
Chapter 3

The Hodgkin–Huxley model of

the action potential

This chapter presents the first quantitative model of active membrane prop-

erties, the Hodgkin–Huxley model. This was used to calculate the form of

the action potentials in the squid giant axon. Our step-by-step account of the

construction of the model shows how Hodgkin and Huxley used the voltage

clamp to produce the experimental data required to construct mathemati-

cal descriptions of how the sodium, potassium and leak currents depend on

the membrane potential. Simulations of the model produce action potentials

similar to experimentally recorded ones and account for the threshold and

refractory effects observed experimentally. While subsequent experiments

have uncovered limitations in the Hodgkin–Huxley model descriptions of

the currents carried by different ions, the Hodgkin–Huxley formalism is a

useful and popular technique for modelling channel types.

3.1 The action potential

In the previous chapter we described the basis of the membrane resting po-
tential and the propagation of signals down a passive neurite. We now ex-
plain a widespread feature of signalling in the nervous system: the action
potential.

Intracellular recordings (Figure 3.1) demonstrate that action poten-
tials are characterised by a sharp increase in the membrane potential
(depolarisation of the membrane) followed by a somewhat less sharp de-
crease towards the resting potential (repolarisation). This may be followed
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by an afterhyperpolarisation phase in which the membrane potential falls
below the resting potential before recovering gradually to the resting poten-
tial. The main difference between the propagation of action potentials and
passive propagation of signals is that action potentials are regenerative, so
their magnitude does not decay during propagation.

Hodgkin and Huxley (partly in collaboration with Katz) were the first
to describe the active mechanisms quantitatively (Hodgkin et al., 1952;
Hodgkin and Huxley, 1952a, b, c, d). Their work proceeded in three main
stages:
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(1) They recorded intracellularly from the squid giant axon. They used a
voltage clamp amplifier in space clamp configuration (Box 3.1) to look at
how current flow depends on voltage. By changing the extracellular con-
centration of sodium, they were able to infer how much of the current
was carried by sodium ions and how much by other ions, principally
potassium.

(2) They fitted these results to a mathematical model. Part of the model
is the theoretically motivated framework developed in Chapter 2. An-
other part is based on the idea of ion-selective voltage-dependent gates
controlled by multiple gating particles. The remainder of the model
is determined by fitting curves to experimental data. The model is ex-
pressed in terms of a set of equations which are collectively called the
Hodgkin–Huxley model, or HH model for short.

(3) They solved the equations defining the model to describe the behaviour
of the membrane potential under various conditions. This involved solv-
ing the equations numerically. The simulated action potentials were very
similar to the recorded ones. The threshold, propagation speed and re-
fractory properties of the simulated action potentials also matched those
of the recorded action potentials.

Their work earned them a Nobel prize in 1963, shared with Eccles for his
work on synaptic transmission.

Hodgkin and Huxley were not able to deduce the molecular mechanisms
underlying the active properties of the membrane, which was what they had
set out to do (Box 3.3). Nevertheless, their ideas were the starting point for
the biophysical understanding of the structures now known as ion channels,
the basics of which are outlined in Chapter 5. Hille (2001) provides a com-
prehensive treatment of the structure and function of ion channels.

The HH model characterises two types of active channel present in the
squid giant axon, namely a sodium channel and a potassium channel belong-
ing to the family of potassium delayed rectifier channels. Work since 1952
in preparations from many different species has uncovered a large number
of other types of active channel. Despite the age and limited scope of the
HH model, a whole chapter of this book is devoted to it as a good deal of
Hodgkin and Huxley’s methodology is still used today:

(1) Voltage clamp experiments are carried out to determine the kinetics of
a particular type of channel, though now the methods of recording and
isolating currents flowing through particular channel types are more ad-
vanced.

(2) A model of a channel type is constructed by fitting equations, often
of the same mathematical form, to the recordings. Modern methods of
fitting equation parameters to data are covered later on, in Section 4.5.

(3) Models of axons, dendrites or entire neurons are constructed by incorp-
orating models of individual channel types in the compartmental models
introduced in Chapter 2. Once the equations for the models are solved,
albeit using fast computers rather than by hand, action potentials and
other behaviours of the membrane potential can be simulated.
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Box 3.1 The voltage clamp
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Power
supply

Current electrode

Voltage electrode V

Vin

out V=Vin   - Vout

A

The next great experimental advance after intracellular recording was the

voltage clamp. This was developed by Cole and Marmont in the 1940s at

the University of Chicago (Marmont, 1949; Cole, 1968). Hodgkin, who was

already working on a similar idea, learnt about the technique from Cole in

1947. The basic idea is to clamp the membrane potential to a steady value or

to a time-varying profile, determined by the experimenter (see figure above).

As with a current clamp (Chapter 2), an electrode is used to inject current

Ie into the cell. At the same time, a voltage electrode records the membrane

potential. The apparatus adjusts the injected current continually so that it

is just enough to counteract deviations of the recorded membrane potential

from the desired voltage value. This ensures that the membrane potential

remains at the desired steady value or follows the required time-varying

profile.

Hodgkin and Huxley used a space clamp configuration, where the elec-

trodes are long, thin wires that short circuit the electrical resistance of the

cytoplasm and the extracellular space. This ensures that the potential is

uniform over a large region of membrane and that therefore there is no axial

current in the region. There is no contribution to the membrane current from

the axial current. In this configuration, the membrane current is identical

to the electrode current, so the membrane current can be measured exactly

as the amount of electrode current to be supplied to keep the membrane at

the desired value.

To understand the utility of the voltage clamp, we recall that the mem-

brane current I comprises a capacitive and an ionic current (Equation 3.1).

When the voltage clamp is used to set the membrane potential to a constant

value, no capacitive current flows as the rate of change in membrane po-

tential, dV /dt, is zero. The voltage clamp current is then equal to the ionic

current. Therefore, measuring the voltage clamp current means that the ionic

current is being measured directly.

In this chapter, we focus on the second (modelling) and third (simulation)
parts of the procedure. In Section 3.2, we begin with a step-by-step descrip-
tion of how Hodgkin and Huxley used a mixture of physical intuition and
curve-fitting to produce their mathematical model. In Section 3.3, we look
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at simulations of nerve action potentials using the model, and compare these
with the experimental recordings. In Section 3.4 we consider how Hodgkin
and Huxley corrected for temperature. Finally, in Section 3.5, we consider
the simplifications inherent in the HH model and how to use the Hodgkin–
Huxley formalism to build models of ion channels.

3.2 The development of the model

The starting point of the HH model is the equivalent electrical circuit of a
compartment shown in Figure 3.2. There are three types of ionic current in
the circuit: a sodium current, INa, a potassium current, IK, and a current
that Hodgkin and Huxley dubbed the leak current, IL, which is mostly
made up of chloride ions. The key difference between this circuit and the
one presented in Chapter 2 is that the sodium and potassium conductances
depend on voltage, as indicated by the arrow through their resistors. Since
their properties change with the voltage across them, they are active rather
than passive elements.

The equation that corresponds to the equivalent electrical circuit is:

I = Ic+ Ii =Cm

dV

dt
+ Ii, (3.1)

where the membrane current I and the capacitive current Ic are as defined
in Chapter 2. The total ionic current Ii is the sum of sodium, potassium and
leak currents:

Ii = INa+ IK+ IL. (3.2)

The magnitude of each type of ionic current is calculated from the product
of the ion’s driving force and the membrane conductance for that ion:

INa = gNa(V − ENa), (3.3)

IK = gK(V − EK), (3.4)

IL = g L(V − EL), (3.5)

where the sodium, potassium and leak conductances are gNa, gK and g L re-

As defined in Section 2.4.1, the

driving force of an ion is the

difference between the

membrane potential and the

equilibrium potential of that

ion. Hence, the sodium driving

force is V − ENa.

spectively, and ENa, EK and EL are the corresponding equilibrium potentials.
The bar on the leakage conductance g L indicates that it is a constant, in con-
trast with the sodium and potassium conductances which depend on the
recent history of the membrane potential.
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Fig. 3.3 The sodium current

separated from the other currents

using the ion substitution method

(Box 3.2). (a) The ionic current in

sea water (Ii) and in choline

water (I′i ) in response to a

voltage clamp of 56mV (sea

water) or 60mV (choline water)

above resting potential. (b) The

same traces as (a), but in

response to a voltage clamp of

84mV (sea water) and 88mV

(choline water) above resting

potential. (c,d) The sodium

currents in sea water (INa) and in

choline water (I′Na) inferred from

pairs of ionic currents in (a) and

(b). (e,f) The potassium current

in sea water (IK) and in choline

water (I′K) inferred from the pairs

of ionic currents in (a) and (b), as

described in the text. These two

currents are, in fact, identical.

The recording temperature was

8.5 ◦C. Adapted from Hodgkin

and Huxley (1952a), with

permission from John Wiley &

Sons Ltd.

3.2.1 The potassium current
Hodgkin and Huxley measured the potassium conductance for a number of
voltage clamp holding potentials. After first isolating the potassium current
(Box 3.2 and Figure 3.3), they calculated the conductance using Equation 3.4.
The form of the curves at each holding potential is similar to the example
of the response to a holding potential of 25 mV above rest, shown in Fig-
ure 3.4a. Upon depolarisation, the conductance rises to a constant value.
This rise in conductance is referred to as activation. The conductance stays
at this peak value until the voltage is stepped back down to rest, where the
conductance then decays exponentially (Figure 3.4b). The fall in conduc-
tance is called deactivation.

Box 3.2 The ion substitution method
In order to fit the parameters of their model, Hodgkin and Huxley needed to

isolate the current carried by each type of ion. To do this they used the ion

substitution method. They lowered the extracellular sodium concentration

by replacing a proportion of the sodium ions in the standard extracellular

solution (sea water) with impermeant choline ions. The currents recorded un-

der voltage clamp conditions in sea water and in choline water were carried

by sodium ions, potassium ions and other ions. On the assumption that the

independence principle holds (Box 2.4), the currents carried by sodium ions

in sea water and choline water differ, but the other ionic flows will remain

the same. Therefore, the difference between currents recorded in sodium wa-

ter and choline water can be used to infer the sodium current (Figure 3.3).

Having isolated the sodium current and calculated the leak current by other

methods, the potassium current can be deduced by subtracting the sodium

and leak currents from the total current.
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Fig. 3.4 Time course of the

potassium conductance in a

voltage clamp with (a) a step

from resting potential to 25mV

above resting potential and

(b) return to resting potential.

The open circles represent data

points derived from experiment.

The solid lines are fits to the

data (see text). (c) Time course of

potassium conductance in

response to voltage clamp steps

to varying holding potentials; the

voltage of the holding potential

relative to rest is shown on each

curve. Note that the activation of

the conductance in response to a

holding potential of 26mV is

slower than the activation in

response to almost the same

holding potential in (a). This is

due to a difference in recording

temperatures: 21 ◦C in (a) and

(b), compared to 6 ◦C in (c).

Adapted from Hodgkin and

Huxley (1952d), with permission

from John Wiley & Sons Ltd. The family of conductance activation curves (Figure 3.4c) show that
there are two features of the curve that depend on the level of the voltage
clamp holding potential:

(1) The value that the conductance reaches over time, gK∞, increases as the
holding potential is increased. It approaches a maximum at high holding
potentials. This implied that there was a maximum potassium conduc-
tance per unit area of membrane, which Hodgkin and Huxley denoted
g K and were able to estimate.

(2) The speed at which the limiting conductance is approached becomes
faster at higher depolarising holding potentials.

The conductance curves show that the limiting conductance and the
rate at which this limit is approached depends on the membrane voltage.
Hodgkin and Huxley considered a number of models for describing this
voltage dependence (Box 3.3). They settled on the idea of the membrane
containing a number of gates which can be either closed to the passage of
all ions or open to the passage of potassium ions. Each gate is controlled by
a number of independent gating particles, each of which can be in either
an open or closed position. For potassium ions to flow through a gate, all of
the gating particles in the gate have to be in the open position.

The movement of gating particles between their closed and open posi-
tions is controlled by the membrane potential. The gating variable n is the
probability of a single potassium gating particle being in the open state. As
the gating particles are assumed to act independently of each other, the prob-
ability of the entire gate being open is equal to nx , where x is the number
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Box 3.3 Gating particles
Hodgkin and Huxley’s goal had been to deduce the molecular mechanisms

underlying the permeability changes evident in their experimental data. Re-

flecting on this later, Hodgkin (1976) wrote:

although we had obtained much new information the overall conclusion

was basically a disappointment . . . . As soon as we began to think about

molecular mechanisms it became clear that the electrical data would

by itself yield only very general information about the class of system

likely to be involved. So we settled for the more pedestrian aim of

finding a simple set of mathematical equations which might plausibly

represent the movement of electrically charged gating particles.

Their initial hypothesis was that sodium ions were carried across the

membrane by negatively charged carrier particles or dipoles. At rest these

would be held by electrostatic forces. Consequently, they would not carry

sodium ions in this state and, on depolarisation, they could carry sodium into

the membrane. However, Hodgkin and Huxley’s data pointed to a voltage-

dependent gate. They settled on deriving a set of equations that would

represent the theoretical movement of charged gating particles acting inde-

pendently in a voltage-dependent manner.

In the contemporary view, the idea of gating particles can be taken to im-

ply the notion of gated channels, but the hypothesis of ion pores or channels

was not established at that time. Thus, though Hodgkin and Huxley pro-

posed charged gating particles, it is perhaps tenuous to suggest that they

predicted the structure of gated channels. Nevertheless, there is a correspon-

dence between the choice of the fourth power for potassium conductance and

the four subunits of the tetrameric potassium channel (Section 5.1).

of gating particles in the gate. Although, as described in Chapter 5, gating
particles do not act independently, this assumption serves reasonably well in
the case of potassium conductance in the squid giant axon. When there are
large numbers of particles present, the large numbers ensure the proportion
of particles being in the open position is very close to the probability n of an
individual channel being in the open position, and the expected proportion
of gates open is also the same as the probability of an individual gate being
open, nx .

The conductance of the membrane is given by the maximum conduc-
tance multiplied by the probability of a gate being open. For example, if
each gate is controlled by four gating particles, as Hodgkin and Huxley’s
experiments suggested, the relationship between the potassium conductance
gK and gating particle open probability n is:

gK = g Kn4. (3.6)

If each potassium gate were dependent solely on a single theoretical gating
particle, the conductance would be g Kn.
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Fig. 3.5 A family of curves

showing the time course of n

raised to various powers. From

top to bottom curves with n

raised to the power 1, 2, 3 and 4

are shown. The parameters are

as in Figure 3.4: τn(V0) = 1.1ms,

τn(V1) = 0.75ms,

gK∞(V0) = 0.09mS cm
−2 and

gK∞(V1) = 7.06mS cm
−2. To

compare the curves, the time

course of n raised to the powers

2, 3 and 4 have initial and final

values of n given by

(gK∞/ gK)
1/2, (gK∞/ gK)

1/3, and

(gK∞/ gK)
1/4. The circular data

points shown are the same as in

Figure 3.4. Adapted from

Hodgkin and Huxley (1952d),

with permission from John Wiley

& Sons Ltd.

The movement of a gating particle between its closed (C) and open (O)
positions can be expressed as a reversible chemical reaction:

C
αn−�	−
βn

O. (3.7)

The fraction of gating particles that are in the O state is n, and the fraction
in the C state is 1− n. The variables αn and βn are rate coefficients which
depend on the membrane potential; sometimes they are written αn(V ) and
βn(V ) to highlight their dependence on voltage. Just as rate laws govern the
evolution of concentrations in chemical reactions, there is a rate law or first
order kinetic equation corresponding to Equation 3.7, which specifies how
the gating variable n changes over time:

dn

dt
= αn(1− n)−βnn. (3.8)

The time course of the response of the gating variable n to a step change
in membrane potential to a particular voltage V1 can be determined by in-
tegrating Equation 3.8. A solution for the response of n to a voltage step
is shown in Figure 3.5, along with the time courses of n raised to various
powers. The curve for n looks roughly like the conductance curve shown
in Figure 3.4. The main difference is that the theoretical time course of n is
not S-shaped like the experimental curve; it has no initial inflection. As Fig-
ure 3.5 shows, when the time course of n in response to a positive voltage
step is squared, cubed or raised to the power four, the resulting rising curve
does have an inflection. The decaying part of the curve retains its decaying
exponential shape. Hodgkin and Huxley found that raising n to the power
four could give a better fit than cubing or squaring, suggesting that each gate
contains four gating particles.

The general form of the time course for n(t ) in response to a voltage step
is:

n(t ) = n∞(V1)− (n∞(V1)− n0)exp(−t/τn(V1)), (3.9)

where n0 is the value of n at the start of the step, defined to be at time zero;
the variables n∞(V ) and τn(V ) are related to the rate coefficients αn(V ) and
βn(V ) by:

n∞ =
αn

αn+βn
and τn =

1

αn+βn
, (3.10)
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where n∞ is the limiting probability of a gating particle being open if the
membrane potential is steady as t approaches infinity and τn is a time con-
stant. When the membrane potential is clamped to V1, the rate coefficients
will immediately move to new values αn(V1) and βn(V1). This means that,
with the membrane potential set at V1, over time n will approach the lim-
iting value n∞(V1) at a rate determined by τn(V1). The variables n∞ and τn
allow Equation 3.8 to be rewritten as:

dn

dt
=

n∞− n

τn
. (3.11)

The final step in modelling the potassium current is to determine how
the rate coefficients αn and βn in the kinetic equation of n (Equation 3.8)
depend on the membrane potential. In using experimental data to determine
these parameters, it is convenient to use the alternative quantities n∞ and
τn (Equation 3.10). The value of n∞ at a specific voltage V may be deter-
mined experimentally by recording the maximum conductance attained at
that voltage step, called gK∞(V ). Using Equation 3.6, the value of n∞ at
voltage V is then given by:

n∞(V ) =
�

gK∞(V )
g K

� 1
4

. (3.12)

The value for τn at a particular membrane potential is obtained by adjusting
it so as to give the best match predicted time course of n given in Equa-
tion 3.9 and the data (Figure 3.4).

This process provides values for n∞ and τn at various voltages. Hodgkin
and Huxley converted them to the values for αn and βn using the inverse
formulae to Equation 3.10:

αn =
n∞
τn

and βn =
1− n∞
τn

. (3.13)

These experimental data points are shown in Figure 3.6, along with plots of
the final fitted functions for αn andβn; see also Figure 3.10 for the equivalent
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n∞ and τn plots. The equations for the functions αn(V ) andβn(V ) are given
in the summary of the entire set of equations describing the potassium ionic
current through the membrane:

IK = g Kn4(V − EK),

dn

dt
= αn(1− n)−βnn,

αn = 0.01
V + 55

1− exp (−(V + 55)/10)
,

βn = 0.125exp(−(V + 65)/80).

(3.14)

3.2.2 The sodium ionic current
In a similar manner to the procedure used for potassium conductance,
Hodgkin and Huxley isolated the sodium current and calculated the sodium
conductance curves over a range of voltage clamp steps. The time course
of the sodium conductance is illustrated in Figure 3.7. The most notable
difference from the potassium conductance is that the sodium conductance
reaches a peak and then decays back to rest, even while the clamped volt-
age remains in a sustained depolarising step. This reduction in conductance
is termed inactivation, in contrast to deactivation (Section 3.2.1) when
the reduction in conductance is due to termination of a voltage step. The
time course of the conductance during inactivation differs from the time
course during deactivation, and this suggested that two distinct processes
can act to reduce the conductance.

The inactivation of the sodium conductance meant that Hodgkin and
Huxley could not use the description they used for potassium, where there
was just one gating variable, n. In order to quantify the inactivation pro-
cess, Hodgkin and Huxley applied a range of voltage clamp experiments and
protocols (Box 3.4 and Figures 3.8 and 3.9). They introduced a gating type
variable, called h, to represent the level of inactivation. It could either be in
the state of ‘not inactivated’ or the state of ‘inactivated’. The rate of transi-
tion between these states is voltage dependent and governed by a first order
kinetic equation similar to n:

dh

dt
= αh(1− h)−βhh. (3.15)
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As with the n gating particle, the voltage-dependent rate coefficients αh and
βh can be reexpressed in terms of a limiting value h∞ and a time constant
τh. Hodgkin and Huxley’s experiments suggested that sodium conductance
was proportional to the inactivation variable h.

Hodgkin and Huxley completed their model of sodium conductance by
introducing another gating particle which, like n, may be viewed as the pro-
portion of theoretical gating particles that are in an open state, determining
sodium conductance activation. They called this sodium activation particle
m. As with n and h, the time course of m was governed by a first order ki-
netic equation with voltage-dependent forward and backward rates αm and
βm:

dm

dt
= αm(1−m)−βmm. (3.16)

As with potassium (Figure 3.5), the activation curve of the sodium conduc-
tance is inflected. The inflection was modelled satisfactorily by using three
independent m gating particles, making the sodium conductance:

gNa = g Nam3h. (3.17)

This enabled a good fit to be made to experimental recordings by adjusting
m∞ and τm for different holding potentials and g Na for all holding poten-
tials. As with the gating variable n, Hodgkin and Huxley converted the lim-
iting values and time constants of the m and h variables into rate coefficients
(αm, βm and αh, βh) and plotted each as a function of voltage. They then
found a fit to each rate coefficient that matched their experimental data. The
final model of the sodium current is given by the following set of equations:

INa = g Nam3 h(V − ENa),

dm

dt
= αm(1−m)−βmm,

dh

dt
= αh(1− h)−βhh,

αm = 0.1
V + 40

1− exp (−(V + 40)/10)
, αh = 0.07 exp (−(V + 65)/20) ,

βm = 4 exp (−(V + 65)/18) , βh =
1

exp (−(V + 35)/10)+ 1
.

(3.18)

3.2.3 The leak current
Hodgkin and Huxley’s evidence suggested that while potassium is a major
part of the non-sodium ionic current, other ions besides sodium might carry
current across the membrane. At the potassium equilibrium potential, they
found that some non-sodium current still flows. This current could not be
due to potassium ions since the driving force V − EK was zero. Hodgkin and
Huxley proposed that it was due to a mixture of ions, and they dubbed it the
leak current IL. They assumed this was a resting background current that was
not dependent on voltage. Using a quasi-ohmic current–voltage relationship
they derived EL and g L from their experimental results. Both the leakage
conductance and equilibrium potential are due largely to the permeability
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is shifted to a test potential and

then stepped to a fixed potential

(−26mV). The sodium current

recorded in response to the final

step (right) is influenced by the

level of inactivation resulting

from the test potential. (b) The

level of inactivation as a function

of the test potential (recorded

current relative to the maximum

current). Adapted from Hodgkin

and Huxley (1952c), with

permission from John Wiley &

Sons Ltd.

of the membrane to chloride ions. The leak current is modelled by:

IL = g L(V − EL). (3.19)

Although the leak conductance g L in the Hodgkin–Huxley circuit and
the membrane resistance Rm in the passive circuit (Chapter 2) appear similar,
they have different meanings. In the HH model, the resting membrane po-
tential differs from the electromotive force of the leak battery and the resting
membrane resistance is not equal to the inverse of the leak conductance. In-
stead, the resting membrane potential and the resting membrane resistance
are determined by the sodium, potassium and leak resting conductances. We
return to this difference in Section 4.4.

3.2.4 The complete model
In the final paper of the series, Hodgkin and Huxley (1952d) inserted their
expressions for the three ionic currents (Equations 3.3–3.5) into the mem-
brane equation (Equation 3.1) to give a description of how the membrane
potential in a small region of squid giant axon changes over time:

Cm

dV

dt
=−g L(V − EL)− g Nam3h(V − ENa)− g Kn4(V − EK)+ I , (3.20)

where I is the local circuit current, the net contribution of the axial current
from neighbouring regions of the axon. In a continuous cable model of the
axon, this contribution is the second derivative of the membrane potential
with respect to space (Equation 2.24). When Equation 3.20 is put together
with the differential equations for the gating variables n, m and h and the
expressions for the rate coefficients (Equations 3.14 and 3.18), the resulting
set of four differential equations forms the HH model. It is summarised in
Box 3.5.

Equation 3.20 could equally well relate to a compartment in a compart-
mental model, as described in Section 2.8. In this case, the local circuit cur-
rent depends on the membrane potential in the neighbouring compartments
(Equations 2.20).

The system can be simplified by imposing the space clamp condition
(Box 3.1) so that the membrane potential is constant over the membrane.




