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to as Ig (Hille, 2001). Gating currents tend to be much smaller than the ionic
currents flowing through the membrane. In order to measure gating cur-
rent, the ionic current is reduced, either by replacing permeant ions with
impermeant ones or by using channel blockers, though the channel blocker
itself may interfere with the gating mechanism. Other methods have to be
employed to eliminate leak and capacitive currents. Figure 5.7 shows record-
ings by Armstrong and Bezanilla (1973) of the gating current and the sodium
ionic current in response to a voltage step. The gating current is outward
since the positively charged residues on the membrane protein are moving
outwards. It also peaks before the ionic current peaks.

Gating currents are a useful tool for the development of kinetic models of
channel activation. The measurement of gating current confirmed the idea
of charged gating particles predicted by the HH model. However, gating
current measurements in squid giant axon have shown that the HH model
is not correct at the finer level of detail (Section 5.5.3).

5.4 Modelling ensembles of voltage-gated ion
channels

5.4.1 Gating particle models
Before the detailed structure and function of ion channels outlined in Sec-
tion 5.1 was known, electrophysiological experiments indicated the exis-
tence of different types of channel. Various blocking and subtraction pro-
tocols led to the isolation of specific currents which displayed particular
characteristics.

The A-type current
To take one example, the potassium A-type current, often denoted IA, has
distinct kinetics from the potassium delayed rectifier current, denoted IDR
or IK or IK,DR, originally discovered by Hodgkin and Huxley. Connor and
Stevens (1971a, c) isolated the current by using ion substitution and by the
differences in current flow during different voltage clamp protocols in the
somata of cells of marine gastropods. The A-type current has also been char-
acterised in mammalian hippocampal CA1 and CA3 pyramidal cells using
TTX to block sodium channels (Figure 5.8).
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Fig. 5.8 Recordings of two

types of potassium channel

revealed by different voltage

clamp protocols in hippocampal

CA1 cells. (a) Family of voltage

clamp current recordings from

CA1 cells subjected to the

voltage step protocol shown

underneath. (b) The voltage was

clamped as in (a), except that

there was a delay of 50ms before

the step to the depolarising

voltage. (c) Subtraction of trace

in (b) from trace in (a) reveals a

transient outward current known

as the A-type current. Adapted

from Klee et al. (1995), with

permission from The American

Physiological Society.

In contrast to the delayed rectifier current, the A-type current is inac-
tivating, and has a lower activation threshold. It has been modelled using
independent gating particles by a number of authors (Connor and Stevens,
1971b; Connor et al., 1977; Hoffman et al., 1997; Poirazi et al., 2003). In the
model of Connor et al. (1977), the A-type current in the crustacean Cancer
magister (Box 5.2) depends on three independent activating gating particles
and one inactivating particle. In contrast, Connor and Stevens (1971b) found
that raising the activating gating variable to the fourth power rather than the
third power gave the best fit to the A-type current they recorded from the
somata of marine gastropods.

The significance of the A-type current is illustrated clearly in simula-
tions of two neurons, one containing sodium and potassium conductances
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Fig. 5.9 The effect of the

A-type current on neuronal firing

in simulations. (a) The time

course of the membrane potential

in the model described in Box 5.2

in response to current injection

of 8.21μA cm−2 that is just

superthreshold. The delay from

the start of the current injection

to the neuron firing is over

300ms. (b) The response of the

model to a just suprathreshold

input (7.83μA cm−2) when the

A-type current is removed. The

spiking rate is much faster. In

order to maintain a resting

potential similar to the neuron

with the A-type current, the leak

equilibrium potential EL is set to

−72.8mV in this simulation. (c) A

plot of firing rate f versus input

current I in the model with the

A-type conductance shown in (a).

Note the gradual increase of the

firing rate just above the

threshold, the defining

characteristic of Type I neurons.

(d) The f–I plot of the neuron

with no A-type conductance

shown in (b). Note the abrupt

increase in firing rate, the

defining characteristic of Type II

neurons.

modelled using the Hodgkin–Huxley equations, and the other containing
an A-type conductance in addition to the sodium and potassium conduc-
tances (Figure 5.9a, b). In response to sustained current injection, the model
containing the A-type conductance gives rise to action potentials that are
delayed compared to the action potentials in the pure HH model. This is
because the A-type potassium channel is open as the membrane potential
increases towards the spiking threshold, slowing the rise of the membrane
potential. However, eventually the A-type current inactivates, reducing the
pull on the membrane potential towards the potassium equilibrium potential
and allowing the cell to fire.

Another important difference caused by the insertion of the A-type
channels is apparent from plots of firing frequency versus sustained current
injection (Figure 5.9c, d). Both types of model exhibit a threshold level of
current below which the neuron is quiescent. In the model with the A-type
conductance, the firing frequency just above the threshold is very close to
zero and increases gradually. By contrast, in the HH model, as soon as the
threshold is crossed, the model starts firing at a non-zero frequency. Hodgkin
(1948) had noticed the two different types of f–I curve in axons from the
crustacean Carcinus maenas. According to his classification, neurons which
produce the continuous curve (Figure 5.9c) are Type I neurons and those
which produce the curve with the abrupt change at threshold (Figure 5.9d)
are Type II neurons. In Chapter 8 reduced models of neurons will be intro-
duced to gain understanding of the features of the models that give rise to
Type I and Type II firing patterns.

5.4.2 Thermodynamic models
In Box 5.2 there are effectively five different forms of function to fit the
dependence on voltage of the rate coefficients αm(V ), βm(V ) and so on:
three for the Hodgkin–Huxley sodium and potassium channels (Figure 5.10),
and two for the A-type potassium channel. All these forms satisfy the critical
requirement of fitting the data well. However, it is desirable to base the form
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Box 5.2 Model of potassium A-type current
In their model of the conductances in axons from the crab Cancer magister,

Connor et al. (1977) added an A-type potassium conductance gA with an

associated equilibrium potential EA to a current equation which includes

modified versions of the Hodgkin–Huxley sodium and potassium delayed

rectifier conductances:

Cm
dV

dt
= −gNa(V − ENa)− gK(V − EK)− gA(V − EA)− gL(V − EL).

The A-type conductance was derived from the experiments of Connor et al.

(1977) at 18 ◦C and was modelled using independent gating particles: three

activating particles a and an inactivating particle b. The kinetic equations

(Section 3.2.1) written in terms of the steady state activation curves a∞(V )

and b∞(V ) and the relaxation time constants τa(V ) and τb(V ) are:

IA = gA(V − EA), gA = gAa
3b,

a∞ =

(
0.0761 exp

(
V+99.22
31.84

)

1 + exp
(
V+6.17
28.93

)

) 1
3

, τa = 0.3632 +
1.158

1 + exp
(
V+60.96
20.12

) ,

b∞ =
1

(
1 + exp

(
V+58.3
14.54

))4 , τb = 1.24 +
2.678

1 + exp
(
V−55
16.027

)
.

The Hodgkin–Huxley sodium and potassium delayed rectifier conduc-

tances are modified by shifting the steady state equilibrium curves of m,

h and n, multiplying the rate coefficients by a Q10-derived factor of 3.8 to

adjust the temperature from 6.3 ◦C to 18 ◦C, and slowing down the n variable

by a factor of 2:

gNa = gNam
3h, gK = gKn

4,

αm = 3.8
−0.1(V + 34.7)

exp(−(V + 34.7)/10)− 1
, βm = 3.8× 4 exp(−(V + 59.7)/18),

αh = 3.8× 0.07 exp(−(V + 53)/20), βh = 3.8
1

exp (−(V + 23)/10) + 1
,

αn =
3.8

2

−0.01(V + 50.7)

exp(−(V + 50.7)/10)− 1
, βn =

3.8

2
0.125 exp(−(V + 60.7)/80).

The remaining parameters of the model are:

Cm = 1μF cm
−2 ENa = 50mV gNa = 120.0mS cm

−2

EK = −77mV gK = 20.0mS cm
−2

EA = −80mV gA = 47.7mS cm
−2

EL = −22mV gL = 0.3mS cm
−2

In all the equations described here, the voltage is 5mV lower than the values

of Connor et al. (1977), to match the parameters used in Chapter 3.

This approach of adapting a model from a different organism contrasts

with that taken in the earlier model of Anisodoris (Connor and Stevens,

1971b), where many of the values for the steady state variables are piecewise

linear fits to recorded data. The two models give similar results.
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Fig. 5.10 In the HH model

(Box 3.5), the voltage-dependent

rate coefficients are described by

three different types of equation.

(a) The rate coefficients βm, αh

and βn are described by

exponential functions of the

voltage V . A, V0 and σ are

constants. This fits the empirical

rate coefficients αm and αn at

low membrane potentials, but

overestimates the rates at higher

membrane potentials.

(b) Linear-exponential functions

produce lower rate coefficients at

higher voltages and fit the data

well. However, it gives rate

coefficients that are too high for

the gating variable h at high

voltages, where βh saturates.

(c) βh can be described by a rate

coefficient with a sigmoidal

function where V1/2 is the half

activation voltage and where σ is

the inverse slope.

of these functions as much as possible on the biophysical theory of channels,
since fitting to the most principled function is likely to minimise errors due
to fitting.

In thermodynamic models (Borg-Graham, 1989; Destexhe and Hugue-
nard, 2000), the rate coefficients are given by functions derived from the
transition state theory (or energy barrier model) of chemical reactions, to
be discussed in Section 5.8. For a gating particle represented by a gating vari-
able x, the steady state activation is given by a sigmoid curve:

x∞ =
1

1+ exp(−(V −V1/2)/σ)
, (5.1)

The sigmoid curve is similar to

Hodgkin and Huxley’s fit to n∞
(Figure 3.10) using the

functions for αn and βn from

Equation 3.13.

where V1/2 is the half-activation voltage and σ is the inverse slope, as shown
in Figure 5.11. The corresponding time constant is:

τx =
1

α′(V )+β′(V )
+τ0, (5.2)

where τ0 is a rate-limiting factor and the expressions for α′x and β′x are ex-
ponentials that depend on V1/2 and σ , a maximum rate parameter K and a
parameter δ, which controls the skew of the τ curve:

α′x (V ) =K exp

�
δ(V −V1/2)

σ

�

β′x (V ) =K exp

�−(1−δ)(V −V1/2)

σ

�
.

(5.3)

Figure 5.11 shows plots of the time constant as a function of voltage.
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Fig. 5.11 Plots of the steady

states x∞ and y∞ of the

activation and inactivation and of

the corresponding time constants

τx and τy of a thermodynamic

model of the A-type current due

to Borg-Graham (1999). The

curves for the steady states and

time constants are derived from

Equations 5.1 and 5.2,

respectively. In the steady state

curves, the middle vertical line

indicates the half-activation

voltage, V1/2, and the two

flanking lines indicate V1/2 − σ

and V1/2 + σ . The parameters for

the activation (x) curves are

V1/2 = −41mV, σ = 9.54mV,

K = 8× 102 ms−1, δ = 0.85,

τ0 = 1ms. The parameters for

the inactivation (y) curves are

V1/2 = −49mV, σ = −8.90mV,

K = 4× 102 ms−1, δ = 1,

τ0 = 2ms. The sign of σ

determines whether the curve

has a positive or negative slope.

The term τ0 is in fact an addition to the basic transition state the-
ory account. However, if it is set to zero, the effective time constant τx =
αx/(αx +βx ) can go to zero. In practice, transitions tend not to happen this
quickly (Patlak, 1991), and it is evident from the equations for τx that the
rate-limiting factor τ0 leads to a minimum time constant.

The steady state value x∞ and time constant τx can be converted into
equations for the rate coefficients αx and βx (Equation 3.10), giving:

αx (V ) =
α′x (V )

τ0(α
′
x (V )+β

′
x (V ))+ 1

βx (V ) =
β′x (V )

τ0(α
′
x (V )+β

′
x (V ))+ 1

.

(5.4)

Calcium channels
Similar principles apply to modelling calcium channels, such as the T- and
L-types, voltage clamp recordings of which are shown in Figure 5.6. The
only difference is that because of the inward rectifying nature of the I–V re-
lationship for calcium due to low intracellular concentration of calcium, the
GHK current equation (Box 2.4) is often used in modelling calcium channels.
For the non-inactivating L-type channel, the permeability can be modelled
with two activating particles m, and the inactivating T-type channel can be
modelled with two activating particles m and one inactivating particle h
(Borg-Graham, 1999). In both cases 1/K is small compared to τ0, so the time
constants τm and τh are effectively independent of voltage. Table 5.2 shows
typical values of V1/2, σ and τ0 for these channels. There is evidence that the
L-type channels require calcium to inactivate. This could be modelled using
an extra calcium-dependent inactivation variable (Section 5.6).
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Other types of voltage-gated channels
There are many more types of current, some of which are listed in Table 5.2.
They can be characterised broadly according to whether they are activated
by voltage or calcium or both, in the case of IC, and whether they display
fast or slow activation and inactivation.

The half activation voltage and the slope of these curves varies between
currents. The values of these quantities listed in Table 5.2 are only indica-
tive as there can be substantial variations between different preparations; for
example, variations in temperature (Section 3.4), expression of auxiliary sub-
units (Section 5.1), or which modulators are present inside and outside the
cell. Table 5.2 also lists the principal channel proteins which are proposed to
underlie each type of current. In some cases, the same protein appears to be
responsible for different currents; for example, Nav1.1 appears to underlie
INa and the persistent sodium current INaP. This may be possible because of
the differences in auxiliary subunit expression.

5.5 Markov models of ion channels

In the channel models covered so far, the gating variables, such as n, m and
h in the HH model, represent the probability of one of a number of gat-
ing particles being in an open position; the probability of the entire gate (or
channel) being open is the product of these variables raised to a power, in-
dicating that the gating particles act independently. This section introduces
Markov models of ion channels in which the probability of the entire ion
channel being in one of a number of possible states is represented, and one
or more of these states may correspond to the ion channel being open. This
allows data to be fitted more accurately, though at the expense of having
a greater number of parameters to fit. Ideally, each state would correspond
to one channel protein conformation, but in practice even complex Markov
models are approximations of the actual dynamics of the channel.

Markov models are fundamentally probabilistic models in which the
state changes are random. This makes them an appropriate framework in
which to model the microscopic currents due to the opening and closing of
single ion channels or ensembles of a small number of ion channels. How-
ever, when large numbers of channels are present, the recorded currents are
smooth because the fluctuations of individual channels are averaged out,
and it is approximately correct to interpret Markov models deterministi-
cally. In this section the deterministic interpretation of Markov models will
be introduced. The techniques required for the stochastic interpretation of
Markov models are introduced in Section 5.7.

5.5.1 Kinetic schemes
The states and possible transitions between them in a Markov model are
represented by a kinetic scheme. An example of a kinetic scheme is:

The term ‘kinetic scheme’ is

often used interchangeably

with Markov model, especially

when interpreting Markov

models deterministically

(Cannon and D’Alessandro,

2006).

C1

k1−�	−
k−1

C2

k2−�	−
k−2

C3

k3−�	−
k−3

C4

k4−�	−
k−4

O. (5.5)
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5.7 Modelling single channel data

Markov models of channels were introduced in Section 5.5, but only their
deterministic interpretation was considered. In this section the underlying
probabilistic basis of Markov models is outlined. This provides tools for
analysing single channel data and for simulating Markov models.

5.7.1 Markov models for single channels
Markov models all obey the Markov property: the probability of a state
transition depends only on the state the channel is in and the probabilities of
transitions leading from that state, not on the previous history of transitions.
This can be illustrated by considering a very simple kinetic scheme in which
the channel can be in an open state (O) or a closed state (C):

C
α−�	−
β

O, (5.13)

where α and β are transition probabilities which can depend on voltage or
ligand concentration, analogous to the rate coefficients in the determinis-
tic interpretation. With the channel in the closed state, in an infinitesimally
small length of time Δt it has a probability of αΔt of moving to the open
state; if it is in the open state, it has a probability of βΔt of moving back to
the closed state. This scheme can be simulated exactly using the algorithm to
be described in Section 5.7.2 to produce conductance changes such as those
shown in Figure 5.15a. Each simulation run of the scheme produces a se-

1.0

0

1.0

0

t (ms) 
2 4 60 8 10

15 20 2510 30

(a)

(b)

(c) 

Fig. 5.15 Features of a

two-state kinetic scheme.

(a) Simulated sample of the time

course of channel conductance of

the kinetic scheme described in

Scheme 5.13. The parameters are

α = 1ms−1 and β = 0.5ms−1.

(b) Histogram of the open times

in a simulation and the

theoretical prediction of 0.5e−0.5t

from Equation 5.14. (c) Histogram

of the simulated closed times and

the theoretical prediction e−t .

quence of random switches between the C and O states.
A key statistic of single channels is the distribution of times for which

they dwell in open or closed conductance states. Histograms of the channel
open and closed times can be plotted, as shown in Figures 5.15b and 5.15c
for the most basic two-state scheme (Scheme 5.13). By considering the time
stepsΔt to be infinitesimally small, the transition from one state to another
acts as a Poisson process, in which the inter-event intervals are distributed
exponentially:

Prob(in closed state for time t ) = α exp(−αt )

Prob(in open state for time t ) =βexp(−βt ).
(5.14)

The mean closed time is 1/α, meaning that the higher the forward reaction
rate α the shorter the time during which the channel will stay in the closed
state. Similarly, the mean open time is 1/β.

Open and closed time histograms extracted from experimental record-
ings of single channel currents do not tend to have this simple exponential
structure. For example, the closed time distribution of calcium channels in
bovine chromaffin cells (Figure 5.16) is fitted more closely by a double ex-
ponential than by a single exponential (Fenwick et al., 1982). As each ex-
ponential has a characteristic time constant, this indicates that there are at
least three timescales in the system. Since each transition is associated with
a time constant, this means that a kinetic scheme with at least three states is
required to model the data. The data shown in Figure 5.16 can be modelled
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by a three-state scheme with two closed states (C1 and C2) and one open
state (O):

C1

α1−�	−
β1

C2

α2−�	−
β2

O· (5.15)

In this case it is possible to determine the four transition probabilities from
the time constant of the open time distribution, the fast and slow time con-
stants of the closed time distribution and the ratio of the fast and slow com-
ponents of the closed time distribution. 2 4 60
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Fig. 5.16 Distributions of open

and closed times of single Ca2+

channels from bovine chromaffin

cells recorded by Fenwick et al.

(1982). The distribution of open

times is fitted by a single

exponential with a time constant

of 0.81ms, but the distribution of

closed times is fitted by two

exponentials with time constants

of 1.05ms and 25.5ms. Adapted

from Fenwick et al. (1982), with

permission from John Wiley &

Sons Ltd.

5.7.2 Simulating a single channel
Within a single compartment of a compartmental model there is generally
a population of more than one ion channel of the same type. The simula-
tion of each ion channel can be considered individually. This is less efficient
than the method of the Stochastic Simulation Algorithm (SSA) (Section 6.9).
However, it makes the principle of stochastic simulation clear, so will be
considered in this section.

As an example, consider the five-state potassium channel scheme
(Scheme 5.5) with the rate coefficients given by the HH model. In this
kinetic description, transitions between states depend only on the mem-
brane potential. The method described in this section is efficient, but only
works when the membrane potential is steady, as it is under voltage clamp
conditions.

In order to simulate an individual potassium channel using this scheme,
an initial state for the channel must be chosen. It is usual to select a state
consistent with the system having been at rest initially. The probability that
the channel is in each of the five states can then be calculated. For example,
the probability of being in state C1 given initial voltage V0 is:

PC1
= (1− n∞(V0))

4 =
�

1− αn(V0)

αn(V0)+βn(V0)

�4

. (5.16)

C4 is the state in which all four of the particles are closed. As described in
Chapter 3, the probability of a particle being in the closed state is given by
1− n∞(V0). Consequently, the probability that all four of the particles are in
the closed state is (1− n∞(V0))

4. The probability of being in state C2, where
exactly one of the four particles is in the open state with the remainder closed
is:

PC2
=
	4

3



(1− n∞(V0))

3n∞(V0), (5.17)

where
�4

3

�
is the number of possible combinations in which any three of the

four particles can be in the closed state. In a similar manner, the probabilities

(
n
k

)
is the number of

combinations each of size k

that can be drawn from an

unordered set of n elements.

This is given by:
(
n

k

)

=
n!

k!(n − k)!
.

of the particle being in states C3, C4 and O respectively, given the initial
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voltage V0 are given by:

PC3
=
	4

2



(1− n∞(V0))

2n∞(V0)
2

PC4
=
	4

1



(1− n∞(V0))n∞(V0)

3

PO = n∞(V0)
4.

(5.18)

The initial state for the simulation is selected stochastically by assigning to
each probability a section of a line running from 0 to 1 (Figure 5.17), drawing
a random number r1 between 0 and 1 from a uniform distribution, and
selecting the initial state according to where r1 lies on the line.

pC pC pC pC pO34 12

1r
10

Fig. 5.17 The initial

probabilities of each state of the

kinetic model can be used to

divide a unit line. The example

uses the five-state Hodgkin and

Huxley channel model given in

Scheme 5.5 with initial voltage

V0 = −60. The next step in the simulation is to determine how long the system
resides in a state, given the membrane potential V . Suppose the channel is
in state C1. As state transitions act as a Poisson process (Section 5.7.1), the
probability that the system remains in state C1 for duration τ is given by:

PC1
(τ) = 4αn exp (−4αnτ) , (5.19)

where 4αn is the rate at which state C1 makes the transition to state C2 at
voltage V (the V dependency has been omitted from αn for clarity). By
converting this distribution into a cumulative distribution, another random
number r2, between 0 and 1, can be used to calculate the duration:

τ =− ln(r2)

4αn
. (5.20)

Similar probabilities for the other states can be calculated:

PC2
(τ) = (3αn+βn)exp (−(3αn+βn)τ)

PC3
(τ) = (2αn+ 2βn)exp (−(2αn+ 2βn)τ) (5.21)

PC4
(τ) = (αn+ 3βn)exp (−(αn+ 3βn)τ)

PO(τ) = 4βn exp (−4βnτ)

and the random duration calculated by replacing 4αn in Equation 5.20 with
the appropriate rate.

Finally, once the system has resided in this state for the calculated dura-
tion, its next state must be chosen. In this example, in states C1 and O there
is no choice to be made, and transitions from those states can only go to one
place. For the intermediate states, transition probabilities are used to select
stochastically the next state. The probability of the transitions from state C2
to C1 or C3 are given by:

PC2,C1
=

βn

βn+ 3αn
(5.22)

PC2,C3
=

3αn

βn+ 3αn
.

Clearly, the sum of transition probabilities away from any state add to 1. To
choose the new state stochastically, we can use the technique for selecting
the initial state illustrated in Figure 5.17.
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5.9 Ion channel modelling in theory and practice

This chapter has concentrated on the theory of modelling ion channels. It
has been shown how ion channel models of varying levels of complexity can
be used to describe voltage- and ligand-gated ion channel types. Ideally, in
order to construct a realistic model of a neuron, the computational neuro-
scientist should follow Hodgkin and Huxley by characterising the behaviour
of each type of channel in the neuron at the temperature of interest, and pro-
ducing, at least, an independent gating model of the channel.

In the real world, this does not tend to happen because the effort involved
is prohibitive compared to the rewards. When faced with building a model
containing a dozen channel types, rather than running experiments, typi-
cally the computational neuroscientist searches the literature for data from
which to construct a model. The data is not necessarily from the neuron
type, brain area or even species in question, and quite probably has been
recorded at a temperature that differs from the model temperature. With the
advent of databases of models such as ModelDB (Appendix A.2) it is pos-
sible to search for channel models which have already been implemented
in simulation code. While differing temperatures can be corrected for, it is
not possible to correct for the mismatch in the preparations and species.
This means that the vast majority of compartmental models are incorrect
in some details. However, even compartmental models with inexact models
of channels are of utility, as they give insights into the types of behaviours
possible from a neuron, and they force assumptions in arguments to be made
explicit.

In fact, the situation is even more complicated. Various studies have
shown that the distribution of channels varies from neuron to neuron, even
when the neurons are of the same type (Marder and Prinz, 2002). However,
the overall behaviour of the neurons is conserved between different members
of the class. For example, in a relatively simple model of the crab stomato-
gastric ganglion cell with five conductances, Goldman et al. (2001) explored
the behaviour of the model with combinations of the density of three of the
conductances (a calcium conductance, a calcium-dependent potassium con-
ductance and the A-type potassium conductance). This gave a 3D grid of
parameter values, and the behaviour of the cell – quiescent, tonically firing
or bursting – was determined at each grid point. The simulations showed
that many possible combinations of ion channel can give rise to the same
behaviours. In order to preserve given behaviours, channel densities are reg-
ulated dynamically (see Turrigiano and Nelson, 2004 for review). It may be
that from the point of view of understanding cellular function, it is more
important to understand these regulatory mechanisms than to model ion
channels at the greatest level of detail.


