
1

NEURON – tutorial B of Gillies & Sterratt
http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

Lubica Benuskova

Lecture 4

http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html

2

The program sthA.hoc so far

create soma

access soma

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

}

objectvar stim

stim = new IClamp(0.5)

stim.del = 100

stim.dur = 100

stim.amp = 0.1

tstop = 300

diam

L Point process

IClamp(0.5)

3

Modelling result so far

◼ The rectangular current
pulse is injected in the
middle of the soma
section. The current
injection starts at 100 ms
and lasts 100 ms.

◼ Injected current causes
soma to fire series of 7
consecutive spikes at
regular intervals.

◼ What will happen when
we add dendrites?

Ie

4

Today’s plan: adding the dendrites

◼ Wilfrid Rall showed that it’s possible to computationally replace the

whole dendritic tree with the so-called equivalent cylinder.

◼ The subthalamic neuron has two main dendritic trees, so we represent

each of them with an equivalent cylinder and thus we add 2 of them.

5

Create dend[number_of_denrites]

◼ So far, we have only created a single section representing the soma. We
are now going to add two more sections representing dendrites. These
can be created just as the soma:

◼ Each section listed after the create command is separated by a comma.

◼ We use an array to represent the dendrites.

◼ The array indices are numbered from zero, so to access the first
element of the array of dendrites, you need to use dend[0], and to
access the second element, you need to use dend[1], etc.

create soma, dend[2]

6

◼ In the future, if we want to re-use this code for another neuron that
contains, for example, 4 dendritic trunks, we will have to change all of
the 2's to 4's in the code, i.e.:

◼ We can do this more elegantly by using a variable to represent the
number of dendrites. Then we just reference the maximum number of
dendrites throughout the program through this variable. For example:

◼ To represent 2 dendrites, we just assign nden = 2.

Create dend[number_of_denrites]

nden = 4

create soma, dend[nden]

create soma, dend[4]

7

Assignment of parameters of dendrites

◼ The two main dendritic trees are different, so their equivalent cylinders

will have different parameter values, like L, Ra, and diam.

◼ Let’s define parameters of the 2 dendrites dend[0] and dend[1]:

dend[0] {

nseg = 1

diam = 3.18

L = 701.9

Ra = 123

insert pas

}

dend[1] {

nseg = 1

diam = 2

L = 549.1

Ra = 123

insert pas

}

◼ The command insert pas inserts the passive conductances.

8

nseg = 1 or more?

◼ In NEURON, each section can have ≥ 1 segments. The membrane
potential does not change along one segment.

◼ To achieve decay of potential in the dendrite, we increase the number of
segments in the section. But to how many?

◼ This is very important for accurate simulations. If the section's number of
segments is too small, then the spatial resolution is low, and you might not
be able to see the fine details in the simulation results.

◼ If the section's number of segments is too large, then you might be
unnecessarily extending the simulation time.

◼ By analyzing the effects of different values of nseg on the results, you can
achieve efficient and accurate simulation results.

9

Increasing the number of segments

◼ We are interested in seeing the potentials decay along the dendrites,

so we want to increase the number of segments. So, we create two

dendrites with five segments each:

dend[0] {

nseg = 5

diam = 3.18

L = 701.9

Ra = 123

insert pas

}

dend[1] {

nseg = 5

diam = 2

L = 549.1

Ra = 123

insert pas

}

10

Changing passive membrane properties

◼ When we add a new membrane mechanism (like hh or pas) to a

section, we add new parameters and their default values to the

section as well.

◼ For example, if we add passive channels to the section by

insert pas, we introduce two new properties to the

section, i.e. g_pas (passive membrane conductance [S/cm2])

and e_pas (reversal potential [mV]).

◼ For our simulation, neither the default Hodgkin-Huxley channels

nor the default passive properties correspond to the data.

11

Changing passive membrane properties in pas

◼ We can modify the passive property parameters to reflect correctly
the properties of rat subthalamic nucleus neurons based on
experimental data simply by assigning their new values:

dend[0] {

nseg = 5

diam = 3.18

L = 701.9

Ra = 123

insert pas

g_pas = .0001667

e_pas = -60.0

}

dend[1] {

nseg = 5

diam = 2

L = 549.1

Ra = 123

insert pas

g_pas = .0001667

e_pas = -60.0

}

12

Changing passive membrane properties in hh

◼ We need to modify the passive membrane parameters gl_hh and

el_hh at the soma as well to model the subthalamic neurons, i.e.:

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

gl_hh = .0001667

el_hh = -60.0

}

13

Changing active ion channel properties in hh

◼ To modify the active channel properties, we will need to build new

active channels using the model description language (NMODL).

◼ For now, we will just modify the maximum sodium conductance:

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

gnabar_hh = 0.25

gl_hh = .0001667

el_hh = -60.0

}

14

Connecting the sections

◼ In order to connect the sections together, we need a way to refer to

specific points along the section, where to connect them.

◼ This is handled by using the section name followed by a number

between 0 and 1 in parenthesis, which represents the distance along

the section you want to refer to.

◼ For example, dend0 refers to a point at the proximal end of

dendrite 0, dend[0](1) refers to a point at the distal end of

dendrite 0, and dend[0](0.5) refers to a point in the middle.

15

Connecting the sections

◼ Thus, command dend[0](0.2) refers to a point 20% down
dendrite 0 (going from soma).

◼ We use this notation when connecting sections to one another since
we need to specify what point of one section connects to what point
of another section.

◼ We also use this notation when we place point processes to a section.

16

Connecting the sections

◼ For our simulation, we are going to connect the soma and the

dendrites together. We use the connect command to do this:

connect dend0, soma(0)

connect dend[1](0), soma(1)

d
e
n
d
[1

](
0
)

d
e
n
d
[1

](
1
)

17

Our model so far

◼ We have a soma with two dendrites and there is a stimulating

electrode in the soma, which injects a rectangular current pulse into

the soma.

◼ We want to visualise what is happening in this new model neuron,

which we’ll store in file sthB.hoc, and how the result differs from

the previous model, which had only the soma section.

dend[0]

Input current

18

sthB.hoc

load_file("nrngui.hoc")

ndend = 2

create soma, dend[ndend]

access soma

soma {

nseg = 1

diam = 18.8

L = 18.8

Ra = 123.0

insert hh

gnabar_hh = 0.25

gl_hh = .0001667

el_hh = -60.0

}

dend[0] {

nseg = 5

diam = 3.18

L = 701.9

Ra = 123

insert pas

g_pas = .0001667

e_pas = -60.0

}

dend[1] {

nseg = 5

diam = 2

L = 549.1

Ra = 123

insert pas

g_pas = .0001667

e_pas = -60.0

}

19

The program sthB.hoc continued

// Connect sections together

connect dend0, soma(0)

connect dend[1](0), soma(1)

// Stimulating electrode in the soma

objectvar stim

soma stim = new IClamp(0.5)

stim.del = 100

stim.dur = 100

stim.amp = 0.1

tstop = 300

◼ Notice the use of //. Anything after the double forward slash is
considered a comment. It is a useful way of explaining your code.

20

Running the stored model

◼ Windows: open sthB.hoc in NEURON. Open the RunControl

window (under Tools) and voltage axis (under Graph) to run and

display the simulation, respectively.

◼ Soma without dendrites generates 7 spikes whereas soma with the

dendrites generates only 5 spikes. Why?

21

Visualisation of dendritic voltage

◼ In order to add the dendritic
voltage to the graph, right click on
the voltage axis and hold.

◼ This brings up a Graph Properties
menu – View. Choose Plot what?.
This should bring up a window
from which we can choose a
variable to plot.

◼ The variables can be either directly
typed in if we know the exact
name of the variable we want to
plot, or they can be selected from
the list of variables in the selection
boxes.

22

Visualisation of dendritic voltage

◼ We want to plot the voltage from a
distal dendrite, so we need to select
dend[0] in the first selection box
and press Accept and then edit the
text so that it reads dend[0].v(0.9)
and press Accept.

◼ To change the colour and
thickness of the lines we can select
Colour/brush from the Graph
Properties menu (after right
clicking on the graph).

◼ We select colours and/or line types
by clicking the button next to the
colour or line type and then
clicking on the relevant legend, i.e.,
dend[0].v(0.9).

Now when we run the simulation

(hit the Init&Run button in the

RunControl window), we will see

two traces.

23

Blocking the ion channels

◼ Some drugs block ion channels with the consequence the ions cannot
flow through them. To be able to block/unblock the channels, we
need to define these procedures after the command access soma:

proc block_sodium() {

local block_fraction

block_fraction = $1

soma gnabar_hh = block_fraction * 0.25

}

proc unblock_sodium() {

soma gnabar_hh = 0.25

}

24

Simulating TTX action

◼ To block the active sodium
channels, use the command (the
argument is the fraction of blocked
channels) before Iclamp:

◼ This will block the sodium channels
to 15% of their normal value.

◼ To unblock the blocked sodium
channels, we use the command:

block_sodium(0.15)

unblock_sodium()

TTX extracted from

pufferfish blocks sodium

channels. Ingestion can cause

death or permanent

neurological damage to the

brain turning person into a

“zombie”.

	Slide 1: NEURON – tutorial B of Gillies & Sterratt http://web.mit.edu/neuron_v7.4/nrntuthtml/index.html
	Slide 2: The program sthA.hoc so far
	Slide 3: Modelling result so far
	Slide 4: Today’s plan: adding the dendrites
	Slide 5: Create dend[number_of_denrites]
	Slide 6: Create dend[number_of_denrites]
	Slide 7: Assignment of parameters of dendrites
	Slide 8: nseg = 1 or more?
	Slide 9: Increasing the number of segments
	Slide 10: Changing passive membrane properties
	Slide 11: Changing passive membrane properties in pas
	Slide 12: Changing passive membrane properties in hh
	Slide 13: Changing active ion channel properties in hh
	Slide 14: Connecting the sections
	Slide 15: Connecting the sections
	Slide 16: Connecting the sections
	Slide 17: Our model so far
	Slide 18: sthB.hoc
	Slide 19: The program sthB.hoc continued
	Slide 20: Running the stored model
	Slide 21: Visualisation of dendritic voltage
	Slide 22: Visualisation of dendritic voltage
	Slide 23: Blocking the ion channels
	Slide 24: Simulating TTX action

