
1

NEURON - tutorial C (part 3)

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

Lubica Benuskova

Lecture 7

How to connect neurons using NetCon

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

2

What we’ve got so far: sthC2.hoc

◼ The final four neurons, each with a full dendritic tree morphology

are shown here in a shape plot (image on the left).

◼ Next to it is the voltage trace in one of the model neurons, i.e.,

SThcells[0].soma, as a result of the current pulse injection (recall

the cells are not connected yet).

3

Connecting neurons together

◼ Networks of neurons are formed by connecting neurons via synapses.

◼ The signal that passes from the efferent (i.e. sending) neuron to the

receiving neuron is the action potential (spike).

◼ One possibility is to work with a multi-compartmental model of the

axon along which the spike propagates from one neuron to another.

This is computationally expensive and often unnecessary.

◼ Spikes are stereotypical and the information content of signals

passing from one neuron to another is carried by the times and

frequency of spikes, rather than the voltage waveform of a spike.

4

The delay line

◼ The common approach is to treat the

inter-neuronal signal to be the presence

or absence of a spike.

◼ A spike is initiated in the soma and then

propagates along the axon. This can be

modelled as a delay line, which specifies

the time Dt taken for the spike to travel

from the soma to synapse.

◼ By using this so-called event-based

approach, we can dramatically reduce the

amount of computation.

5

◼ The voltage in the soma of the presynaptic cell j is continuously

monitored. If the voltage goes over a certain threshold value, this

means occurrence of an output spike (action potential).

◼ The delay line then signals this occurrence to the synaptic contact

on the postsynaptic neuron i after some time delay Dt.

◼ The delay is calculated based on the known constant velocity of

spike propagation along axons and the distance between the two

neurons as Dt = distance / velocity.

❑ The nerve conduction velocity (0.5 – 120 m/s) depends on type

of a neuron, myelination, temperature and age.

Cell j Cell i
Delay line

6

Connecting neurons together – NetCon

◼ First, we must add an additional public object variable to our neuron
template, the nclist, to be accessible from outside of the template.

◼ Then, we must declare a new object variable nclist that will refer to
a list that contains an arbitrary number of NetCon objects.

◼ So, now we begin our subthalamic neuron template with:

begintemplate SThCell

public soma, treeA, treeB, nclist

create soma, treeA[1], treeB[1]

objectvar f, nclist

7

Connecting neurons together – List

◼ Then we continue with the init() procedure like this:

◼ In NEURON, a List is an object that holds a list of other objects.

The advantage of a list is that we don't have to specify in advance how

big it will grow, as we have to for an array (like dend[ndend]).

proc init() {

local i,me,child1,child2

create soma

nclist = new List()

……
}

endtemplate SThcell

8

Continuation of sthC3.hoc

◼ After defining the Sthcell template, we continue the code with defining

the array of neurons

◼ Next, we let only the neuron SThcells[1] to receive IClamp

current, instead of all 4 neurons.

nSThcells = 4

objectvar SThcells[nSThcells]

for i = 0, nSThcells-1 {

 SThcells[i] = new SThcell()

}

9

Just one stimulating electrode

◼ Let only the neuron SThcells[1] will receive IClamp current.

The modified piece of code looks like this:

◼ Now is the time to deal with synapses proper.

objectvar stim[nSThcells]

i = 1

SThcells[i].soma {

stim[i] = new IClamp(0.5)

stim[i].del = 100

stim[i].dur = 100

stim[i].amp = 0.1

}

10

Glutamate

R

Ca
2+

Na
+

Na
+

Ca
2

Presynaptic
terminal

N

Excitatory synapses

AMPA NMDA

+

◼ Neutrotransmitter: glutamate.

◼ Postsynaptic receptors called
AMPA and NMDA are
associated with ion channels for
Na+ or for Na+ and Ca2+,
respectively.

◼ When we measure the electric
potential at the postsynaptic
membrane, we see a positive
deviation from the resting
potential, which is called an
excitatory postsynaptic
potential (EPSP).

V (mV)

time (ms)

11

Inhibitory synapses

GABA

R

Ca
2+

Cl
-

K
+

Presynaptic
terminal

N

GABRA GABRB

◼ Neutrotransmitter: GABA

◼ Postsynaptic receptors
GABRA and GABRB for ion
channels for Cl- and K+,
respectively.

◼ When we measure the
electric potential at the
postsynaptic site, we see a
negative deviation from the
resting potential, called an
inhibitory postsynaptic
potential (IPSP). V (mV)

time (ms)

12

Postsynaptic potential (PSP = Isyn Rm)

◼ PSP (either EPSP or IPSP) is the result of electric current I that flows
through the receptor-gated ion channels and obeys the equation:

◼ Where the effect of neurotransmitter binding to and opening the
postsynaptic receptors/ion channels is the conductance change, gsyn.

◼ V is the actual (momentary) value of transmembrane potential.

◼ Esyn is the reversal potential of those ion channels (Na, K, Cl, Ca) that
mediate a given synaptic current in the postsynaptic membrane.

()synsynsyn EtVtgtI -=)()()(

13

NEURON has two PSP functions ExpSyn and Exp2Syn

◼ Single exponential ExpSyn

◼ Double exponential Exp2Syn

ts

 -
-=

s

syn

tt
gtg exp)(max

 -
--

 -
-

-
=

2121

21
max expexp)(

 ss
syn

tttt
gtg

ts

2
1

gsyn

gsyn

14

ExpSyn : notes on synaptic conductance gmax

◼ In ExpSyn, the synaptic weight parameter is the peak amplitude

of the synaptic conductance gmax. This has two implications.

◼ First, the weight parameter for a conductance change should be

always non-negative, i.e. synaptic conductance gmax >= 0.

◼ Second, whether the synapse is inhibitory or excitatory depends

on whether the reversal potential lies above or below the spike

threshold, which is around – 50 mV.

◼ Synaptic weight gmax will be defined later in a new NetCon object.

15

Placing a synapse

◼ In order to connect the neurons, we must create synapse objects. A

synapse is an object that can be positioned anywhere on a neuron.

◼ Now, we want to connect the stimulated neuron SThcells[1] to

model neuron SThcells[0] and observe EPSP at the its soma.

◼ A synapse 0 will be placed at the branch 7 of treeA of the neuron 0:

SThcells[0].treeA[7] syn[0] = new ExpSyn(0)

here

maxsyn = 10

objectvar syn[maxsyn]

16

ExpSyn : variables

◼ When we create a new instance of ExpSyn, we introduce these

variables (with certain default values for an excitatory synapses):

◼ If we want to make an inhibitory synapse, we have to set a new

value for this reversal potential, e.g., syn.e = -60 should work.

◼ Thus, to create an inhibitory synapse, we write

syn.tau // decay time constant in ms

syn.e // reversal potential in mV

syn.i // synaptic current in nA

SThcells[0].treeA[7] syn[0] = new ExpSyn(0) syn.e = -60

17

Creating a new NetCon object

◼ To create a new NetCon object, we use the command format:

◼ source_v is the source voltage (e.g., SThcells[1].soma);

◼ synapse is the object variable that refers to the synaptic object

receiving the events (in our case syn[0]);

◼ threshold is the threshold value, which the source_v must

reach for it to be considered that a spike has occurred;

◼ delay is the connection delay in milliseconds, and

◼ weight is the connection weight strength of the synapse = gmax.

new NetCon(&source_v,synapse,threshold,delay,weight)

18

Appending created synapse

◼ To append SThcells[1] to the dendritic branch 7 of treeA on
subthalamic neuron SThcells[0] we add the command:

◼ First, this command accesses SThcells[1].soma

◼ then the nclist of SThcells[0] has a new NetCon appended.

◼ This NetCon object has a source voltage of SThcells[1].soma,
which is read through &v(1).

◼ The NetCon object is applied to syn[0] which we have already
attached to SThcells[0].treeA[7] .

◼ Our threshold for action potentials is -20mV, our delay 1ms, and our
synaptic weight 0.5.

SThcells[1].soma SThcells[0].nclist.append(new

NetCon(&v(1), syn[0], -20, 1, 0.5))

19

Last lines of sthC3.hoc

◼ Thus, the final lines read:

maxsyn = 10

objectvar syn[maxsyn]

//creating new synapses and appending them

SThcells[0].treeA[7] syn[0] = new ExpSyn(0)

SThcells[1].soma SThcells[0].nclist.append(new

NetCon(&v(1), syn[0], -20, 1, 0.5))

access SThcells[0].soma

tstop = 300

20

Simulation of sthC3.hoc

◼ If we run the simulation and plot the voltage at SThcells[0].soma

we see EPSPs resulting from the spikes of neuron SThcells[1]:

21

Temporal patterns of PSPs at individual synapses

Each input axon relays different patterns

of spike trains. Upon arrival of a spike, a

change in synaptic conductance is

triggered that leads to PSP.

Temporal pattern of

PSPs copies the

temporal pattern of

incoming spike trains.

22

Networks of neurons: design questions

◼ The most common properties that are investigated in network
models are the patterns of firing within the neural network and
how such patterns contribute to processing of the incoming
stimulation and/or how they are modified through specific
synaptic learning rules.

◼ Having a full-scale model of a given brain area is usually
computationally infeasible b/c there are millions of neurons and
billions of synapses.

◼ Thus, we must deal with how to downsize their numbers and yet
accurately model real network dynamics / behaviour.

23

Scaling neuronal numbers

◼ Suppose our network is going to be one-tenth (1/10th) the size of the
brain area we are modelling.

◼ Assume this area contains three cell types – excitatory neurons that
make up 80% of the cell population, and two types of inhibitory
interneurons, each constituting about 10% of the cell population.

◼ It is important to scale neuronal numbers to retain these relative
proportions of cells of different types (80:10:10) in our 1/10th -sized
model.

◼ Interestingly, simulations have shown that networks containing the
same cell types, but in different proportions, can show significantly
different spiking behaviour (Földy et al., 2003, 2005).

24

Level of detail

◼ Another major decision is to choose at which level of detail to model
the individual neurons, whether to include a full-morphology
dendritic tree or reduced-morphology with the reduced number of
dendrites.

◼ For a large-scale network with thousands, or hundreds of thousands
of neurons, we may choose to use the simplified integrate & fire
neurons (AdEx, Izhikevich).

◼ Even the construction of the realistic multi-compartmental model of
a single neuron involves a range of choices concerning number of
sections and segments, identifying and coding different types and
distributions of ion channels.

25

Scaling synapses

◼ Next, we should determine the pattern of connectivity in the
network, i.e. which neurons connect with which ones, types and
distribution of synapses, choose ExpSyn functions and their
parameters.

◼ In our model network, excitation and inhibition for each type of
neurons should be as close as possible to that experienced by real
neurons in vivo.

◼ Given that we have let’s say 1/10th of synapse numbers, we scale up
the maximum synaptic conductance of each connection by a factor
of ten, i.e. we make synapses 10 times stronger in order to get an
equivalent magnitude of excitation and inhibition.

26

Positioning neurons in space

◼ Real neurons have a particular location within the brain, and
connectivity patterns between neurons are often distance-
dependent (the timing in delay lines depends on distances).

◼ To capture these patterns, it may be necessary to place our
model neurons in virtual space.

◼ In many instances, say, a cortical column or other small part of
the cortex, it may be reasonable to assume that connectivity is
completely uniform (e.g. every neuron connects to every other
neuron) or that there is a fixed probability that one neuron
makes contact with another neuron. In this case the precise
spatial location of a neuron is not relevant and can be ignored.

27

Positioning neurons in space

◼ In general, though, we will need to lay our cells out in some 2D
or 3D arrangement that reflects the physiological layout.

◼ Typically, this is done with a regular spacing between cells like on
a grid. Then, when forming connections between cells, the
probability that an efferent cell forms a connection onto a target
cell can be a function of the distance between them.

◼ This function is often an exponential or Gaussian function so
that the probability of connection decreases with distance.

◼ Each choice involves a compromise over the level of biological
detail to include.

28

Variability in cell properties

◼ Majority of existing neuronal network models contain populations of
cells with completely uniform properties, including morphology and
membrane physiology. This does not reflect the variation seen within
biological neurons and may lead to artifacts in network behaviour.

◼ A better approach is to introduce variance into one or more cellular
properties, including membrane resistance, resting membrane
potential and ion channel densities – population modelling.

◼ Experimental estimates of these parameters may be available that
indicate the magnitude of variance in a biological population. That is,
variations in electrophysiological responses may be available from
the literature or can be randomly artificially generated.

29

Notes on the print & file window manager

◼ This function enables you to

❑ print selected windows from your simulation and

❑ store the whole session, so that the next time you can continue

where you have stopped.

◼ To open the Print & File Window Manager, select Print & File

Window Manager from the Window menu on the Main menu.

30

The print & file window manager

◼ The left most of the two red rectangles in this window represents

the entire NEURON display. Each smaller blue rectangle (with a

number in it) represents one of NEURON's windows.

◼ The second red rectangle represents a sheet of paper--we will call

this the Selection rectangle. It is used to print selected windows to

a file or printer and to save selected windows in a session file.

NEURON

session

Selection

window

31

Saving sessions

◼ After creating several graphs, you may want to save the windows
you have created (i.e., graphs and panels) to a file so that you can
recall them later.

◼ NEURON allows you to save either all or selected windows to a
session by selecting the Save selected or Save all option of the
Session menu in the Print & File Window Manager.

◼ Save all will save the position and contents of all NEURON's
windows. Save selected will save only those windows that are
currently selected in the Selection rectangle in Print & File
Window Manager. Either of these options will pop up a window,
in which you can enter the filename of your saved session.

32

◼ If we save our session to a file (e.g., sthC.ses), we can

❑ either load the session each time we load our program by

selecting the Retrieve option of the Session menu in the Print

& File Window Manager,

❑ or we can have our program automatically load our session for

us. To do this, we need to add the following at the very end of

our program:

❑ where sthC.ses is the name of the session we saved. The

next time we start our program, the session with our graphs and

menus will automatically be loaded into NEURON.

Retrieving sessions

xopen("sthC.ses")

	Slide 1: NEURON - tutorial C (part 3) http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html
	Slide 2: What we’ve got so far: sthC2.hoc
	Slide 3: Connecting neurons together
	Slide 4: The delay line
	Slide 5
	Slide 6: Connecting neurons together – NetCon
	Slide 7: Connecting neurons together – List
	Slide 8: Continuation of sthC3.hoc
	Slide 9: Just one stimulating electrode
	Slide 10
	Slide 11
	Slide 12: Postsynaptic potential (PSP = Isyn Rm)
	Slide 13: NEURON has two PSP functions ExpSyn and Exp2Syn
	Slide 14: ExpSyn : notes on synaptic conductance gmax
	Slide 15: Placing a synapse
	Slide 16: ExpSyn : variables
	Slide 17: Creating a new NetCon object
	Slide 18: Appending created synapse
	Slide 19: Last lines of sthC3.hoc
	Slide 20: Simulation of sthC3.hoc
	Slide 21: Temporal patterns of PSPs at individual synapses
	Slide 22: Networks of neurons: design questions
	Slide 23: Scaling neuronal numbers
	Slide 24: Level of detail
	Slide 25: Scaling synapses
	Slide 26: Positioning neurons in space
	Slide 27: Positioning neurons in space
	Slide 28: Variability in cell properties
	Slide 29: Notes on the print & file window manager
	Slide 30: The print & file window manager
	Slide 31: Saving sessions
	Slide 32: Retrieving sessions

