}_{i}^{c}(t)-\mathbf{x}_{i}(t)}{h}
$$

EXTENSIONS: Plasticity

$$
\mathbf{S}^{p} \leftarrow\left[\mathbf{I}+h c_{\text {creep }}(\mathbf{S}-\mathbf{I})\right] \mathbf{S}^{p}
$$

Results

- test on PC Pentium 4, 3.2 GHz
- Cluster based deformation

Results:
 Performance

Results:
 COMPLEX SIMULATION SCENARIOS

- 384 objects, 2,448 clusters, 55,200 points
- quadratic shape matching take 0.008 and 0.096 milliseconds per frame

Results:
 INTERACTIVITY

Results: Stability

The End

Thank you for your attention
Please don't be shy to ask any question

