
1

NEURON - tutorial C of Gillies & Sterratt (part 2)

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

Lubica Benuskova

Lecture 6

How to make a more complex dendritic tree

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

2

Our model so far SthC1.hoc

◼ We have created 4 model neurons

positioned in space.

◼ The model neurons are disconnected.

◼ There is a rectangular pulse of current

injected into the soma of all neurons.

◼ “v” denotes this is a default point of

measurement for the voltage plot as

soma[0].v(0.5).

3

Our model so far sthC1.hoc

◼ We have 4 neurons, each having a soma with two dendrites and there

are stimulating electrodes in all of 4 somas, which inject a rectangular

current pulse lasting 100 ms with the delay of 100 ms.

◼ In this lecture we will create more complex dendritic trees for these 4

model neurons.

dend[0]

4

More realistic dendritic tree

◼ The subthalamic neuron has two main dendritic trees:

◼ We will represent them as the following system of cables:

Tree A

23 sections

Tree B

11 sections

5

Data file with dendritic tree geometry

◼ Geometry of 2 dendritic trees is in the .dat files. Here’s treeB.dat:

11

1 2 3 2.000 40.000 0.000 0.000 0.000 -45.490 -12.866 -11.489

2 4 5 1.260 40.000 -45.490 -12.866 -11.489 -84.335 -19.142 -18.677

4 6 7 0.790 100.000 -84.335 -19.142 -18.677 -162.567 -77.332 3.543

6 0 0 0.500 150.000 -162.567 -77.332 3.543 -292.617 -115.113 68.037

7 0 0 0.500 150.000 -162.567 -77.332 3.543 -289.570 -145.223 45.507

5 0 0 0.790 289.000 -84.335 -19.142 -18.677 -347.759 -109.227 -96.224

3 8 9 1.260 40.000 -45.490 -12.866 -11.489 -77.557 -26.257 -31.297

8 0 0 0.790 289.000 -77.557 -26.257 -31.297 -364.171 -61.026 -44.120

9 10 11 0.790 100.000 -77.557 -26.257 -31.297 -151.728 -23.029 -98.291

10 0 0 0.500 150.000 -151.728 -23.029 -98.291 -266.619 3.635 -190.969

11 0 0 0.500 150.000 -151.728 -23.029 -98.291 -281.148 0.124 -170.503

6

Data .dat file with dendritic tree geometry

◼ 1st line in the treeB.dat is the total number of dendritic sections, i.e., 11.

◼ First 3 columns: section order followed by #’s of section’s children.

1

2

3

4

5

6

7

8

9

10

11

11

1 2 3

2 4 5

4 6 7

6 0 0

7 0 0

5 0 0

3 8 9

8 0 0

9 10 11

10 0 0

11 0 0

7

Format of the tree.dat file

◼ The first line has the number of sections in the given dendritic tree.

Each following line has the following format:

◼ where branch-num is the reference number of the branch (starting

at 1),

◼ child1 and child2 are the child branches reference numbers (0 if

there is no child),

◼ diam and L are the branch diameter and length respectively, and

◼ the two sets of 3D coordinates X Y Z are the 3D position of

branch-num (‘0’ and ‘1’ end points of the cylinders in the 3D space).

branch-num child1 child2 diam L X Y Z X Y Z

8

Data file with the dendritic tree geometry treeB.dat

11

1 2 3 2.000 40.000 0.000 0.000 0.000 -45.490 -12.866 -11.489

2 4 5 1.260 40.000 -45.490 -12.866 -11.489 -84.335 -19.142 -18.677

4 6 7 0.790 100.000 -84.335 -19.142 -18.677 -162.567 -77.332 3.543

6 0 0 0.500 150.000 -162.567 -77.332 3.543 -292.617 -115.113 68.037

7 0 0 0.500 150.000 -162.567 -77.332 3.543 -289.570 -145.223 45.507

5 0 0 0.790 289.000 -84.335 -19.142 -18.677 -347.759 -109.227 -96.224

3 8 9 1.260 40.000 -45.490 -12.866 -11.489 -77.557 -26.257 -31.297

8 0 0 0.790 289.000 -77.557 -26.257 -31.297 -364.171 -61.026 -44.120

9 10 11 0.790 100.000 -77.557 -26.257 -31.297 -151.728 -23.029 -98.291

10 0 0 0.500 150.000 -151.728 -23.029 -98.291 -266.619 3.635 -190.969

11 0 0 0.500 150.000 -151.728 -23.029 -98.291 -281.148 0.124 -170.503

b c1 c2 d L X Y Z X Y Z

branch ‘0’ end branch ‘1’ end

9

Data file with the dendritic tree geometry treeA.dat
23

1 2 3 3.180 10.000 0.000 0.000 0.000 18.092 -0.346 4.932

2 4 5 2.000 40.000 18.092 -0.346 4.932 51.954 -5.020 25.705

4 6 7 1.260 40.000 51.954 -5.020 25.705 78.545 -9.317 55.276

6 8 9 0.790 100.000 78.545 -9.317 55.276 111.601 -17.529 149.297

8 0 0 0.500 150.000 111.601 -17.529 149.297 163.965 -2.632 289.069

9 0 0 0.500 150.000 111.601 -17.529 149.297 138.665 -30.973 296.221

7 0 0 0.790 289.000 78.545 -9.317 55.276 251.668 -61.060 280.825

5 10 11 1.260 40.000 51.954 -5.020 25.705 88.745 -15.038 37.791

10 0 0 0.790 289.000 88.745 -15.038 37.791 350.870 -130.453 76.404

11 12 13 0.790 100.000 88.745 -15.038 37.791 177.579 -60.639 32.404

12 0 0 0.500 150.000 177.579 -60.639 32.404 292.593 -138.820 -23.806

13 0 0 0.500 150.000 177.579 -60.639 32.404 259.458 -185.632 19.265

3 14 15 2.000 40.000 18.092 -0.346 4.932 55.216 9.594 16.024

14 16 17 1.260 40.000 55.216 9.594 16.024 81.655 18.091 44.812

16 18 19 0.790 100.000 81.655 18.091 44.812 170.842 31.486 88.013

18 0 0 0.500 150.000 170.842 31.486 88.013 305.710 97.114 86.159

19 0 0 0.500 150.000 170.842 31.486 88.013 300.808 94.676 128.212

17 0 0 0.790 289.000 81.655 18.091 44.812 277.567 158.728 204.062

15 20 21 1.260 40.000 55.216 9.594 16.024 91.603 24.867 22.561

20 0 0 0.790 289.000 91.603 24.867 22.561 375.988 74.617 35.635

21 22 23 0.790 100.000 91.603 24.867 22.561 167.654 39.423 85.841

22 0 0 0.500 150.000 167.654 39.423 85.841 232.672 38.094 221.011

23 0 0 0.500 150.000 167.654 39.423 85.841 266.486 64.396 195.880

b c1 c2 d L X Y Z X Y Z

10

New STh neuron template

begintemplate SThCell

public soma,treeA,treeB

create soma,treeA[1],treeB[1]

// object variable for a file

objectvar f

proc init() {

local i,me,child1,child2

create soma

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

gnabar_hh = 0.25

gl_hh = .0001666

el_hh = -60.0

}

// from now on we will

create treeA and treeB

from the .dat files

11

Notes on a new template SThCell

◼ We have made the soma, treeA and treeB public, so, for
example, we could place electrodes (and synapses) anywhere along
the dendritic trees.

◼ We have also created a new objectvar f used to reference the files.

◼ Note, we have not yet created our trees. Unlike the previous
example, we no longer specify the number of sections in the trees as
this is now specified in the tree .dat files (in their first lines).

◼ Notice we have already created tree section arrays of length one just
before the init() procedure. Each section and object variable that
is used in the template must be declared before init().

12

Accessing a file

◼ We have created a new objectvar f used to access the data files, in

our case the files with specification of dendritic tree geometry.

◼ To access a file, we need to create a new file object. This is done in a

similar manner to creating other objects (for example the IClamp).

◼ The first line creates the file object, the second line uses the file object

function ropen() to open the file treeA.dat for reading.

f = new File()

f.ropen("treeA.dat")

13

Reading from a file: the function scanvar()

◼ We can read the number of sections in the treeA from the 1st line of

the treeA.dat file and then use this as a dimension in the create

command:

◼ Now we can continue to use f.scanvar() to read the rest of our

file. For example, if the next line of our file treeA.dat there was:

◼ Thus, the second call to f.scanvar() returns the value 1, the third

call of f.scanvar() returns the value 2, the fourth returns 3 and the

fifth returns 3.180, sixth call the value 10.000, etc.

ndendA = f.scanvar()

create treeA[ndendA]

1 2 3 3.180 10.000 0.000 0.000 0.000 18.092 -0.346 4.932

14

Defining the dendritic tree from a file

◼ We can define our dendritic tree treeA using the following code:

◼ This is a for loop for creating each section/branch of the tree as

defined by the .dat file.

ndendA = f.scanvar()

create treeA[ndendA]

for i = 0, ndendA-1 {

me = f.scanvar() - 1

child1 = f.scanvar() - 1

child2 = f.scanvar() - 1

15

Defining the dendritic tree from a file: explanation

◼ The local variable me is the first value read from the file and is the

reference for the parent branch.

◼ Since the tree array index starts at 0, but our branch references start

at 1, the variable me is defined as f.scanvar() - 1.

◼ Similarly, the references to child branches child1 and child2

have 1 subtracted to match the array indexing convention.

16

Continuation of the loop

◼ We continue defining our dendritic treeA within the above for loop

using the following code:

◼ The branch diameter diam and length L are directly read from the file.

◼ Passive conductance and reversal potential are based on the data.

treeA[me] {

nseg = 1

diam = f.scanvar()

L = f.scanvar()

Ra = 123

insert pas

g_pas = .0001666

e_pas = -60.0

17

Reading spatial coordinates by the for loop

◼ Now all the actuall 3D position information is read from the file:

pt3dclear() // clearing the default positions

// adding new X Y Z for the section start

pt3dadd(f.scanvar(),f.scanvar(),f.scanvar(),diam)

// adding new X Y Z for the section end

pt3dadd(f.scanvar(),f.scanvar(),f.scanvar(),diam)

18

(Re-)positioning neurons in 3D space

◼ The first function, pt3dclear(), will erase any 3D positioning

information associated with the section.

◼ The second, pt3dadd(), takes four arguments (X, Y, Z, and diam)

and will add a new coordinate to the section with diameter = diam.

◼ We must give coordinates for each end of the section, which can be set

by making two calls to pt3dadd() – once for the "0" end of the

section and once for the "1" end of the section.

◼ Section positions may be randomly placed, or these coordinates may

explicitly follow experimentally derived anatomical measurements.

19

Finalising the for loop

◼ Finally, the branch sections are connected to form the tree:

// connect the children to the parent

if (child1 >= 0) {

connect treeA[child1](0), 1

}

if (child2 >= 0) {

connect treeA[child2](0), 1

}

}

} // end of the whole loop

f.close // closing the .dat file

20

Defining the dendritic treeA

for i = 0, ndendA-1 {
me = f.scanvar() - 1
child1 = f.scanvar() - 1
child2 = f.scanvar() - 1

treeA[me] {
nseg = 1
diam = f.scanvar()
L = f.scanvar()
Ra = 123

// initialise and clear the 3D information
pt3dclear()

pt3dadd(f.scanvar(),f.scanvar(),f.scanvar(),diam)
pt3dadd(f.scanvar(),f.scanvar(),f.scanvar(),diam)
insert pas
g_pas = .0001666
e_pas = -60.0

if (child1 >= 0) {
connect treeA[child1](0), 1

}
if (child2 >= 0) {

connect treeA[child2](0), 1
}

}
}

21

Completing the new SThCell template

◼ The second tree (treeB) is done in the same manner as treeA.

◼ To complete the new SThCell template after both trees have been

read from the files, we must connect the trees to the soma:

// Connect treess to the soma

connect treeA0, soma(1)

connect treeB0, soma(0)

}

endtemplate SThCell

22

What we’ve got so far: sthC2.hoc

◼ The final four neurons, each with a full dendritic tree morphology

are shown in a shape plot on the left. Next to it is the voltage trace

in one of the neurons as a result of the current pulse injection.

(Recall the cells are not connected yet.)

23

Dendritic trees

◼ Dendritic trees provide an enlarged surface

area to receive signals from other neurons.

❑ A large pyramidal cell receives signals from about

30,000 presynaptic neurons.

◼ Synaptic activity causes local changes in the

electrical potential across the membrane. This

change in membrane potential passively

propagates along the dendrites and becomes

weaker with distance.

◼ To generate an action potential at the soma,

many excitatory synapses have to be active at

the same time, leading to a strong

depolarization of the cell body (soma).

24

Multipolar, bipolar and unipolar types

◼ Pyramidal cells are multipolar cortical neurons with pyramid-shaped

cell bodies and large dendrites that extend towards the surface of the

cortex (apical dendrite) and several basal dendritic trees.

◼ Bipolar neurons have two main dendrites at opposing ends of the cell

body. Many inhibitory neurons have this morphology.

◼ Unipolar neurons, typical for insects, have a stalk that extends from

the cell body.

25

Role of dendritic trees

◼ The morphology, i.e. structure and branching of a dendritic tree, as

well as particular distribution of various ion channels influence

how the neuron integrates the input from other neurons.

❑ Malformation of dendrites is also tightly correlated to impaired nervous

system function (Tavosanis, https://doi.org/10.1002/dneu.20951).

◼ Integration of synaptic signals is both temporal, involving the

summation of stimuli that arrive in rapid succession, as well as

spatial, entailing the interaction of excitatory and inhibitory inputs

from separate branches.

◼ Based on passive cable theory one can track how changes in the

neuron's dendritic morphology impact the membrane voltage at

the soma, and thus how variation in dendrite architecture affects

the overall output characteristics of the neuron.

https://doi.org/10.1002/dneu.20951

26

Plasticity of dendritic trees

◼ Dendrites are capable of plastic changes. Plasticity that leads to

changes in the dendritic structure affects communication and

processing in the cell.

◼ During development, dendritic morphology is shaped by intrinsic

programs from the cell's genome and also extrinsic factors such as

chemical signals from other cells (neurons and glia).

◼ But in adult life, extrinsic signals become more influential and cause

significant changes in the dendrite structure. Thus, changes in

number of synapses can be accompanied with growth/atrophy.

◼ In females, the dendritic structure can change as a result of levels of

hormones during pregnancy, lactation, and the estrous cycle, e.g., in

pyramidal cells of the CA1 region of the hippocampus, the density of

dendrites can vary 30%.

27

Full morphology modelling

◼ In order to understand the information processing at the level of

individual neurons, detailed information is required about the

complex interactions between the anatomical structure of the

neurons and their electrical and biochemical properties.

◼ When creating a realistic compartmental model, one needs to create a

structure of connected cylindrical compartments that

morphologically matches the real cell.

◼ The reconstruction for laser scanning or confocal microscopy is

performed automatically by specialized software such as

Neurolucida, which creates a 3D morphology representation in an

automated way (https://neuromorpho.org/).

https://neuromorpho.org/

28

Full morphology reconstruction

◼ The tree consists of cylinders connecting each two nodes along the

directed edges (away from the root node, arrows). Branch points and

termination points represent the topological points.

29

Full morphology reconstruction

◼ Reconstruction of three pyramidal neurons from layer 5 of the

mouse V1 with an interneuron (green cell in C).

30

The TREES Toolbox (https://www.treestoolbox.org/)

◼ Tools to automatically reconstruct neuronal branching from

microscopy image stacks. Also allows to generate synthetic branching

geometries which replicate morphological features of real neurons.

The essential structure of a neuronal tree is captured by the density

profile of its spanning field and by a single parameter, a balancing

factor (bf) weighing the costs for material and conduction time

	Slide 1: NEURON - tutorial C of Gillies & Sterratt (part 2) http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html
	Slide 2: Our model so far SthC1.hoc
	Slide 3: Our model so far sthC1.hoc
	Slide 4: More realistic dendritic tree
	Slide 5: Data file with dendritic tree geometry
	Slide 6: Data .dat file with dendritic tree geometry
	Slide 7: Format of the tree.dat file
	Slide 8: Data file with the dendritic tree geometry treeB.dat
	Slide 9: Data file with the dendritic tree geometry treeA.dat
	Slide 10: New STh neuron template
	Slide 11: Notes on a new template SThCell
	Slide 12: Accessing a file
	Slide 13: Reading from a file: the function scanvar()
	Slide 14: Defining the dendritic tree from a file
	Slide 15: Defining the dendritic tree from a file: explanation
	Slide 16: Continuation of the loop
	Slide 17: Reading spatial coordinates by the for loop
	Slide 18: (Re-)positioning neurons in 3D space
	Slide 19: Finalising the for loop
	Slide 20: Defining the dendritic treeA
	Slide 21: Completing the new SThCell template
	Slide 22: What we’ve got so far: sthC2.hoc
	Slide 23: Dendritic trees
	Slide 24: Multipolar, bipolar and unipolar types
	Slide 25: Role of dendritic trees
	Slide 26: Plasticity of dendritic trees
	Slide 27: Full morphology modelling
	Slide 28: Full morphology reconstruction
	Slide 29: Full morphology reconstruction
	Slide 30: The TREES Toolbox (https://www.treestoolbox.org/)

