
1

NEURON - tutorial C of Gillies & Sterratt (part 1)
http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

Lubica Benuskova

Lecture 5

How to define multiple neurons using templates

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

2

Our goal

◼ Our goal is to model and study small network of neurons in the rat
subthalamic nucleus.

◼ So far, we created only one model neuron. In this lecture we will create
more model neurons.

Equivalent

human nucleus

3

Our model so far sthB.hoc

◼ We have a soma with two dendrites (dend[0] and dend[1]) and there is

a stimulating electrode in the soma, which injects a rectangular current

pulse into the soma lasting 100 ms with the delay of 100 ms.

◼ We want to create a small network of such neurons. In this lecture we

will create only 4 neurons, but we will create them in a way that

increasing the number of neurons in the network is easy later.

dend[0]

4

Templates

◼ A template is an object definition – it defines a prototype of an

object, from which we can create multiple copies.

◼ After defining the template, we must declare the object variable that

we will use to reference these objects.

◼ Then, we can create a new instance of the object from the template.

❑ The new object is an exact copy of the template.

◼ After we create the object from the template, we can either use it as

it is, or we can modify it to fit our needs.

5

Template: definition

◼ The structure of a template:

◼ Notation: name is the name of the template for future reference.

◼ Square brackets [public names] mean this statement is optional.

begintemplate name

[public names]

create names

proc init() {

…

}

endtemplate name

6

Template: example

◼ The structure of our template:

◼ Name SThCell is the name of the template for any future reference.

◼ Templates have a special procedure called init. It is automatically
called when a new object is created from the template

begintemplate SThCell

public soma, dend

create soma, dend[1]

proc init() {

…

}

endtemplate SthCell

7

The public statement

◼ The public statement is used to tell NEURON which parts of the

template can be accessed from outside of the template definition.

◼ If there are no public names, then the code inside the template is

completely private and nothing, aside from the name of the template

itself, is accessible from the rest of the program code.

◼ For example, if we create a neuron template and we want to be able

to put a current clamp in the soma of the neuron we create, we need

to give access to the soma section via the public command, i.e., we

need to type public soma.

8

Declarations before the init procedure

◼ In general, the two rules we need to follow are:

1) A section or object must be created / declared before the

init (or any other) procedure, in which it is re-created.

2) When creating / declaring an array of sections or objects that

will be re-created inside a procedure, create an array of

dimension 1 before the procedure init.

create soma, dend[1]

9

What’s the code in the init procedure?

begintemplate SThCell

public soma, dend

create soma, dend[1]

proc init() {

ndend = 2

create soma, dend[ndend]

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

}

dend[0] {

nseg = 5

diam = 3.18

L = 701.9

Ra = 123

insert pas

}

dend[1] {…}

// Connect things

connect dend0,soma(0)

connect dend[1](0),soma(1)

}

endtemplate SThcell

10

The init procedure

◼ The templates have a special procedure called init() which is

automatically called when a new object is created from the template.

◼ This procedure is used to initialise the newly created object.

◼ In our init() procedure above, we have created and defined all

the sections of our model neuron and connected them together.

◼ Thus, when a new neuron object is created from the template, with

the new command, an entire subthalamic neuron is built.

11

Creating new neurons from a template

◼ First, we define an array of object variables:

◼ Second, we create four model neurons using the new command:

◼ Each model neuron is an exact copy of the template.

◼ We can create as many neurons as our computer can handle.

nSThcells = 4

objectvar SThcells[nSThcells]

SThcells[0] = new SThcell()

SThcells[1] = new SThcell()

SThcells[2] = new SThcell()

SThcells[3] = new SThcell()

12

Creating new neurons in a loop

◼ After defining an array of object variables:

◼ Instead of creating each neuron with a separate command, we use

the new command within the so-called for loop:

◼ Letter “i” denotes an index within an array. It can be any letter (a, b,

c, d, …) or even a word (index, loop, instance, cell, etc.).

nSThcells = 4

objectvar SThcells[nSThcells]

for i = 0, nSThcells-1 {

SThcells[i] = new SThcell()

}

13

Arguments to the init procedure

◼ Arguments can be passed to init() like to any other procedure.

◼ This can be used to affect the properties of the object via the
parameters that you pass to the new command.

◼ As an example of passing arguments to init() procedure, suppose
we wanted to have neurons with different numbers of segments in
their dendrites, i.e., variable nsegden will have different values for
different individual neurons.

◼ We can do this in a single population of neurons creating multiple
copies of neurons with different nsegden values.

14

Arguments to the init procedure: example

◼ Let’s write
init() with an
argument for
nsegdend

◼ Code for a variable
argument is $1

◼ If we had more
than one argument,
we will use $1,

$2, $3, etc.

proc init() {

nsegdend = $1

ndend = 2

create soma,dend[ndend]

...

dend[0] {

nseg = nsegdend

...

}

dend[1] {

nseg = nsegdend

...

}

}

15

Arguments to the init procedure: example

◼ To create a neuron (say neuron 0) with dendritic sections containing,

for example, 13 segments, we do it using the command:

◼ to create all of our four cells with 3, 6, 9, and 12 dendritic segments

respectively we could type:

SThcells[0] = new SThcell(13)

SThcells[0] = new SThcell(3)

SThcells[1] = new SThcell(6)

SThcells[2] = new SThcell(9)

SThcells[3] = new SThcell(12)

16

Arguments to the init procedure: example

◼ In order to create all of our four cells with 3, 6, 9, and 12 dendritic

segments respectively we can use the for loop:

◼ Finally, we need to remember to set a default section so that

graphing works:

◼ There must be at least one access statement in the code!

for i = 0, nSThcells-1 {

SThcells[i] = new SThcell(3*(i+1))

}

access SThcells[0].soma

17

Accessing parts of neurons from outside

◼ After declaring the array with the objectvar command and

creating the objects with the new command, we can access the

sections using the dot notation (provided they are public !).

◼ E.g, we can insert current clamps into all of four somas as follows:

◼ Note: the NEURON code up to now is in the file SthC1.hoc

objectvar stim[nSThcells]

for i = 0, nSThcells-1 SThcells[i].soma {
stim[i] = new IClamp(0.5)
stim[i].del = 100
stim[i].dur = 100
stim[i].amp = 0.1

}

18

SthC1.hoc

load_file("nrngui.hoc")

begintemplate SThCell

public soma, dend

create soma, dend[1]

proc init() {

ndend = 2

create soma, dend[ndend]

soma { nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

gnabar_hh=0.25

gl_hh = .0001666

el_hh = -60.0 }

dend[0] {nseg = 5

diam = 3.18

L = 701.9

Ra = 123

insert pas

g_pas = 0.0001666

e_pas = -60.0 }

dend[0] {nseg = 5

diam = 2.0

L = 549.1

Ra = 123

insert pas

g_pas = 0.0001666

e_pas = -60.0 }

// Connect things together

connect dend0,soma(0)

connect dend[1](0),soma(1)

}

endtemplate SThcell

19

SthC1.hoc contd.

tstop = 300

nSThcells = 4

objectvar SThcells[nSThcells]

for i = 0, nSThcells-1 {

SThcells[i] = new SThcell()

}

objectvar stim[nSThcells]

for i = 0, nSThcells-1 SThcells[i].soma {

stim[i] = new IClamp(0.5)

stim[i].del = 100

stim[i].dur = 100

stim[i].amp = 0.1

}

access SThcells[0].soma

20

Positioning neurons in 3D space

◼ Each time we create a new section and
connect it to others, NEURON places
the section in a 3-D space and assigns
automatically X, Y and Z coordinates
to each end of the sections.

◼ When creating more than one neuron,
each neuron is given a different Z
coordinate for all of its sections.

◼ To see the default position of neurons,
open a space or shape plot (under
the Graph menu) right click on it and
choose 3D rotate.

21

Re-positioning neurons in 3D space

◼ The default X and Y coordinates of

each neuron are determined by how

the individual sections are connected.

◼ This makes viewing the neurons

difficult since they are not arranged

how they are in reality.

◼ NEURON has two inbuilt functions

to reposition each section:

pt3dclear() and pt3dadd().

22

Re-positioning neurons in 3D space

◼ The first function, pt3dclear(), will erase any 3D positioning

information associated with the section.

◼ The second, pt3dadd(), takes four arguments (X, Y, Z, and diam)

and will add a new coordinate to the section.

◼ Usually there are coordinates for each end of the section, which can be

set by making two calls to pt3dadd() – once for the "0" end of the

section and once for the "1" end of the section.

◼ We will demonstrate the action of these functions on a more complex

dendritic trees in the next lecture.

	Slide 1: NEURON - tutorial C of Gillies & Sterratt (part 1) http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html
	Slide 2: Our goal
	Slide 3: Our model so far sthB.hoc
	Slide 4: Templates
	Slide 5: Template: definition
	Slide 6: Template: example
	Slide 7: The public statement
	Slide 8: Declarations before the init procedure
	Slide 9: What’s the code in the init procedure?
	Slide 10: The init procedure
	Slide 11: Creating new neurons from a template
	Slide 12: Creating new neurons in a loop
	Slide 13: Arguments to the init procedure
	Slide 14: Arguments to the init procedure: example
	Slide 15: Arguments to the init procedure: example
	Slide 16: Arguments to the init procedure: example
	Slide 17: Accessing parts of neurons from outside
	Slide 18: SthC1.hoc
	Slide 19: SthC1.hoc contd.
	Slide 20: Positioning neurons in 3D space
	Slide 21: Re-positioning neurons in 3D space
	Slide 22: Re-positioning neurons in 3D space

