
Chapter 9

Networks of neurons

An essential component of the art of modelling is to carry out appropriate

simplifications. This is particularly important when modelling networks of

neurons. Generally, it is not possible to represent each neuron of the real

system in the model, and so many design questions have to be asked. The

principal questions concern the number of neurons in the model network,

how each neuron should be modelled and how the neurons should interact.

To illustrate how these questions are addressed, different types of model are

described. These range from a series of network models of associative mem-

ory, in which both neurons and synapses are represented as simple binary

or multistate devices, two different models of thalamocortical interactions, in

which the neurons are represented either as multi-compartmental neurons

or as spiking neurons, and multi-compartmental models of the basal ganglia

and their use in understanding Parkinson’s disease. The advantages and

disadvantages of these different types of model are discussed.

Two severe limitations prevent the modeller from constructing a model of
a neural system in which each nerve cell is represented directly by a coun-
terpart model neuron. One limitation is that there are so many neurons in
the neural system that having a full-scale model is computationally infeas-
ible. The second limitation is that usually only incomplete data is available
about the functional and structural properties of the neurons, how they are
arranged in space and how they interconnect.

The design issues that are most commonly addressed concern the num-
bers and types of model neurons and the topology of how they connect
with each other. Another crucially important issue is how the cells are sit-
uated in 3D space. Since the embedding of network models in space is not
normally attempted, this issue has not often been discussed, with some no-
table exceptions. An early attempt is the simulation model of Marr’s theory
of cerebellar cortex (Marr, 1969; Tyrrell and Willshaw, 1992). In Section 9.1
we consider these design issues.

In their implementation of

Marr’s influential theory of

cerebellar cortex as a learning

machine (Marr, 1969), Tyrrell

and Willshaw (1992)

constructed a simulation model

of all the circuitry associated

with a single Purkinje cell.

With the limited computing

resources available at the time,

they did this by modelling

each 3D layer of cells and

connections in a 2D plane. To

build the model they had to

guess many parameter values

about the geometry as these

were not available. Their

simulation results agreed

broadly with the analysis

carried out by Marr.

The most common properties that are investigated in network models
of the nervous system are the patterns of firing within the array of neurons
and how such patterns are modified through specific synaptic learning rules.
In this chapter, we examine these two properties in a variety of network
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models in which the neurons are modelled to differing levels of detail. We
start by looking at very simple networks where both neurons and synapses
are modelled as two-state devices. In these networks most emphasis has been
on the effects of synaptic modification. Accordingly, in Section 9.2 we de-
scribe three different approaches to constructing generic models of network
associative memory in which the neuron is treated as a two-state device and
the modifiable synapse as a simple binary or linear device. We show that one
advantage of extreme simplification is that analytical results for how these
networks can be used most efficiently can be obtained and the capacity of
the system can be calculated.

For networks of more complex neurons, it is important to characterise
their firing patterns before associative storage can be assessed. In Section
9.3 we examine an integrate-and-fire network model of a cortical column,
and we explore associative storage and retrieval in this network. In Sec-
tion 9.4 we look at network models of more complex, multi-compartmental
model neurons, again looking at how associative memory can be embedded
in them.

Section 9.5 contains three examples of modelling of thalamocortical con-
nections using model neurons of different complexity. These large-scale net-
work models are used to examine network phenomena such as oscillatory
neural activity as recorded in electroencephalograms (EEGs).

Finally, we look at a clinically related application, in which the emphasis
is on the patterns of activity under normal and abnormal conditions. In Sec-
tion 9.6 we discuss how to model the effects of deep brain stimulation of the
subthalamic nucleus in the basal ganglia, now used successfully for the relief
of Parkinson’s disease. We describe a multi-compartmental network model
of the subthalamic nucleus and related structures and discuss the validation
and predictions made from the model.

9.1 Network design and construction

In the preceding chapters we have seen that the construction of the model
of a single neuron involves a vast range of choices concerning how to model
components such as cell morphology, ion channels and synaptic contacts.
Each choice involves a compromise over the level of biological detail to in-
clude. How to make useful simplifications is an important part of the mod-
elling process.

The same is true if we want to build a network of neurons. A major de-
cision is to choose at which level of detail to model the individual neurons.
For a large-scale network with thousands, or hundreds of thousands of neu-
rons, this may require using the simplified models introduced in the previous
chapter. Other issues also arise with network models. How should we han-
dle communication between neurons? Do we need to model axons and the
propagation of action potentials along them? Do we need to model short-
term dynamics and stochastic neurotransmitter release at synapses? Our net-
work is almost certainly going to be smaller than real size in terms of the
numbers of neurons. In which case, how should we scale the numbers of

Some neurobiological systems

contain a small number of

neurons enabling neurons to

be represented one-to-one in

the model. For examples see

Abbott and Marder (1998).
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neurons of different classes in the network? Finally, do we need to consider
the location of neurons in space? In this section we explore possible answers
to these questions.

9.1.1 Connecting neurons together
Networks of neurons are formed predominantly through neurons connect-
ing together via chemical synapses formed between axonal terminals from
efferent neurons and the postsynaptic membrane of receiving neurons. The
signal that passes from the efferent to receiving neuron is the action poten-
tial. A possibility for modelling these connection pathways is to include in
each cell model a compartmental model of its axon along which action po-
tentials propagate. This is computationally very expensive and arguably un-
necessary. Action potentials are stereotypical and the information content of
signals passing from one neuron to another is carried by the times of action
potentials arriving at synapses, rather than the precise voltage waveform of
the action potential.

Consequently, the approach that is almost uniformly applied is to treat
the signal that passes from one neuron to another to be the presence or
absence of an action potential. Then the connection from one neuron to an-
other is modelled as a delay line (Figure 9.1). The voltage in the soma or axon
initial segment of the efferent cell is monitored continuously. If the voltage
goes over a defined threshold (e.g. 0 mV), this signals the occurrence of an
action potential. The delay line then signals this occurrence to the synaptic
contact on the receiving neuron at a defined time later, corresponding to the
expected transmission time of the action potential along the real axon. This
approach is not only vastly cheaper computationally than compartmental
modelling of axons, but it is also easily implemented on parallel computers,
as only spike times need to be sent between processors (Brette et al., 2007;
Hines and Carnevale, 2008).

Action potential

D
elay

Fig. 9.1 An action potential is

initiated in the axon initial

segment and propagates along

the axon. This can be modelled

as a delay line, which specifies

the time taken for the action

potential to travel the length of

the axon. The action potential

itself is not modelled.

There are circumstances where it is necessary to model the detail of ac-
tion potential propagation along axons. The delay line model assumes that
action potential propagation is entirely reliable and is not modulated along
the length of the axon. The possibility of action potential failure at branch
points or due to presynaptic inhibition are ignored. These effects have been
explored using compartmental models of isolated axons (Parnas and Segev,
1979; Segev, 1990; Manor et al., 1991a, b; Graham and Redman, 1994; Walm-
sley et al., 1995). They could certainly be expected to influence network
dynamics and thus raise the challenge of modelling action potential propa-
gation in a network model.

9.1.2 Scaling neuronal numbers
Many networks of interest contain thousands or even millions of neurons,
which it is often not feasible to model. It is then necessary to model a scaled-
down version of the actual network. This involves scaling both the numbers
of neurons and the number of synapses between neurons.

Suppose our network is going to be one-tenth the size of the brain nu-
cleus we are modelling. This nucleus contains three cell types – a prin-
cipal excitatory neuron that makes up 80% of the cell population, and
two types of inhibitory interneuron, each constituting about 10% of the
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population. The obvious way to scale neuronal numbers is to retain the rel-
ative proportions of cells of different types (80:10:10) in our one-tenth-sized
model. Provided this results in reasonable numbers of cells of each type in
the model, then this could be an appropriate choice. What may constitute a
reasonable number of cells is discussed below.

The principal use of the model is likely to be to study the population
response of the excitatory cells. For this to be an accurate reflection of phys-
iology, it is important that the excitatory and inhibitory synaptic input onto
these cells represents realistic population activities. In our model network,
inhibition from each population of inhibitory interneuron should be as close
as possible to that experienced by a real excitatory neuron in vivo. Given that
we have fewer interneurons in our model network than exist in vivo, there
are two ways of achieving this:

(1) Scale up the maximum synaptic conductance of each connection from
an inhibitory interneuron onto an excitatory cell by a factor of ten, in
this example.

(2) Create ten times the number of synaptic contacts from each interneuron
onto each excitatory cell than exist in vivo.

Neither approach is perfect. Scaling the synaptic conductances may give
an equivalent magnitude of inhibition. However, this will be applied as a
few large conductance changes at isolated points on the excitatory cell. As
discussed in more detail in Section 9.3.3, the resulting voltage changes and
integration with excitatory inputs will be distorted. Creating more synaptic
contacts from each interneuron will result in a realistic spatial distribution
of inhibitory inputs, but spikes arriving at these inputs may have unnatural
correlations since groups of them are more likely to derive from the same
interneuron. Unless it is actually possible to include physiological numbers
of interneurons in the network model, one of these compromises is required.
The same considerations apply to the inputs from excitatory neurons.

If it is likely that different sized network models will be tested, it is very
useful to fix the number of afferent inputs that a given cell receives from the
population of cells of each type in the model. For example, the number of
inhibitory inputs that each excitatory cell receives from each of two popula-
tions of inhibitory interneurons should remain fixed regardless of the actual
number of each cell type in the model. When the number of cells is changed,
a cell of a particular type will provide fewer or more synaptic contacts onto
a target cell, but the target cell will always have the same number of synaptic
inputs from the efferent cell population (Orbán et al., 2006).

Another effect of scaling the numbers of neurons is that the small popula-
tions of interneurons may be scaled to the point of having only one or a few
cells representing these populations in the model. In this case the population
activity in the model of these interneurons may be a serious distortion of
the activity in vivo. Real activity may involve thousands of asynchronously
firing cells, with the instantaneous population activity providing a good es-
timate of some modulating driving force, such as slowly changing sensory
input (Section 8.2.2; Knight, 1972; Hospedales et al., 2008). The small popu-
lation in the model may only provide a poor representation of the modulat-
ing input.
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If this is the case, then it may be possible to scale each population of cells
differently. If the excitatory cells are not strongly recurrently connected,
then only a relatively small number of these cells are required in the model
to allow a good study of their network activity (Orbán et al., 2006). This
then allows relatively larger populations of interneurons to be modelled so
that both their population activity and their inhibitory effect on the ex-
citatory cells are much more physiological. This approach was taken by
Orbán et al. (2006) in a model of the CA1 area of hippocampus, where
recurrent connections between pyramidal cells are sparse. Their network
model of theta activity contained a small number (15–30) of detailed 256-
compartment pyramidal cells, but with populations of up to 200 basket
and 90 oriens lacunosum-moleculare cells, each cell modelled by a single
compartment.

9.1.3 Positioning neurons in space
Real neurons have a particular location within a brain nucleus, and connec-
tivity patterns between neurons are often distance-dependent. To capture
these patterns it may be necessary to place our model neurons in virtual
space.

For, say, a cortical column or other small part of a brain area, it may
be reasonable to assume that connectivity is completely uniform (e.g. every
neuron connects to every other neuron) or that there is a fixed probability
that one neuron makes contact with another neuron. In this case the precise
spatial location of a neuron is not relevant and can be ignored.

In general, though, we will need to lay our cells out in some 1D, 2D or
3D arrangement that reflects the physiological layout. Typically this is done
with a regular spacing between cells. Then, when forming connections be-
tween cells, the probability that an efferent cell forms a connection onto a
target cell can be a function of the distance between them. This function is
often an exponential or Gaussian function so that the probability of connec-
tion decreases with distance (Figure 9.2a). This reflects the basic connection
arrangement in many brain nuclei. More complex connection strategies can
easily be implemented. So-called small-world networks (Watts and Strogatz,
1998; Netoff et al., 2004; Földy et al., 2005) can be generated by first creating
a network with only local connections between cells (a cell connects to a few
of its nearest neighbours) and then randomly reassigning a small proportion
of the connections to be much longer-range connections (Figure 9.2b).

(a)

(b)

Fig. 9.2 (a) Local connectivity

in which a neuron connects only

to near neighbours.

(b) Small-world connectivity in

which some of the local

connections are replaced by

longer-range connections.

One problem to deal with is that of edge effects, in which cells at the edge
of our spatial layout receive fewer connections than interior cells. This could
be overcome by assuming the spatial arrangement actually wraps around, so
that a cell at the end of the line is assumed to be a neighbour of the cell at the
opposite end of the line (Netoff et al., 2004; Wang et al., 2004; Földy et al.,
2005; Santhakumar et al., 2005), i.e. the line is actually a circle (Figure 9.2). A
more biological solution might be to have a sufficiently large model network
that the cells at the boundaries can be ignored.

9.1.4 Variability in cell properties
The vast majority of neuronal network models contain populations of cells
with completely uniform properties, including morphology and membrane
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physiology. This does not reflect the variation seen within biological neu-
rons and can lead to artifacts in network behaviour due to uniformity in cel-
lular responses to synaptic input. A better approach is to introduce variance
into one or more cellular properties, including membrane resistance, rest-
ing membrane potential and ion channel densities. Experimental estimates
of these parameters may be available that indicate the magnitude of variance
in a biological population. Variations in electrophysiological responses may
indicate variability in membrane ion channel densities (Aradi and Soltesz,
2002).

Alternatively, some variation can be introduced into a population of
otherwise identical cell models by either starting a simulation with differ-
ent initial conditions for each cell; e.g. different starting membrane poten-
tials, or providing a different background stimulus, in the form of a small
depolarising or hyperpolarising current injection, to each cell (Orbán et al.,
2006).

Computational models and experiments have shown that signal integra-
tion in cells and collective network behaviour is strongly influenced by vari-
ability in individual cell characteristics (Aradi and Soltesz, 2002; Aradi et al.,
2004). Another consideration is the relative proportion of cells of different
types within the network. Classification of cell types is an art form that is
still evolving (Somogyi and Klausberger, 2005; Markram, 2006). Thus the
number of cell populations and their relative sizes may be free variables in
the network model. Simulations have shown that networks containing the
same cell types, but in different proportions, can show significantly different
behaviour (Földy et al., 2003, 2005).

9.1.5 New network quantities
Modelling a network of spatially located neurons, as opposed to a single,
isolated neuron, allows for the possibility of modelling new signals in addi-
tion to cellular voltages. These include pseudo EEGs and extracellular field
potentials. A basic field potential equation is (Rall, 1962; Protopapas et al.,
1998; Bédard et al., 2004):

Φ(x, y, z, t ) =
1

4πσ

n∑
i=1

Ii (t )

di
, (9.1)

where Φ is the field potential at a particular recording site (x, y, z), and each
of the n current sources Ii is a distance di from the recording site. The con-
ductivity of brain tissue is assumed to have a uniform value, σ , throughout.
For a network of spatially located compartmental cell models, according to
Equation 9.1, the current sources correspond to the membrane current in
each compartment in each cell. Figure 9.3 gives example traces of the ex-
tracellular membrane potential calculated in this way in the vicinity of a
schematic compartmental neuron model.

There are two principal limitations to using Equation 9.1. The first is
that uniform extracellular conductance is an approximation to reality, and
the second is that the extracellular medium has capacitive properties as well
as conductive ones (Ranck, 1963; Bédard et al., 2004). In general, the problem
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Box 9.1 Finite-element models of electric fields
The voltage spread in brain tissue due to an extracellular electrode can be

modelled in a similar way to that described already for compartmental mod-

els of neurons. The extracellular space is modelled as a uniform conductance

through which current flows, represented as a network of resistors:

The electrode is the black disc and the return current to the electrode

passes through the rim of the network. Here there is no capacitance, so the

current balance equation for each internal node with no electrode is:

0 =
∑

j∈�i

Vj − Vi

Rij
,

where �i is the set of nodes connected to node i. For the node containing
the electrode, the zero on the left-hand side of the equation is replaced with

the electrode current. For the nodes on the boundary, Vi is set to 0mV, the

potential of the return electrode. These equations can be formulated as a

matrix equation and the steady state potentials can be computed (Butson

and McIntyre, 2005).

In this example, there is no capacitance, and hence no dynamics, as there

are no terms involving dVi/dt. Capacitance can be incorporated in the model

by replacing the real-valued resistance with a complex-valued impedance, in

which the imaginary component represents capacitance. The amplitude and

phase of the voltage at each node in response to an oscillating electrode

current of any frequency can then be computed. Using Fourier analysis, this

can be used to compute the response of each node to a periodic, time-varying

electrode current (Butson and McIntyre, 2005).

In place of the regular square mesh used here, an irregular mesh may be

used, in which the regions in which the voltage varies most have a finer mesh

(Butson and McIntyre, 2005). Meshes can span 2D or 3D space. Software

packages such as CALCULIX (http://www.calculix.de) are able to carry

out finite-element analysis.

9.2 Schematic networks: the associative memory

The first concrete example of a network to be studied in this chapter is the
associative network model mentioned in Section 8.5.1. The network can




