
Appendix B

Mathematical methods

B.1 Numerical integration methods

Most of the mathematical models presented in this book involve differen-
tial equations describing the evolution in time and space of quantities such
as membrane potential or calcium concentration. The differential equations
are usually too complex to allow an analytical solution that would enable
the explicit calculation of a value of, say, voltage at any particular time point
or spatial position. The alternative is to derive algebraic expressions that ap-
proximate the differential equations and allow the calculation of quantities
at specific, predefined points in time and space. This is known as numerical
integration. Methods for defining temporal and spatial grid points and for-
mulating algebraic expressions involving these grid points from the continu-
ous (in time and space) differential equations are known as finite difference
and finite element methods.

It is not our intention here to provide full details of these numerical
integration methods. Instead, we will outline some of the simplest methods
to illustrate how they work. This includes the Crank–Nicholson method
(Crank and Nicholson, 1947), which is widely used as a basis for solving the
cable equation. Further details on these methods as applied to neural models
can be found in Carnevale and Hines (2006) and Mascagni and Sherman
(1998).

B.1.1 Ordinary differential equations
We consider an ODE for the rate of change of membrane voltage:

dV

dt
= f (V , t ) (B.1)

for some function f of voltage and time. A particular example is the equation
that describes the response of a patch of passive membrane to an injected
current (Equation 2.16):

Cm

dV

dt
=

Em−V

Rm
+

Ie

a
. (B.2)
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As we saw in Chapter 2, if we assume that at time 0 that V = Em and Ie
is switched from 0 to a finite value at this time and then held constant, this
equation has an analytical solution:

V = Em+(Rm Ie/a) [1− exp(−t/RmCm)] . (B.3)

In general, an ODE cannot be solved analytically. We now consider how
numerical approximations can be derived and solved for ODEs. We compute
numerical solutions to Equation B.2 to illustrate how approximate and exact
solutions can differ.

These numerical solutions are derived from algebraic equations that ap-
proximate the time derivative of the voltage. In combination with the func-
tion f , this enables the approximate calculation of the voltage at predefined
time points. The forward Euler method estimates the time derivative at
time t as the slope of the straight line passing through the points (t ,V (t ))
and (t +Δt ,V (t +Δt )), for some small time-step Δt :

dV

dt
≈ V (t +Δt )−V (t )

Δt
. (B.4)

This is known as a finite difference method, because it is estimating a quan-
tity, the rate of change of voltage, that changes continually with time, using
a measured change over a small but finite time interval Δt . How accurate
this estimation is depends on how fast the rate of change of V is at that time.
It becomes more accurate the smaller Δt is. For practical purposes in which
we wish to calculate V at very many time points over a long total period of
time, we want to make Δt as large as possible without sacrificing too much
accuracy. Substituting this expression into our original Equation B.1 gives:

V (t +Δt )−V (t )

Δt
= f (V (t ), t ). (B.5)

Rearranging, we arrive at an expression that enables us to calculate the volt-
age at time point t +Δt , given the value of the voltage at time t :

V (t +Δt ) =V (t )+ f (V (t ), t )Δt . (B.6)

Suppose we start at time 0 with a known voltage V (0)≡V 0. We can use
this formula to calculate iteratively the voltage at future time points Δt ,
2Δt , 3Δt and so on. If t = nΔt and we use the notation V n ≡V (t ) and
V n+1 ≡V (t +Δt ), then:

V n+1 =V n + f (V n , nΔt )Δt . (B.7)

For our example of the patch of passive membrane, this approximation is:

V n+1 =V n +
Δt

Cm

�
Em−V n

Rm
+

I n
e

a

�
. (B.8)

This approximation has first order accuracy in time, because the local error
between the calculated value of V and its true value is proportional to the
size of the time-step Δt . A comparison of this method with the exact solu-
tion for the voltage response to an injected current is shown in Figure B.1.
A rather large value of 5ms for Δt is used to illustrate that this is only an
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Fig. B.1 Comparison of finite

difference approximations with

the exact solution to current

injection in passive membrane.

The exact solution is plotted

every 0.1ms; the approximations

use Δt = 5 ms.

approximation. If a time-step of less than 1ms is used, then the approxima-
tion is virtually indistinguishable from the exact solution.

Other finite difference schemes can be more accurate for a given time-
step and also more stable; the error grows but remains within finite bounds
as the step size is increased. The backward Euler method is an example of a
so-called implicit method that is also first order accurate in time, but is more
stable than the forward Euler method. It results from using a past time point,
rather than a future time point, in the approximation of the time derivative:

dV

dt
≈ V (t )−V (t −Δt )

Δt
. (B.9)

The full ODE is thus approximated as:

V (t )−V (t −Δt )

Δt
= f (V (t ), t ). (B.10)

Shifting this to the same time points as the forward Euler method yields:

V (t +Δt )−V (t )

Δt
= f (V (t +Δt ), t +Δt ). (B.11)

Now both left- and right-hand sides involve the unknown voltage at the time
point t +Δt . Using the notation for iterative time points, for our example
we have:

Cm

V n+1−V n

Δt
=

Em−V n+1

Rm
+

I n+1
e

a
. (B.12)

Fortunately, as for the forward Euler expression, this can be rearranged to
give an explicit, but now slightly different, equation for V n+1:

V n+1 =

⎡⎣V n +
Δt

Cm

�
Em

Rm
+

I n+1
e

a

�⎤⎦"�1+
Δt

RmCm

�
. (B.13)

For the same time-step, this method tends to underestimate the rate of
change in voltage in our example (Figure B.1), whereas the forward Euler
approximation overestimates it. Consequently, the backward Euler method
produces an approximation that smoothly approaches and never overshoots
the final steady state value of V . For large step sizes, the forward Euler
method may produce values of V that are greater than the steady state,
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leading to oscillations in V around this value. Such oscillations are not seen
in the exact solution and are not desirable in a good approximation.

Note that in more complex models in which several related variables are
being solved for, the backward Euler method will result in a set of equations
that need to be solved simultaneously. Consequently, the backward Euler
method is known as an implicit method. We will see this below for approx-
imations to the cable equation. In contrast, with the forward Euler method,
values at future time points of all variables can be calculated directly from
values at known time points. The forward Euler method is an example of an
explicit method.

A third method, which is both more accurate and stable than these Euler
methods, is the central difference method, in which the time derivative is
estimated from a future and a past value of the voltage:

dV

dt
≈ V (t +Δt )−V (t −Δt )

2Δt
. (B.14)

By examining the equations for the Euler methods, it should be clear that
this method results by taking the average of the forward and backward Euler
approximations. If we use the expression for the backward Euler method
involving the future voltage, V (t +Δt ), then the ODE is approximated by:

V (t +Δt )−V (t )

Δt
=

1

2
[ f (V (t +Δt ), t +Δt )+ f (V (t ), t )] . (B.15)

That is, we now take an average of the forward and backward Euler right-
hand sides. For our example this leads to the expression:

Cm

V n+1−V n

Δt
=

1

2

�
Em−V n

Rm
+

I n
e

a
+

Em−V n+1

Rm
+

I n+1
e

a

�
. (B.16)

This can be rearranged to give an explicit expression for V n+1. This approx-
imation is accurate, even for the rather large time-step of 5 ms (Figure B.1).
The central difference method is second order accurate in time because the
error is proportional to the square of the step size Δt .

The choice of time-step

depends critically on how

rapidly the quantity of interest,

such as membrane voltage, is

changing. When simulating

action potentials, a small

time-step is required, on the

order of 10–100μs, to capture

accurately the rapid rise and

fall of the action potential. In

between action potentials,

however, a neuron may sit near

its resting potential for a long

period. During this time the

small time-step is unnecessary.

Variable time-step integration

methods have been developed

to account for just this sort of

situation. The time-step is

automatically increased when

a variable is only changing

slowly, and decreased when

rapid changes begin. These

methods can drastically

decrease the computation time

required and are available in

certain neural simulators, such

as NEURON (Carnevale and

Hines, 2006).

B.1.2 Partial differential equations
These same methods can be used for the temporal discretisation of PDEs,
but now the spatial dimension must also be discretised. Let us consider the
cable equation (Section 2.9) for voltage spread along a neurite of uniform
diameter d :

Cm

∂ V

∂ t
=

Em−V

Rm
+

d

4Ra

∂ 2V

∂ x2
+

Ie(x)

πd
. (B.17)

This involves the first derivative of V with respect to time, but the second
derivative of V with respect to space. Consequently, a second order central
difference method involving values at three different spatial grid points is
required to discretise the spatial dimension:

∂ 2V

∂ x2
≈ V (x +Δx)− 2V (x)+V (x −Δx)

(Δx)2
(B.18)
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for a small spatial step Δx. If we use the notation that position x is the
midpoint of compartment j , x +Δx corresponds to compartment j + 1,
x −Δx to j − 1, and the length of each compartment is l =Δx, then this is
identical to the compartmental structure introduced in Chapter 2. Using this
notation and the above spatial discretisation, the forward Euler numerical
approximation to the full cable equation is:

Cm

V n+1
j −V n

j

Δt
=

Em−V n
j

Rm
+

d

4Ra

V n
j+1− 2V n

j +V n
j−1

l 2
+

I n
e, j

πd l
. (B.19)

To make clear the compartmental structure and enable all our equations to
fit on one line so they are easy to read, now we will assume that the injected
current is zero in compartment j , I n

e, j = 0, so we can remove this term. We
can rewrite Equation B.19 to indicate explicitly the current flow between
compartments:

Cm

V n+1
j −V n

j

Δt
=

Em−V n
j

Rm
+

c

Ra

�
V n

j+1−V n
j

�
+

c

Ra

�
V n

j−1−V n
j

�
,

(B.20)
where we define a coupling coefficient c between compartments as the cross-
sectional area between compartments divided by the surface area of a com-
partment multiplied by the length l between compartments:

c ≡ πd 2

4

1

πd l
=

d

4l 2
. (B.21)

Rearranging Equation B.20, we arrive at an expression for the voltage V n+1
j

in compartment j at time-step n+ 1 as a function of the values of the voltage
at the previous time-step n in compartment j and in its two neighbours,
j − 1 and j + 1:

V n+1
j =V n

j +
Δt

Cm

�Em−V n
j

Rm
+

c

Ra

�
V n

j+1−V n
j

�
+

c

Ra

�
V n

j−1−V n
j

��
.

(B.22)
The backward Euler method uses the same spatial discretisation, but with

values of V at time point n+ 1 on the right-hand side:

Cm

V n+1
j −V n

j

Δt
=

Em−V n+1
j

Rm
+

c
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V n+1
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j

�
+

c
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j

�
.

(B.23)
To solve this, we rearrange it so that all unknown quantities are on the left-
hand side and all known quantities are on the right:

−aV n+1
j−1 + bV n+1

j − aV n+1
j−1 =V n

j +
Δt Em

CmRm
, (B.24)

where a =Δt c/CmRa and b = 1+ 2a+Δt/CmRm. This gives a set of equa-
tions involving values of V at the new time n+ 1, but at different spatial
points along a cable, that must be solved simultaneously:

AVn+1 = B, (B.25)




