Variables in description logic

- **Ground descriptions** are descriptions without variable

 \[
 \text{FemaleStudent} \equiv \text{Person} \land \text{Female} \land \exists \text{studyIn}. \text{University}
 \]

- **Patterns** are concept descriptions with variables

 \[
 \text{Pattern} \equiv \exists x. \text{Y} \land \exists y. \text{U}
 \]

 with Y a concept variable and x a role variable

- **Variable substitutions**

 \[
 \sigma(x') = \text{Person} \land \text{Female} ; \sigma(x) = \text{studyIn}
 \]

 \[
 \sigma(\text{Pattern}) \equiv \text{Person} \land \text{Female} \land \exists \text{studyIn}. \text{University}
 \]

Refreshing semantics

- **Classical (non-refreshing) semantics**: All instances of a variable are assigned to the same value.

- **Refreshing semantics**: Instances produced by unfolding cycles may lead to different assignments.

Once unfolded **Academic twice**, the resulting definitions are obtained (indexes distinguish instances):

- **Classical semantics**:

 \[
 \text{Academic} \equiv \text{Person} \land \exists x. \text{University} \land \exists y. \text{Academic}
 \]

- **Refreshing semantics**:

 \[
 \text{Academic} \equiv \text{Person} \land \exists x_1. \text{University} \land \exists y_1. (\exists x_2. \text{University} \land \exists y_2. \text{Academic})
 \]

Note that with refreshing semantics, we may have, \(\sigma(x_1) \neq \sigma(x_2) \) or \(\sigma(y_1) \neq \sigma(y_2) \).

- These new substitution possibilities may propose new or even better solutions to matching problems.

Introduction

Matching

- Is there a substitution \(\sigma \) such that \(\sigma(P) \sqsubseteq C \) with \(P \) a pattern and \(C \) a ground description?

- **Pattern** \(\sqsubseteq \text{FemaleStudent} \) has a solution since \(\sigma(\text{Pattern}) \sqsubseteq \text{FemaleStudent} \)

Examples

- **TBox \(T \)**

 \[
 \begin{align*}
 \text{PhDStudent} & \equiv \text{Person} \land \exists \text{studyIn}. \text{University} \land \exists \text{supervisedBy}. \text{Doctor} \\
 \text{Doctor} & \equiv \text{Person} \land \exists \text{getPhDIn}. \text{University} \land \exists \text{formerly}. \text{PhDstudent} \\
 \text{FrenchUniversity} & \equiv \text{University} \land \exists \text{locatedIn}. \text{France} \\
 \text{FrenchPhDstudent} & \equiv \text{Person} \land \exists \text{getPhDIn}. \text{FrenchUniversity} \land \exists \text{formerly}. \text{FrenchPhDstudent} \\
 \text{FrenchPhDstudent} & \equiv \text{Person} \land \exists \text{studyIn}. \text{FrenchUniversity} \land \exists \text{supervisedBy}. \text{Doctor}
 \end{align*}
 \]

- **Let consider the following pattern Academic**

 \[
 \text{Academic} \equiv \text{Person} \land \exists x. \text{University} \land \exists y. \text{Academic}
 \]

 Is there a substitution \(\sigma \) such that \(\sigma(\text{Academic}) \sqsubseteq \text{Doctor} \)?

 - Under non-refreshing semantics this problem is unsolvable.
 - Under refreshing semantics, the following substitution \(\sigma \) is possible

 \[
 \begin{align*}
 \sigma(x_1) & = \text{getPhDIn} \\
 \sigma(x_2) & = \text{formerly} \\
 \sigma(y_1) & = \text{supervisedBy} \\
 \sigma(y_2) & = \text{formerly}
 \end{align*}
 \]

 \[
 \begin{align*}
 \sigma(\text{Academic}) & \equiv \text{Person} \land \exists x_1. \text{University} \land \exists y_1. (\exists x_2. \text{University} \land \exists y_2. \text{Academic})
 \end{align*}
 \]

 Note that \(\sigma(\text{Academic}) \sqsubseteq \text{Doctor} \)

 - **Conclusion**

 Some unsolvable matching problems for the non-refreshing semantics find a solution with the refreshing semantics.

- **Let consider the following pattern Acad2**

 \[
 \begin{align*}
 \text{Acad2} & \equiv \text{Person} \land \exists \text{getPhDIn}. \text{X} \land \exists \text{formerly}. (\text{Person} \land \exists \text{studyIn}. \text{X} \land \text{Acad2})
 \end{align*}
 \]

 Is there a substitution \(\sigma \) such that \(\sigma(\text{Acad2}) \sqsubseteq \text{FrenchDoctor} \)?

 - Under non-refreshing semantics, \(\sigma(X) = \text{FrenchUniversity} \) is a solution.
 - Under refreshing semantics, the following substitution \(\theta \) is possible

 \[
 \begin{align*}
 \theta(x_1) & = \text{FrenchUniversity} \\
 \theta(x_2) & = \text{University} \text{ for } i > 1
 \end{align*}
 \]

 Note that \(\sigma(\text{Acad2}) \sqsubseteq \theta(\text{Acad2}) \equiv \text{FrenchDoctor} \)

 - **Conclusion**

 Some matching problems find a better (i.e. closer to the targeted concept)) solution under the refreshing semantics.

New reasoning task : Weak-subsumption

Let \(\mathcal{T} \) be an \(\mathcal{EL} \)-TBox and let \(P, Q \) be two \(\mathcal{EL} \)-patterns (with potentially refreshing variables).

Then, \(P \) is weakly subsumed by \(Q \) iff there exist substitutions \(\psi_1 \) and \(\psi_2 \) s.t. \(\psi_1(P) \) is subsumed by \(\psi_2(Q) \).

Preliminary Results & Perspectives

- Our main result is showing that testing weak-subsumption in \(\mathcal{EL} \) for the greatest fix-point semantics with role variables is EXPTIME-Complete.

 The main steps of our approach are

 - Associate to each pattern an automaton which is a compact representation of all the possible instantiations.
 - Characterize weak-subsumption in terms of existential simulation between automata.
 - Devise a correct algorithm which has exponential time complexity at worst proving its optimality.

- **Futur research works**

 - Extending our framework to handle concept variables.
 - Considering additional reasoning that go beyond weak-subsumption.
 - Investigating other description logics such as \(\mathcal{FL} \) and \(\mathcal{ALN} \).

[1] Raedler, F., Moranowski, R.: Matching with respect to general concept inclusions in the description logic \(\mathcal{EL} \).

Made for the 34th International Workshop on Description Logics