

Lubica Benuskova Nikola Kasabov

INTERNATIONAL TOPICS IN BIOMEDICAL ENGINEERING

Computational Neurogenetic Modeling

The link of genes to brain functions is through protein synthesis

Example of a negative feedback in the GRN

Copyright ID 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings.

LTP gene regulatory network (GRN) - functions

LTP gene regulatory network (GRN) – after 5 hrs

• Source: Ryan et al., Hippocampus, 2011 & PLoS One, 2012)

LTP gene regulatory network (GRN) – after 24 hrs

• Source: Ryan et al., Hippocampus, 2011 & PLoS One, 2012)

Yeast gene regulatory network (GRN)

• Source: Inferring GRN in yeast (Chen et al., Sci. Rep., 2019)

GRN: towards mathematical model

Principle of CNGM: neural model parameters are linked to protein levels p_i(t)

System of differential equations

mRNA levels

$$\frac{dm_{i}}{dt} = A_{m_{i}} \sigma_{m_{i}} \left(\sum_{j=1}^{n} w_{ij} p_{j} (t - \tau_{p_{j}}) + \sum_{k=1}^{K} v_{ik} x_{k} (t - \tau_{x_{k}}) + b_{m_{i}} \right) - \lambda_{m_{i}} m_{i} (t)$$
Protein levels
$$\frac{dp_{i}}{dt} = A_{p_{i}} \sigma_{p_{i}} \left(m_{i} (t - \tau_{m_{i}}) + \sum_{k=1}^{K'} u_{ik} y_{k} (t - \tau_{y_{k}}) + b_{p_{i}} \right) - \lambda_{p_{i}} p_{i} (t)$$

Output behaviour of model neurons depends on underlying gene/protein dynamics

ANN output behavior: for instance the level of activity

CNGM: three embedded multi-scale dynamic systems

12

Example: electrical activity

Question: which gene interactions lead to the desired spectral characteristics of Local Field Potential?

Gene regulatory network Abstract connections **W** Model ANN

ANN output LFP

14

Gene-protein regulatory network model

mRNA levels

$$\frac{dm_i}{dt} = A_{m_i} \sigma_{m_i} \left(\sum_{j=1}^n w_{ij} p_j (t - \tau_{p_j}) + b_{m_i} \right) - \lambda_{m_i} m_i(t)$$

Protein levels

$$\frac{dp_i}{dt} = A_{p_i} \sigma_{p_i} \left(m_i (t - \tau_{m_i}) + b_{p_i} \right) - \lambda_{p_i} p_i(t)$$

Values of neuronal parameters will depend on levels of proteins *p*

$$P_j(t) = P_j(0) p_j(t)$$

Neuron model

Values of neuron model paramaters will be linked to the levels of proteins (like receptors and ion channels)

Spiking neuron model

type = fast excitation, slow_excitation, fast_inhibition, slow_inhibition

Neural network model of **OUTPUT : Local Field Potential** cerebral cortex with input LFP(t) = $\sum u_i(t) \approx EEG = \sum LFP(t)$ from thalamus The same GRN in each neuron J_{ii} Cortex Spiking neural network Ő One-to-many feedforward input connections Ο О Ο Ο Ο Ο Ο Input layer Ο \cap **Thalamus** 18

Credits: Simei Gomes Wysoski

♥ Neuro Genetic Model			×		
<u>Eile E</u> dit <u>V</u> iew <u>N</u> ew Parameters <u>H</u> elp					
- Signal Analysis File Name	Optimization To be optimized		KEDRI		
eeg_quiroga.txt	Neuron Parameters view	Parameters Ed	itor		
Run	GRN Weights view	3.000000	Amplitude Fast Excitation		
Spiking Neural Network	Genetic Algorithm Run	5.000000 6.000000	Tau Rise Fast Excitation Tau Decay Fast Excitation		
Run	└────────────────────────────────────	1.500000	Amplitude Slow Excitation		
_ Neuro Genetic Model	Dir In /all_result	75.000000	Tau Rise Slow Excitation		
♦ New gene matrix [W]	Run Fitness Thres 0.2	0.500000	Amplitude Fast Inhibition		
	Number solutions 0	7.000000	Tau Decay Fast Inhibition		
♦ New gene value G(0)	Testing epileptic constraints -	4.000000	Amplitude Slow Inhibition		
	Dir out //epileptic_result	145.000000	Tau Decay Slow Inhibition		
	Run	20.000000	Threshold (theta) Threshold time constant		
- Norr Einear	- Knowledge Discovery	4.000000	Number of times (k) of threshold		
Run	Statistical Analysis	0.150000	Proportion of Inhibitory neurons		
	Dir /all_result	0.017000	Probability of External Firing		
Clean log Mapping graph	Run Number of files 0	4.000000	Amplitude External peak (w)		
☐ Step by step Visualization	Output Graphs	File Name	ieu_par.ini		
GRN changes in time	all_spikes.ps	Continuous	Gene Protein Regulatory Network — SNN for a time interval		
View	Close	GPRN	From To		
Done		30 			

Table of neuron parameters

NEURON'S PARAMETERS	PROTEIN	RANGE of INTIAL VALUES
Fast excitation: Amplitude rise / decay time constants (ms)	AMPAR	0.5 – 3.0 1–5 / 5–10
Slow excitation: Amplitude rise / decay time constants (ms)	NMDAR	0.5 – 4.0 10–50 / 30–50
Fast inhibition: Amplitude rise / decay time constants (ms)	GABRA	4 – 8 5–10 / 20–30
Slow inhibition: Amplitude rise / decay time constants (ms)	GABRB	5 – 10 20–80 / 50–150
Resting firing threshold, decay time constant (ms)	SCN	17 – 25 5 – 50

Table of network parameters

SNN PARAMETER	VALUE
Number of neurons	120
Proportion of inhibitory neurons	0.2
Probability of external (thalamic) fiber firing	0.015
Peak/sigma of external input (TC) weight	5 / 1
Peak/sigma of lateral excitatory weights	10 / 4
Peak/sigma of lateral inhibitory weights	40 / 6
Probability of connection	0.5
Unit delay in excitatory/inhibitory spike propagation	1 / 2 ms

Question: which gene interactions lead to the desired spectral characteristics of LFP/EEG?

Toy example

- We generated an artificial gene interaction matrix W leading to a complex gene and protein dynamics over 24 hrs (only 5 genes/proteins)
- These were "genetic variables" for AMPAR (fast excitation), NMDAR (slow excitation, GABRA (fast inihibition), GABRB (slow inhibition), SCN (Firing threshold)

Toy example: complete genome

Value of parameter is proportional to the level of a protein

$$P_j(t) = P_j(0) p_j(t)$$

24

Asynchronous neural activity

Spiking Time - (Exc->RED - Inh->BLUE)

Toy example: GABRA deleted

Frequent spontaneous global synchronisations

Spiking Time - (Exc->RED - Inh->BLUE)

EEG in CAE

Recording of eight channels of the normal and epileptic slow-wave discharge (SWD) in childhood absence epilepsy. SWD have large amplitudes and frequency of 2.5-4Hz.

Observations from the toy model

- Coefficients of gene-to-gene interaction were generated randomly. Many random gene-to-gene interactions yielded realistically looking LFP.
- We tested each interaction matrix by deleting the gene variable for GABRA. Some of interaction matrices yielded permanent synchronisation, some produced occasional synchronisations, some produced no synchronisations at al.
- This simple model shows gene mutations/deletions may have no effect on neural dynamics, everything depends on the rest of the GRN interactions and the function of the remaining genes/proteins.
- Or is this result only an artefact related to this simplified model?

Examples of neurogenetic models

- Marnellos G, Mjolsness ED (2003) Gene network models and neural development. In: Modeling Neural Development, ed. by A. van Ooyen, MIT Press, Cambridge.
- Smolen P et al. (2004) Simulation of Drosophila circadian oscillations, mutations, and light responses by a model with VRI, PDP-1, and CLK. *Biophysical J*. 86, 2786–2802.
- Benuskova L, Kasabov N (2007) Modeling L-LTP based on changes in concentration of pCREB transcription factor. *Neurocomputing* 70, 2035-2040.
- Benuskova L, Kasabov N (2008) Modeling brain dynamics using computational neurogenetic approach. *Cognitive Neurodynamics* 2(4), 319-334.
- Benuskova L, Kasabov N (2014) Computational neurogenetic modeling: genedependent dynamics of cortex and idiopathic epilepsy. In: N. Kasabov (Ed), Springer Handbook of Bio-/Neuroinformatics, Springer-Verlag, Berlin/Heidelberg.
- Nido GS, Ryan MM, Benuskova L, Williams JM (2015) Dynamical properties of gene regulatory networks involved in LTP. *Front. Mol. Neuroscience* 8:42.
 30