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Fig. 3.10 Voltage dependence

of rate coefficients and limiting

values and time constants for the

Hodgkin–Huxley gating

variables. (a) Graphs of forward

rate variables αm, αh and αn

(solid lines) and backward rate

variables βm, βh and βn (dashed

lines) for the m, h and n gating

particles. (b) The equivalent

graphs for m∞, h∞ and n∞

(solid lines) and τm, τh and τn

(dotted lines).

3.3 Simulating action potentials

In order to predict how the membrane potential changes over time, the com-
plete system of coupled non-linear differential equations comprising the HH
model (Box 3.5) have to be solved. Hodgkin and Huxley used numerical
integration methods (Appendix B.1). It took them three weeks’ work on
a hand-operated calculator. Nowadays, it takes a matter of milliseconds for
fast computers to solve the many coupled differential equations in a com-
partmental formulation of the HH model.

In this section we look at the action potentials that these equations pre-
dict, both under space clamp conditions and under free propagation condi-
tions. This will lead us to comparisons with experimental recordings and
a brief review of the insights that this model provided. It is worth noting
that the recordings in this section were all made at 6.3 ◦C, and the equations
and simulations all apply to this temperature. Hodgkin and Huxley discov-
ered that temperature has a strong influence on the rate coefficients of the
gating variables, but were able to correct for this, as will be discussed in
Section 3.4.

3.3.1 Space clamped action potentials
In one set of experiments under space clamp (but not voltage clamp) condi-
tions, Hodgkin and Huxley depolarised the membrane potential to varying
levels by charging the membrane quickly with a brief current clamp pulse.
Small depolarisations led to the membrane potential decaying back to its
resting value, but when the membrane was depolarised above a threshold
of around 10 mV above resting potential, action potentials were initiated



3.3 SIMULATING ACTION POTENTIALS 61

Box 3.5 Summary of the Hodgkin–Huxley model
The equation for the membrane current is derived by summing up the various

currents in the membrane, including spatial spread of current from local

circuits:

Cm
∂V

∂t
= −gL(V − EL)− gNam

3h(V − ENa)− gKn
4(V − EK) +

d

4Ra

∂2V

∂x2
.

Under space clamp conditions, i.e. no axial current:

Cm
dV

dt
= −gL(V − EL)− gNam

3h(V − ENa)− gKn
4(V − EK).

Sodium activation and inactivation gating variables:

dm

dt
= αm(1−m)− βmm,

dh

dt
= αh(1− h)− βhh,

αm = 0.1
V + 40

1− exp (−(V + 40)/10)
, αh = 0.07 exp (−(V + 65)/20) ,

βm = 4 exp (−(V + 65)/18) , βh =
1

exp (−(V + 35)/10) + 1
.

Potassium activation gating variable:

dn

dt
= αn(1− n)− βnn,

αn = 0.01
V + 55

1− exp (−(V + 55)/10)
,

βn = 0.125 exp(−(V + 65)/80).

Parameter values (from Hodgkin and Huxley, 1952d):

Cm = 1.0 μF cm−2

ENa = 50 mV gNa = 120 mS cm
−2

EK = −77 mV gK = 36 mS cm
−2

EL = −54.4 mV gL = 0.3 mS cm
−2

See Figure 3.10 for plots of the voltage dependence of the gating particle

rate coefficients.

(Figure 3.11). Hodgkin and Huxley referred to these action potentials in-
duced under space clamp conditions as membrane action potentials.

To simulate the different depolarisations in experiments, they integrated
the equations of their space clamped model with different initial conditions
for the membrane potential. Because the current pulse that caused the initial
depolarisation was short, it was safe to assume that initially n, m and h were
at their resting levels.

The numerical solutions were remarkably similar to the experimental re-
sults (Figure 3.11). Just as in the experimental recordings, super-threshold de-
polarisations led to action potentials and sub-threshold ones did not, though
the threshold depolarisation was about 6 mV above rest instead of 10 mV.
The time courses of the observed and calculated action potentials were very
similar, although the peaks of the calculated action potentials were too sharp
and there was a kink in the falling part of the action potential curve.
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Huxley (1952d), with permission

from John Wiley & Sons Ltd.

Besides reproducing the action potential, the HH model offers insights
into the mechanisms underlying it, which experiments alone were not able
to do. Figure 3.12 shows how the sodium and potassium conductances and
the gating variables change during a membrane action potential. At the start
of the recording, the membrane has been depolarised to above the threshold.
This causes activation of the sodium current, as reflected in the increase in
m and gNa. Recall that the dependence of m on the membrane potential
is roughly sigmoidal (Figure 3.10). As the membrane potential reaches the
sharply rising part of this sigmoid curve, the gNa activation increases greatly.
As the sodium reversal potential is much higher than the resting potential,
the voltage increases further, causing the sodium conductance to increase
still further. This snowball effect produces a sharp rise in the membrane
potential.

The slower potassium conductance gK, the n gating variable, starts to
activate soon after the sharp depolarisation of the membrane. The potas-
sium conductance allows current to flow out of the neuron because of the
low potassium reversal potential. The outward current flow starts to repo-
larise the cell, taking the membrane potential back down towards rest. It is
the delay in its activation and repolarising action that leads to this type of
potassium current being referred to as the delayed rectifier current.

The repolarisation of the membrane is also assisted by the inactivat-
ing sodium variable h, which decreases as the membrane depolarises, caus-
ing the inactivation of gNa and reduction of the sodium current flow into
the cell. The membrane potential quickly swoops back down to its resting
level, overshooting somewhat to hyperpolarise the neuron. This causes the
rapid deactivation of the sodium current (m reduces) and its deinactivation,
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whereby the inactivation is released (h increases). In this phase, the potas-
sium conductance also deactivates. Eventually all the state variables return
to their resting states and the membrane potential returns to its resting
level.

The HH model also explains the refractory period of the axon. Dur-
ing the absolute refractory period after an action potential, it is impossible
to generate a new action potential by injecting current. Thereafter, during
the relative refractory period, the threshold is higher than when the mem-
brane is at rest, and action potentials initiated in this period have a lower
peak voltage. From Figure 3.12, the gating variables take a long time, rela-
tive to the duration of an action potential, to recover to their resting values.
It should be harder to generate an action potential during this period for two
reasons. Firstly, the inactivation of the sodium conductance (low value of h)
means that any increase in m due to increasing voltage will not increase the
sodium conductance as much as it would when h is at its higher resting value
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Huxley (1952d), with permission

from John Wiley & Sons Ltd. (Figure 3.10). Secondly, the prolonged activation of the potassium conduc-
tance means that any inward sodium current has to counteract a more con-
siderable outward potassium current than in the resting state. Hodgkin and
Huxley’s simulations (Figure 3.13) confirmed this view, and were in broad
agreement with their experiments.

3.3.2 Propagating action potentials
The propagated action potential calculated by Hodgkin and Huxley was
also remarkably similar to the experimentally recorded action potential (Fig-
ure 3.14). The value of the velocity they calculated was 18.8 ms−1, close to
the experimental value of 21.2 ms−1 at 18.5 ◦C.

Hodgkin and Huxley had to

assume that the membrane

potential propagated at a

constant velocity so that they

could convert the partial

differential equation into a

second order ordinary

differential equation, giving a

soluble set of equations.

Figure 3.15 shows the capacitive, local and ionic currents flowing at dif-
ferent points on the membrane at a particular instant when an action po-
tential is propagating from left to right. At the far right, local circuit cur-
rents are flowing in from the left because of the greater membrane potential
there. These local circuit currents charge the membrane capacitance, leading
to a rise in the membrane potential. Further to the left, the membrane is
sufficiently depolarised to open sodium channels, allowing sodium ions to
flow into the cell. Further left still, the sodium ionic current makes a dom-
inant contribution to charging the membrane, leading to the opening of
more sodium channels and the rapid rise in the membrane potential that
characterises the initial phase of the action potential. To the left of this, the
potassium conductance is activated, due to the prolonged depolarisation. Al-
though sodium ions are flowing into the cell here, the net ionic current is
outward. This outward current, along with a small local circuit contribution,
discharges the membrane capacitance, leading to a decrease in the membrane
potential. At the far left, in the falling part of the action potential, only
potassium flows as sodium channels have inactivated. The final afterhyper-
polarisation potential is not shown fully for reasons of space and because the
current is very small. In this part, sodium is deinactivating and potassium is
deactivating. This leads to a small inward current that brings the membrane
potential back up to its resting potential.
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3.4 The effect of temperature

Hodgkin et al. (1952) found that the temperature of the preparation affects
the time course of voltage clamp recordings strongly: the rates of activa-
tion and inactivation increase with increasing temperature. In common with
many biological and chemical processes, the rates increase roughly exponen-
tially with the temperature. The Q10 temperature coefficient, a measure of
the increase in rate for a 10 ◦C temperature change, is used to quantify this
temperature dependence:

Q10 =
rate at T + 10 ◦C

rate at T
. (3.21)

If the values of the HH voltage-dependent rate coefficients α and β at a
temperature T1 are α(V ,T1) and β(V ,T1), then their values at a second tem-
perature T2 are:

α(V ,T2) = α(V ,T1)Q
T2−T1

10
10 and β(V ,T2) =β(V ,T1)Q

T2−T1
10

10 . (3.22)

In the alternative form of the kinetic equations for the gating variables
(see, for example, Equation 3.11), this adjustment due to temperature can



66 THE HODGKIN–HUXLEY MODEL OF THE ACTION POTENTIAL

be achieved by decreasing the time constants τn, τm and τh by a factor of
Q (T2−T1)/10

10 and leaving the steady state values of the gating variables n∞, m∞
and h∞ unchanged.

Hodgkin et al. (1952) estimated, from recordings, a Q10 of about 3 for the
time constants of the ionic currents. This is typical for the rate coefficients
of ion channels (Hille, 2001). In fact, the principles of transition state the-
ory, outlined in Section 5.8.1, show that the Q10 itself is expected to depend
on temperature: the Q10 at 6 ◦C is not expected to be the same as the Q10
measured at 36 ◦C. Transition state theory also allows temperature to be in-
corporated into the equations for the rate coefficients explicitly, rather than
as a correction factor.

As well as the rate coefficients, the maximum channel conductances also
increase with temperature, albeit not as strongly. If the maximum conduc-
tance for an ion type X is g X(T1) at temperature T1, at temperature T2 it will
be given by:

g X(T2) = g X(T1)Q
T2−T1

10
10 . (3.23)

The Q10 is typically around 1.2 to 1.5 for conductances (Hodgkin et al., 1952;
Rodriguez et al., 1998; Hille, 2001).

Assuming that reaction rate

increases exponentially with

temperature is equivalent to

assuming that the effect is

multiplicative. If the rate

coefficient increases by a

factor Q for a 1 ◦C increase in

temperature, for a 2 ◦C

increase it is Q ×Q; for a

10 ◦C increase it is Q10 ≡ Q
10

and for an increase from T1 to

T2 it is Q
(T2−T1) or Q

(T2−T1)/10
10 .

3.5 Building models using the Hodgkin–Huxley
formalism

The set of equations that make up the HH model (Box 3.5) were constructed
to explain the generation and propagation of action potentials specifically in
the squid giant axon. How relevant is the HH model to other preparations?
While the parameters and equations for the rate coefficients present in the
HH model are particular to squid giant axon, the general idea of gates com-
prising independent gating particles is used widely to describe other types
of channel. In this section, we explore the model assumptions and highlight
the constraints imposed by the Hodgkin–Huxley formalism. Moreover, we
outline the types of experimental data that are required in order to construct
this type of model of ion channels.

3.5.1 Model approximations
The HH model contains a number of approximations of what is now known
about the behaviour of channels. Each of these will induce an error in the
model, but the approximations are not so gross as to destroy the explanatory
power of the model.

Each channel type is permeable to only one type of ion
Implicit in the HH model is the notion that channels are selective for only
one type of ion. In fact, all ion channels are somewhat permeable to ions
other than the dominant permeant ion (Section 2.1). Voltage-gated sodium
channels in squid giant axon are about 8% as permeable to potassium as they
are to sodium, and potassium channels are typically around 1% as permeable
to sodium as they are to potassium (Hille, 2001).
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The independence principle
As it is assumed that each type of current does not depend on the concen-
trations of other types of ion, these equations imply that the independence
principle holds (Box 2.4). Hodgkin and Huxley (1952a) verified, to the limit
of the resolving power of their experiments, that the independence principle
holds for the sodium current. However, improved experimental techniques
have revealed that this principle of independence does not hold exactly in
general (Section 2.7).

The linear instantaneous I–V characteristic
One of the key elements of the HH model is that all the ionic currents
that flow though open gates have a linear, quasi-ohmic dependence on the
membrane potential (Equations 3.3–3.5), for example:

INa = gNa(V − ENa). (3.3)

As described in Chapter 2, this relation is an approximation of the non-linear
Goldman–Hodgkin–Katz current equation, which itself is derived theoret-
ically from assumptions such as there being a constant electric field in the
membrane.

Hodgkin and Huxley (1952b) did not take these assumptions for granted,
and carried out experiments to check the validity of Equation 3.3, and the
corresponding equation for potassium. Testing this relation appears to be a
matter of measuring an I–V characteristic, but in fact it is more complicated,
since, as seen earlier in the chapter, the conductance gNa changes over time,
and the desired measurements are values of current and voltage at a fixed
value of the conductance. It was not possible for Hodgkin and Huxley to
fix the conductance, but they made use of their observation that it is rate
of change of an ionic conductance that depends directly on voltage, not the
ionic conductance itself. Therefore, in a voltage clamp experiment, if the
voltage is changed quickly, the conductance has little chance to change, and
the values of current and voltage just before and after the voltage step can
be used to acquire two pairs of current and voltage measurements. If this
procedure is repeated with the same starting voltage level and a range of
second voltages, an I–V characteristic can be obtained.

As explained in more detail in Box 3.6, Hodgkin and Huxley obtained
such I–V characteristics in squid giant axon and found that the quasi-ohmic
I–V characteristics given in Equations 3.3–3.5 were appropriate for this
membrane. They referred to this type of I–V characteristic as the instanta-
neous I–V characteristic, since the conductance is given no time to change
between the voltage steps. In contrast, if the voltage clamp current is allowed
time to reach a steady state after setting the voltage clamp holding potential,
the I–V characteristic measured is called the steady state I–V characteristic.
In contrast to the instantaneous I–V characteristic, this is non-linear in the
squid giant axon. With the advent of single channel recording (Chapter 5), it
is possible to measure the I–V characteristic of an open channel directly in
the open and closed states, as for example do Schrempf et al. (1995).

A potentially more accurate way to model the I–V characteristics would
be to use the GHK current equation (Box 2.4). For example, the sodium
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current would be given by:

INa(t ) = ρNa(t )
F 2V (t )

RT

�
[Na+]in− [Na+]oute

−F V (t )/RT

1− e−F V (t )/RT

�
, (3.24)

where ρNa(t ) is the permeability to sodium at time t . This equation could
be rearranged to determine the permeability over time from voltage clamp
recordings, and then a gating particle model for the permeability (for exam-
ple, of the form ρNa = ρ̄Nam3h) could be derived. Sometimes it is desirable
to use this form of the model, particularly where the I–V characteristic is
non-linear and better fitted by the GHK equation. This is particularly the
case for ions whose concentration differences across the membrane are large,
such as in the case of calcium (Figure 2.11b).

The independence of gating particles
Alternative interpretations and fits of the voltage clamp data have been pro-
posed. For example, Hoyt (1963, 1968) suggested that activation and inac-
tivation are coupled. This was later confirmed through experiments that
removed the inactivation in squid giant axon using the enzyme pronase
(Bezanilla and Armstrong, 1977). Subsequent isolation of the inactivation
time course revealed a lag in its onset that did not conform to the indepen-
dent particle hypothesis. Inactivation now appears to be voltage independent
and coupled to sodium activation. Consequently, more accurate models of
sodium activation and inactivation require a more complex set of coupled
equations (Goldman and Schauf, 1972). Unrestricted kinetic schemes, de-
scribed in Section 5.5.3, provide a way to model dependencies such as this.

Gating current is not considered
In the HH model, the only currents supposed to flow across the membrane
are the ionic currents. However, there is another source of current across
the membrane, the movement of charges in channel proteins as they open
and close. This gating current, described in more detail in Section 5.3.4, is
very small in comparison to the ionic currents, so small in fact that it took
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Box 3.6 Verifying the quasi-ohmic I–V characteristic
To verify that the instantaneous I–V characteristics of the sodium and potas-

sium currents were quasi-ohmic, Hodgkin and Huxley (1952a) made a series

of recordings using a two-step voltage clamp protocol. In every recording,

the first step was of the same duration, and depolarised the membrane to

the same level. This caused sodium and potassium channels to open. The

second step was to a different voltage in each experiment in the series. The

ion substitution method allowed the sodium and potassium currents to be

separated.

Figure 3.16c shows one such recording of the sodium current. At the end

of the step, the current increases discontinuously and then decays to zero.

There is a small gap due to the capacitive surge. The current just after the

discontinuous leap (I2) depends on the voltage of the second step (V2). When

I2 was plotted against V2, a linear relationship passing through the sodium

equilibrium potential ENa was seen. The gradient of the straight line was

the conductance at the time of the start of the second voltage step.

This justified the calculation of the conductance from the current and

driving force according to Equation 3.3. Figure 3.16d shows the conductance

so calculated. In contrast to the current, it is continuous at the end of the

voltage step, apart from the gap due to the capacitive surge.

many years to be able to measure it in isolation from the ionic currents.
Adding it to the HH model would make very little difference to the model’s
behaviour, and would not change the explanation provided by the model
for the action potential. However, the gating current can be used to probe
the detailed kinetics of ion channels. Thus, ignoring the gating current is a
good example of a kind of simplification that is appropriate for one question,
but if asking a different question, may be something to model with great
accuracy.

3.5.2 Fitting the Hodgkin–Huxley formalism to data
The Hodgkin–Huxley formalism for a channel comprises

(1) an instantaneous I–V characteristic, e.g. quasi-ohmic or GHK equation;
(2) one or more gating variables (such as m and h) and the powers to which

those gating variables are raised;
(3) expressions for the forward and backward rate coefficients for these vari-

ables as a function of voltage.

The data required for all the quantities are voltage clamp recordings using
various protocols of holding potential of the current passing through the
channel type in question. This requires that the channel be isolated by some
method, such as the ion substitution method (Box 3.2), channel blockers,
Section 5.3.2, or expression in oocytes, Section 5.3.3. The data required for
each is now discussed.
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Linear I–V characteristic
For greatest accuracy, the instantaneous I–V characteristic should be mea-
sured. Even the GHK equation might not be able to capture some features of
the characteristic. Also, the reversal potential may differ significantly from
the equilibrium potential of the dominant permeant ion if there are other
ions to which the channel is significantly permeable. However, in practice,
the quasi-ohmic approximation is often used with a measured reversal poten-
tial as equilibrium potential. When the intracellular and extracellular con-
centration differences are great, such as in the case of calcium, the GHK
equation may be used.

Gating variables
If the channel displays no inactivation, only one gating variable is required,
but if there is inactivation, an extra variable will be needed. The gating vari-
able is raised to the power of the number of activation particles needed to
capture the inflection in conductance activation, which then determines the
voltage-dependent rate coefficient functions αn, βn of Equation 3.7.

Coefficients for each gating variable
The voltage dependence of the forward and backward reaction coefficients
α and β for each gating particle need to be determined. The basis for this is
the data from voltage clamp experiments with different holding potentials.

These can be obtained using the types of methods described in this chap-
ter to determine plots of steady state activation and inactivation and time
constants against voltage. With modern parameter estimation techniques
(Section 4.5), it is sometimes possible to short circuit these methods. In-
stead, the parameters of a model can be adjusted to make the behaviour
of the model as similar as possible to recordings under voltage clamp
conditions.

The steady state variables, for instance n∞ and τn in the case of potas-
sium, need not be converted into rate coefficients such as αn and βn, since
the kinetics of the gating variable can be specified using n∞ and τn (Equa-
tion 3.11). This approach is taken, for example, by Connor et al. (1977) in
their model of the A-type potassium current (Box 5.2). Hodgkin and Huxley
fit smooth functions to their data points, but some modellers (Connor and
Stevens, 1971c) connect their data points with straight lines in order to make
a piecewise linear approximation of the underlying function.

If functions are to be fitted, the question arises of what form they should
take. The functions used by Hodgkin and Huxley (1952d) took three differ-
ent forms, each of which corresponds to a model of how the gating particles
moved in the membrane (Section 5.8.3). From the point of view of modelling
the behaviour of the membrane potential at a particular temperature, it does
not really matter which two quantities are fitted to data or what functional
forms are used, as long as they describe the data well. However, from the
point of view of understanding the biophysics of channels, more physically
principled fitting functions (Section 5.8) are better than arbitrary functions.
This can include temperature dependence, rather than having to bolt this on
using the value of Q10.
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3.6 Summary

In their model, Hodgkin and Huxley introduced active elements into the
passive membrane equation. These active currents are specified through the
concept of membrane-bound gated channels, or gates, each gate comprising
a number of independent gating particles. While the Hodgkin–Huxley for-
malism does not relate directly to the physical structure of channels, it does
provide a framework within which to describe experimental data. In partic-
ular, the use of kinetic reaction equations allows the system to be fitted to
voltage-dependent characteristics of the active membrane currents through
the voltage dependence of the kinetic rate coefficients. Putative functions
for the kinetic rate coefficients are fitted to experimental voltage clamp data.
The resulting quantitative model not only replicates the voltage clamp ex-
periments to which it is tuned, but also reproduces the main features of the
action potential.

In this chapter we have been considering the squid giant axon only.
Furthermore, we have focused on single stretches of axon and have not
included features such as branch points, varicosities and axon tapering in
the model. These extensions may be added to the models using the multi-
compartmental model approach. As seen previously, a single equivalent elec-
trical circuit representing an isopotential patch of membrane can be con-
nected to other membrane circuits in various ways to form an approxima-
tion of membrane area and discontinuities. This approach is introduced and
discussed in Chapter 4.

Representing more complex neurons requires a model to contain more
than sodium and potassium conductances. This can be achieved by including
in the equivalent electrical circuit any number of transmembrane conduc-
tances in series with a voltage source representing new ionic currents. The
voltage dependence of conductances may be characterised by the Hodgkin–
Huxley formalism if the independent gating particle approach is deemed ac-
curate enough. However, as will be seen in Chapter 5, the Hodgkin–Huxley
formalism cannot explain some behaviours of ion channels, and more com-
plex models are required. Conductances may also exhibit more than voltage
dependence; for example, ligand-gated channels and channels dependent on
ionic concentrations. These variations are discussed in Chapters 5 and 7.


