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Box 2.4 The GHK equations
Goldman (1943) and Hodgkin and Katz (1949) developed a formalism for

describing the currents through and voltages across semipermeable mem-

branes. This formalism models the diffusion of ions through a uniformly per-

meable membrane, predating the notion of channels or pores through the

membrane. It is assumed that ions cross the membrane independently (the

independence principle) and that the electric field within the membrane is

constant. The flux or movement of ions within the membrane is governed by

the internal concentration gradient and the electric field arising from the

potential difference, calculated by the Nernst–Plank equation.

From these assumptions, the Goldman–Hodgkin–Katz current equation

can be derived (Johnston and Wu, 1995):

IX = PXzXF
zXFV

RT

(
[X]in − [X]out e

−zXFV /RT

1− e−zXFV /RT

)

.

This equation predicts the net flow IX per unit area of membrane, measured

in cm−2 of an arbitrary ion type X with valency zX. PX is the permeability

of the membrane to ion X, with units of cm s−1. It characterises the ability

of an ion X to diffuse through the membrane and is defined by the empirical

relationship between molar flux J and the concentration difference across

the membrane:

JX = −PX([X]in − [X]out).

In the GHK model of the membrane, permeability is proportional to the

diffusion coefficient, DX, defined in Fick’s first law (Equation 2.2). Hille (2001)

discusses the relationship in more detail.

The GHK equation predates the notion of membrane channels and treats

the membrane as homogeneous. In active membranes we can interpret the

diffusion coefficient, DX, as variable – an increase in the number of open

channels in the membrane will increase the membrane permeability. Because

of the assumption of a constant electric field in the membrane, the GHK

equations are sometimes referred to as the constant-field equations.

2.4.1 An electrical circuit approximation of the GHK
current equation

It is often sufficient to use a simpler equation in place of the GHK current
equation. In the potassium characteristic shown in Figure 2.11a, the straight
line that gives zero current at the equilibrium potential (−72mV) is a close
approximation of the I–V characteristic for membrane potentials between
about −100mV and 50mV, the voltage range within which cells normally
operate. The equation describing this line is:

IX = gX(V − EX) (2.10)

where X is the ion of interest, EX its equilibrium potential, and gX is the gra-
dient of the line with the units of conductance per unit area, often mScm−2.
The term in brackets (V − EX) is called the driving force. When the mem-
brane potential is at the equilibrium potential for X, the driving force is zero.



30 THE BASIS OF ELECTRICAL ACTIVITY IN THE NEURON

V (mV)500–50 100

(a) (b)
1.0

0.5

–0.5

0I (
m

A/
cm

–2
)

(2) (1)

(3)

Fig. 2.12 Interpretation of the

approximation of the GHK

current equation. (a) The

approximation can be viewed as

a resistor, or conductance, in

series with a battery. (b) The

graph shows three different I–V

characteristics from this circuit

given different conductances and

battery voltages.

(1) gX = 5.5mS cm
−2,

EX = −72mV; this line is the

same as the K+ approximation in

Figure 2.11a;

(2) gX = 11.0mS cm
−2,

EX = −72mV;

(3) gX = 5.5mS cm
−2,

EX = 28mV.

In some cases, such as for calcium in Figure 2.11b, the GHK I–V charac-
teristic rectifies too much for a linear approximation to be valid.

Making this linear approximation is similar to assuming Ohm’s law,
I = GV , where conductance G is a constant. Since the straight line does
not necessarily pass through the origin, the correspondence is not exact and
this form of linear I–V relation is called quasi-ohmic. There is still a use-
ful interpretation of this approximation in terms of electrical components.
The I–V characteristic is the same as for a battery with electromotive force
equal to the equilibrium potential in series with a resistor of resistance 1/gX
(Figure 2.12).

2.5 The capacitive current

We now have equations that describe how the net flow of current I through
the different types of channels depends on the membrane potential V . In
order to complete the description of the system, we need to know how the
current affects the voltage.

All the current passing through the membrane either charges or dis-
charges the membrane capacitance. So the rate of change of charge on the
membrane dq/dt is the same as the net current flowing through the mem-
brane: I = dq/dt . By differentiating Equation 2.1 for the charge stored on a
capacitor with respect to time, we obtain a differential equation that links V
and I :

dV

dt
=

I

C
=

1

C

dq

dt
. (2.11)

This shows that the rate of change of the membrane potential is propor-
tional to the current flowing across the membrane. The change in volt-
age over time, during the charging or discharging of the membrane, is in-
versely proportional to the capacitance – it takes longer to charge up a bigger
capacitor.

2.6 The equivalent electrical circuit of a patch of
membrane

We have seen how we can represent the permeable and impermeable proper-
ties of the membrane as electrical components. Figure 2.13 shows how these



2.6 ELECTRICAL CIRCUIT OF A PATCH OF MEMBRANE 31

Na+

Extracellular
K+

Intracellular 

Electrode Fig. 2.13 The equivalent

electrical circuit of a patch of

membrane.

components fit together to form an equivalent electrical circuit of a small
patch of membrane. It comprises the membrane capacitance in parallel with
one resistor and battery in series for each type of ion channel. There is also
a current source that represents an electrode that is delivering a constant
amount of current. It is said to be in current clamp mode. The amount of
current injected is denoted by Ie, and in electrophysiological applications is
usually measured in nanoamps (nA).

For the remainder of this chapter, we consider a membrane that contains
passive ion channels, with constant permeability or conductance. In general,
ion channels are active, so their permeability changes in response to changes
in membrane potential. It is useful to consider passive membranes as a first
step towards understanding the behaviour of active membranes. In addition,
for small deviations of the membrane potential from the resting potential,
active channels can be treated as passive channels.

2.6.1 Simplification of the equivalent electrical circuit
We can simplify the electrical circuit representing a patch of passive mem-
brane, such as the circuit shown in Figure 2.13, by lumping together all of
the channel properties. Figure 2.14a shows this simplified circuit. In place
of the two resistor/battery pairs in Figure 2.13, there is one pair with a re-
sistance, which we call the specific membrane resistance Rm, measured in
Ωcm2, and a membrane battery with an electromotive force of Em.

Thévenin’s theorem states that

any combination of voltage

sources and resistances across

two terminals can be replaced

by a single voltage source and

a single series resistor. The

voltage is the open circuit

voltage E at the terminals and

the resistance is E divided by

the current with the terminals

short circuited.

We can derive these values from the conductances and reversal potentials
of the individual ions using Thévenin’s theorem. For channels X, Y and
Z combined, the equivalent electromotive force and membrane resistance
are:

Em =
gXEX+ gYEY+ gZEZ

gX+ gY+ gZ
(2.12)

1

Rm
= gm = gX+ gY+ gZ.

Note that Equation 2.12 is the ohmic equivalent of the GHK voltage equa-
tion Equation 2.9.

A summary of key passive quantities and their typical units is given in
Table 2.3. It is usual to quote the parameters of the membrane as intensive
quantities. To avoid adding extra symbols, we use intensive quantities in

An intensive quantity is a

physical quantity whose value

does not depend on the amount

or dimensions of the property

being measured. An example of

an intensive quantity is the

specific membrane capacitance,

the capacitance per unit area

of membrane.

our electrical circuits and equations. Supposing that the area of our patch
of membrane is a, its membrane resistance is proportional to the specific
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membrane resistance divided by the area: Rm/a. Since conductance is the
inverse of resistance, the membrane conductance of the patch is propor-
tional to area: gma; its membrane capacitance is proportional to the spe-
cific membrane capacitance: Cma. Current (for example, current crossing
the membrane) is given by the current density I which has units μAcm−2

multiplied by the area: I a.

2.6.2 The RC circuit
The simplified circuit shown in Figure 2.14a is well known in electronics,
where it is called an RC circuit, since its main elements are a resistor R and a
capacitor C. In order to find out how the membrane potential changes when
current is injected into the circuit, we need to know how current varies with
voltage. By Kirchhoff’s current law, the sum of the current I a flowing

Kirchhoff’s current law is

based on the principle of

conservation of electrical

charge. It states that at any

point in an electrical circuit,

the sum of currents flowing

toward that point is equal to

the sum of currents flowing

away from that point.

through the membrane and the injected current Ie is equal to the sum of the
capacitive current Ica and the ionic current Iia:

I a+ Ie = Ica+ Iia

I + Ie/a = Ic+ Ii. (2.13)

The ionic current flowing through the resistor and battery is given by the
quasi-ohmic relation in Equation 2.10:

Iia =
V − Em

Rm/a

Ii =
V − Em

Rm
. (2.14)

Finally, the capacitive current is given by the membrane capacitance multi-
plied by the rate of change of voltage (Section 2.5):

Ic =Cm

dV

dt
. (2.15)

If this circuit is isolated, i.e. the membrane current I a is zero, substituting
for Ii , and Ic in Equation 2.13 for this RC circuit gives:

Cm

dV

dt
=

Em−V

Rm
+

Ie

a
. (2.16)

This is a first order ordinary differential equation (ODE) for the mem-
brane potential V . It specifies how, at every instant in time, the rate of
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change of the membrane potential is related to the membrane potential itself
and the current injected. For any particular form of injected current pulse
and initial membrane potential, it determines the time course of the mem-
brane potential.

2.6.3 Behaviour of the RC circuit
Solving the differential equation is the process of using this equation to cal-
culate how the membrane potential varies over time. We can solve Equa-
tion 2.16 using numerical methods. Appropriate numerical methods are pro-
grammed into neural simulation computer software, such as NEURON or
GENESIS, so it is not strictly necessary to know the numerical methods in
depth. However, a basic understanding of numerical methods is useful and

NEURON and GENESIS are

two well known open source

neural simulators which allow

numerical solutions to the

differential equations

describing the spatiotemporal

variation in the neuron

membrane potential to be

obtained. These simulators can

be applied to a single neuron

or a network of interconnected

neurons. Appendix A.1 contains

a comprehensive list of neural

simulators.we present an overview in Appendix B. Figure 2.14b shows the result of solv-
ing the equation numerically when the injected current is a square pulse of
magnitude Ie and duration te. On the rising edge of the pulse the membrane
potential starts to rise steeply. This rise away from the resting potential is
referred to as depolarisation, because the amount of positive and negative
charge on the membrane is reducing. As the pulse continues, the rise in volt-
age becomes less steep and the voltage gets closer and closer to a limiting
value. On the falling edge of the pulse the membrane potential starts to fall
quite steeply. The rate of fall decreases as the membrane potential gets close
to its original value. As the charge on the membrane is building back up to
resting levels, this phase is called repolarisation. By injecting negative cur-
rent, it is possible to reduce the membrane potential below its resting level,
which is referred to as hyperpolarisation.

Generally, it is difficult, and often not possible, to solve differential equa-
tions analytically. However, Equation 2.16 is sufficiently simple to allow an

Solving an equation

analytically means that an

expression for how the

membrane potential (in this

case) depends on position and

time can be derived as a

function of the various

parameters of the system. The

alternative is to solve the

equation numerically.

analytical solution. We assume that the membrane is initially at rest, so that
V = Em at time t = 0. We then integrate Equation 2.16 to predict the re-
sponse of the membrane potential during the current pulse, giving:

V = Em+
Rm Ie

a

�
1− exp

�
− t

RmCm

��
. (2.17)

This is an inverted decaying exponential that approaches the steady state
value Em+RmIe/a as time t gets very large. Defining V0 as the value the
membrane potential has reached at the end of the current pulse at t = te, the
response of the membrane is given by:

V = Em+(V0− Em)exp

�
− t − te

RmCm

�
, (2.18)

which is a decaying exponential.
In both rising and falling responses, the denominator inside the exponen-

tial is the product of the membrane resistance and membrane capacitance
RmCm. This factor has the units of time, and it characterises the length of
time taken for the membrane potential to get to 1/e (about one-third) of the
way from the final value. For this reason the product RmCm is defined as the
membrane time constant τ. It is a measure of how long the membrane ‘re-
members’ its original value. Typical values of τ for neurons range between
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Table 2.3 Passive quantities

Quantity Description Typical units Relationships

d Diameter of neurite μm
l Length of compartment μm

Rm Specific membrane resistance Ω cm2

Cm Specific membrane capacitance μF cm−2

Ra Specific axial resistance (resistivity) Ω cm

rm Membrane resistance per inverse unit length Ω cm rm =
Rm
πd

cm Membrane capacitance per unit length μF cm−1 cm = Cmπd

ra Axial resistance per unit length Ω/cm−1 ra =
4Ra
πd2

V Membrane potential mV

Em Leakage reversal potential due to different ions mV

I Membrane current density μA cm−2

Ie Injected current nA

Ic Capacitive current nA

Ii Ionic current nA

The units of Rm and Ra can often seem counter-intuitive. It can sometimes be more convenient

to consider their inverse quantities, specific membrane conductance and specific intracellular

conductance. These have units of S cm−2 and S cm−1 respectively. The quantities rm, ra, and

cm are useful alternatives to their specific counterparts. They express key electrical properties

of a neurite of specific diameter and can clarify the equations representing a specific cable or

neurite of arbitrary length.

1 and 20 ms. It is possible to measure the membrane time constant for use
in a model RC type circuit. The assumptions that are made when doing this
and the effects of measurement accuracy are discussed in Chapter 4.

Another important quantity that characterises the response of neurons
to injected current is the input resistance, defined as the change in the
steady state membrane potential divided by the injected current causing it
(Koch, 1999). To determine the input resistance of any cell in which current
is injected, the resting membrane potential is first measured. Next, a small
amount of current Ie is injected, and the membrane potential is allowed to
reach a steady state V∞. The input resistance is then given by:

Rin =
V∞− Em

Ie
. (2.19)

For a single RC circuit representation of a cell, the input resistance can
be calculated from the properties of the cell. From Equation 2.16, by setting
dV /dt = 0 the steady state membrane potential can be shown to be V∞ =
Em+(Rm/a)Ie. By substituting this value of V∞ into Equation 2.19, it can
be seen that the input resistance Rin = Rm/a. This is a quasi-ohmic current–
voltage relation where the constant of proportionality is the input resistance,
given by Rm/a.

The input resistance measures the response to a steady state input. A
more general concept is the input impedance, which measures the ampli-
tude and phase lag of the membrane potential in response to a sinusoidal
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injection current of a particular frequency. The input impedance of the RC
circuit can be computed, and shows that the RC circuit acts as a low-pass
filter, reducing the amplitude of high-frequency components of the input
signal. The topic of input impedance and the frequency-response of neurons
is covered in depth by Koch (1999).

2.7 Modelling permeable properties in practice

Both the approximations expressed by the GHK current equations and quasi-
ohmic electrical circuit approximation are used in models. However, neither
should be considered a perfect representation of currents through the mem-
brane. The GHK equations were originally used to describe ion permeability
through a uniform membrane, whereas today they are used primarily to de-
scribe the movement of ions through channels. Assumptions on which the
equations are based, such as the independence of movement of ions through
the membrane (the independence principle; Box 2.4 and Chapter 5) and of
constant electric fields, are generally not valid within the restricted space of
a single channel. It is therefore not surprising that experiments reveal that
the flux through channels saturates at large ionic concentrations, rather than
increasing without limit as the GHK equations would predict (Hille, 2001).

There are a number of models of the passage of ions through ion chan-
nels, which are more detailed than the GHK and quasi-ohmic descriptions
(Hille, 2001), but these more detailed descriptions are not generally used in
computational models of the electrical activity of neurons. We might ask
how we can justify using a more inaccurate description when more accu-
rate ones exist. In answer, modelling itself is the process of making approx-
imations or simplifications in order to understand particular aspects of the
system under investigation. A theme that will be visited many times in this
book is: what simplifications or approximations are appropriate? The answer
depends on the question that the model is designed to address. For certain
questions, the level of abstraction offered by the quasi-ohmic approximation
has proved extremely valuable, as we see in Chapter 3. Similarly, the GHK
equation is used in many modelling and theoretical approaches to membrane
permeability.

When choosing which of these approximations is most appropriate,
there are a number of issues to consider. Most ion types do not have a
strongly rectifying I–V characteristic in the region of typical membrane po-
tentials, and so the quasi-ohmic approximation can be useful. However, if
the I–V characteristic is very strongly rectifying (as in the example of cal-
cium), the GHK current equation may give a better fit. Even with fairly
weak rectification, the GHK can fit the data better than the quasi-ohmic
approximation (Sah et al., 1988).

We might want to model how changes in intracellular concentration af-
fect the I–V characteristic. In this case, the GHK equations may be a more
useful tool. This often applies to calcium, since its intracellular concentra-
tion is so low that relatively small influxes can change its concentration by an
order of magnitude. Moreover, we may need to consider modelling imperfect
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(and more realistic) ion selective channels which have permeabilities to more
than one ion. All ion selective channels allow some level of permeability to
certain other ions, and so the GHK voltage equation can be used to calculate
the reversal potential of these channels.

2.8 The equivalent electrical circuit of a length
of passive membrane

So far, we have looked at the properties of a patch of membrane or small neu-
ron. This is appropriate when considering an area of membrane over which
the membrane potential is effectively constant, or isopotential. However,
most neurons cannot be considered isopotential throughout, which leads to
axial current flowing along the neurites. For example, during the propaga-
tion of action potentials, different parts of the axon are at different poten-
tials. Similarly, dendrites cannot generally be treated as isopotential. This is
evident from changes in the form of the excitatory postsynaptic potentials
(EPSPs) as they move down a dendrite.

Fortunately, it is quite easy to extend the model of a patch of mem-
brane to spatially extended neurites. In this chapter, we consider only an
unbranched neurite, and in Chapter 4 we look at branched structures. Be-
cause of the similarity to an electrical cable, we often refer to this unbranched
neurite as a cable.

2.8.1 The compartmental model
The basic concept is to split up the neurite into cylindrical compartments
(Figure 2.15). Each compartment has a length l and a diameter d , making
its surface area a =πd l . Within each compartment, current can flow onto
the membrane capacitance or through the membrane resistance. This is de-
scribed by the RC circuit for a patch of membrane, encountered in the last
section. Additionally, current can flow longitudinally through the cytoplasm
and the extracellular media. This is modelled by axial resistances that link the
compartments.

Since it is usually assumed that the intracellular resistance is much greater
than the extracellular resistance, it may be acceptable to consider the extra-
cellular component of this resistance to be effectively zero (implying that
the main longitudinal contribution is intracellular resistivity). We may then
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model the extracellular medium as electrical ground, and it acts in an isopo-
tential manner (as shown in Figure 2.15). For many research questions,
such as modelling intracellular potentials, this assumption is valid. However,
in any case it is straightforward to incorporate the non-zero extracellular
resistance. In Chapter 9 the approach is extended to networks of resis-
tances to model the field potentials in extended regions of extracellular space
(Box 9.1).

We assume here a circuit as given in Figure 2.15, with the extracellular
medium modelled as ground. The axial resistance of a compartment is pro-
portional to its length l and inversely proportional to the cylinder’s cross-
sectional area πd 2/4. The axial resistivity, also known as the specific axial
resistance, Ra, has unitsΩ cm and gives the resistivity properties of the intra-
cellular medium. The axial resistance of the cylindrical compartment is then
4Ra l/πd 2. Compartments with longer lengths have larger axial resistance
and those with larger cross-sectional areas have reduced resistances.

We can describe the electrical circuit representing the cable with one
equation per compartment. We number the compartments in sequence us-
ing the subscript j . For example, Vj denotes the membrane potential in the
j th compartment and Ie, j is the current injected into the j th compartment.
Following the procedure used in the previous section, we can use Kirchhoff’s
current law, the quasi-ohmic relation and the equation for the capacitive cur-
rent (Equations 2.13 to 2.16) to derive our circuit equations. The main differ-
ence from the previous treatment is that, rather than the compartment being
isolated, the membrane current I j a is now able to spread both leftwards and
rightwards within the cytoplasm, i.e. the membrane current is equal to the
sum of the leftwards and rightwards axial currents, each given by Ohm’s
law:

I j a =
Vj+1−Vj

4Ra l/πd 2
+

Vj−1−Vj

4Ra l/πd 2
. (2.20)

In this case, we are assuming all compartments have the same cylindrical
dimensions. Substituting for this membrane current into Equation 2.13:

Ic, j a+ Ii, j a = I j a+ Ie, j

Ic, j a+ Ii, j a =
Vj+1−Vj

4Ra l/πd 2
+

Vj−1−Vj

4Ra l/πd 2
+ Ie, j . (2.21)

This leads to an equation that is similar to Equation 2.16 for a patch of
membrane, but now has two extra terms, describing the current flowing
along the axial resistances into the two neighbouring compartments j − 1
and j + 1:

πd l Cm

dVj

dt
=

Em−Vj

Rm/πd l
+

Vj+1−Vj

4Ra l/πd 2
+

Vj−1−Vj

4Ra l/πd 2
+ Ie, j . (2.22)

We have used the surface area of the cylinder πd l as the area a. Dividing
through by this area gives a somewhat less complicated-looking equation:

Cm

dVj

dt
=

Em−Vj

Rm
+

d

4Ra

�Vj+1−Vj

l 2
+

Vj−1−Vj

l 2

�
+

Ie, j

πd l
. (2.23)

This equation is the fundamental equation of a compartmental model.
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2.8.2 Boundary conditions
The equations above assume that each compartment j has two neighbour-
ing compartments j − 1 and j + 1, but this is not true in the compartments
corresponding to the ends of neurites. Special treatment is needed for these
compartments, which depends on the condition of the end of the neurite
being modelled.

The simplest case is that of a killed end, in which the end of the neurite
has been cut. This can arise in some preparations such as dissociated cells,
and it means that the intracellular and extracellular media are directly con-
nected at the end of the neurite. Thus the membrane potential at the end
of the neurite is equal to the extracellular potential. To model this, in the
equation for the membrane potential, V0 in the first compartment is set to
0, as illustrated in Figure 2.16a. This allows Equation 2.23 to be used. The
condition V0 = 0 is called a boundary condition as it specifies the behaviour
of the system at one of its edges. This type of boundary condition, where
the value of a quantity at the boundary is specified, is called a Dirichlet
boundary condition.

If the end of the neurite is intact, a different boundary condition is re-
quired. Here, because the membrane surface area at the tip of the neurite is
very small, its resistance is very high. In this sealed end boundary condition,
illustrated in electric circuit form in Figure 2.16b, we assume that the resis-
tance is so high that a negligible amount of current flows out through the
end. Since the axial current is proportional to the gradient of the membrane
potential along the neurite, zero current flowing through the end implies
that the gradient of the membrane potential at the end is zero. For reasons
made clear in Appendix B.1 in the compartmental framework, this bound-
ary condition is modelled by setting V−1 =V1. This leads to a modified ver-
sion of Equation 2.23 for compartment 0. This type of boundary condition,
where the spatial derivative of a quantity at the boundary is specified, is
called a Neumann boundary condition.

It can also be assumed that there is a leaky end; in other words, that the
resistance at the end of the cable has a finite absolute value RL (Figure 2.16c).
In this case, the boundary condition is derived by equating the axial current,
which depends on the spatial gradient of the membrane potential, to the
current flowing through the end, (V − Em)/RL.

2.8.3 Behaviour of the membrane potential in a
compartmental model

As with the patch of membrane, we can use a simulation software package,
such as NEURON or GENESIS, to solve these equations numerically. The
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Box 2.5 Derivation of the cable equation
To derive the cable equation from the discrete equations for the compart-

mental model (Equation 2.23) we set the compartment length l to the small

quantity δx. A compartment indexed by j is at a position x = jδx along the

cable, and therefore the membrane potentials in compartments j − 1, j and

j + 1 can be written:

Vj = V (x, t) Vj−1 = V (x − δx, t) Vj+1 = V (x + δx, t).

Also, we define the current injected per unit length as Ie(x, t) = Ie,j /δx. This

allows Equation 2.23 to be rewritten as:

Cm
∂V (x, t)

∂t
=
Em − V (x, t)

Rm

+
d

4Ra

[
1

δx

(
V (x + δx, t)− V (x, t)

δx
−
V (x, t)− V (x − δx, t)

δx

)]

+
Ie(x, t)

πd
.

(a)

The derivative of V with respect to t is now a partial derivative to signify

that the membrane potential is a function of more than one variable.

The length δx of each compartment can be made arbitrarily small, so that

eventually there is an infinite number of infinitesimally short compartments.

In the limit as δx goes to 0, the term in square brackets in the equation

above becomes the same as the definition of the second partial derivative of

distance:

∂2V (x, t)

∂x2
= lim

δx→0

1

δx

(
V (x + δx, t)− V (x, t)

δx
−
V (x, t)− V (x − δx, t)

δx

)

.

Substituting this definition into Equation (a) leads to Equation 2.24, the

cable equation.

In the case of discrete cables, the sealed end boundary condition is that:

d

4Ra

V1 − V0

δx2
=

Ie,1

πdδx
+
Em − V1

πdδxRL
.

In the limit of δx → 0, at the x = 0 end of the cable, this is:

−
d

4Ra

∂V

∂x
=
Ie(0, t)

πd
+
Em − V (0, t)

πdRL
.

At the x = l end of the cable, this is

d

4Ra

∂V

∂x
=
Ie(l, t)

πd
+
Em − V (l, t)

πdRL
,

assuming a sealed end means that the axial current at the sealed end is

zero, and therefore that the gradient of the voltage at the end is also zero.

In Equation 2.26 we have

introduced two

diameter-specific constants, rm
and ra, defined in Table 2.3.

These are convenient

quantities that express the key

passive electrical properties of

a specific cable of arbitrary

length. They are often used to

simplify the equations

representing a neurite of

specific diameter.

The value of λ determines the shape of the exponential voltage decay
along the length of the cable. It is determined by the specific membrane
resistance, the axial resistivity and the diameter of the cable:

λ=

�
Rmd

4Ra
=
�

rm

ra
. (2.26)




