
1

Principles of computational modelling

Lubica Benuskova

Lecture 1



2

Outline of the course

◼ Introduction to basic methods of computational modelling of 
biological neurons and neural circuits.

◼ It is designed for people from a wide range of backgrounds from 
the biological, physical and computational sciences.

◼  We will learn basics of the programming in NEURON, which is 
a free software for biological neuron and neural networks 
modelling and simulation. 

◼ Assessment consists of 2 programming assignments including the 
reports on results (40%),  1 written assignment (20%), and a final 
written exam (40%) – more info and download at the webpage.
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http://dai.fmph.uniba.sk/courses/comp-neuro/



The third methodology of (neuro)science

◼ Theory is the results of abstract thinking and involves generalized 
explanations of how nature works. It is the way to interpret results 
of experiments and to design new experiments.

◼ Without experiments there is no point in theorizing--theory 
becomes speculation. Theory is corroborated/supported or falsified 
by experiments.

◼ Computational modellig allows more elaborate tests of theory 
than would be possible by experiment, thus enabling new ways to 
refine the theory. It also allows a much more sophisticated analysis 
of experiments than theory alone could provide.
❑ Computational modelling has become the third methodology of science along 

with theory and experiment.



Basic steps in creating the model

◼ Step 1: Clearly state the assumptions, on which the model will be 
based. These assumptions should verbally describe the relationships 
among the quantities to be studied.

◼ Step2: Completely describe the quantities, i.e. variables and 
parameters to be studied in the model.

◼ Step 3: Use the assumptions formulated in Step 1 to derive equations 
relating the quantities in Step 2.

◼ Step 4: use mathematical knowledge and/or computer program to 
solve the equations and make predictions about the evolution of 
studied quantities in the future.



Step 1: assumptions

◼ Assumptions should describe what we think about relationships

between variables we want to model. 

❑ E.g., we assume there are 2 types of inputs to each neuron: excitatory and 

inhibitory. They add up linearly, i.e., input = excitation – inhibition. 

◼ The quality of assumptions determines the validity of the model 

and the situations to which the model is relevant.

◼ We must avoid “hidden assumptions” that make the model seem 

mysterious or magical.

❑ i.e., we include something in the equation that makes the model work but 

corresponds to nothing in reality.



Step 2: defining the quantities

◼ Independent variables

❑ The independent variable is almost always time (t). Time t is 

independent of any other quantity in the model.

◼ Dependent variables are the quantities that are functions of the 

independent variable.

❑ For example, membrane voltage changes over time, V = V(t), i.e. we 

say voltage is a function of time.

◼ Parameters are quantities that do not change with time (or any other 

independent variable), but their value have a profound influence on 

the behaviour of the dependent variables.



Variables and parameters

◼ The goal of a model is to describe the behaviour of the 

dependent variable as the independent variable changes.

❑ For example, we may ask whether the dependent variable (e.g. voltage) 

increases or decreases with time, or whether it oscillates or tends to a limit.

◼ Observing how the behaviour of the dependent variable changes 

when we change the values of parameters can be the most 

important aspect of the study of a model.

❑ For example, we may ask how the voltage evolves when the strength of 

excitatory inputs is the same as the strength of inhibitory inputs or how 

voltage will evolve when these strengths differ, while the values of 

strengths of excitatory and inhibitory inputs are the parameters of the 

model. 



Step3: the most difficult part

◼ The hardest part in using the maths or 

computational algorithms to study 

phenomena is the translation from real 

life into mathematical and / or 

computational formalism.

◼ It is difficult because it involves  

❑ knowledge of maths and 

programming;

❑ the conversion of assumptions 

into mathematical equations and 

to computational algorithms.
August Rodin: The Thinker



Equations, i.e., something = something

◼ We know that the dependent variable changes over time. Thus, we 

are looking for a “rate of change of …” or “rate of increase of …” a 

dependent variable over time. 

◼ Mathematically, the rate of increase of something corresponds to the 

thing called “derivative”, being written as: 

❑ Where that “something” is for example membrane voltage, V.

◼ In other words, the rate of change is synonymous with derivative.

dt

dV



◼ We want to express what is the rate of change, i.e. what the 
derivative amounts to. That is, we want to know what is the 
“something” in the following equation:

◼ The phrase “A is proportional to B” means A = k B, where k is 
the so-called proportionality constant. So, to be mathematically 
correct we have to write the above equation as

◼ i.e. the rate of change of voltage is proportional to something. 
Proportionality constant k is the parameter of the model.

Derivative = something

something=
dt

dV

somethingk
dt

dV
=



◼ The equation:

◼ is at the core of all models in computational neuroscience.

◼ Dependent variable can be anything from voltage, current, field 

potential, number of synapses, concentration of neurotransmitter, 

speed of learning, number of memorized items, etc.  

◼ The biggest challenge is to come up with “something”…

Derivative = k something

( )
something

variabledependent
k

dt

d
=



Concrete example: population growth

◼ We can develop and study mathematical models of systems that 

change (evolve) over time, for instance the number of rabbits.

◼ Except time itself, the number of rabbits depend on other variables 

too.

❑ For example, the changes in population of rabbits depend on the amount of 

food, number of predators (hawks, foxes, etc.), rabbit diseases, etc.

◼ In order to make a model of evolution of rabbit population simple 

enough to understand, we have to make simplifying assumptions and 

neglect the things we know nothing about or not enough. 



The simplest model of population growth

◼ Step 1: The assumption: the rate of growth of population depends 
only on the size of the population and nothing else. The more 
rabbits there are the more offspring they have.

◼ Step 2: definition of quantities:

❑ t = time (independent variable)

❑ N = population size (dependent variable), i.e., N = N(t)

❑ k = proportionality constant (parameter)

◼ How about the units of these quantities? They obviously depend  
on species and environment. If we are talking about population of 
people, then t would be years and N would be millions. If talking 
about rabbits, then t would be months and N thousands.



Mathematical equation for the growth

◼ Step 3: let’s express our assumption as an equation. The rate of 

growth of the population is the derivative:

◼ Being proportional to the population size is expressed as a product 

of the proportionality constant k and the population size N , i.e., k N.

❑ Hence our assumption is expressed as the (differential) equation:

◼ Read as: Derivative of N according to time t equals k times N.

𝑑𝑁

𝑑𝑡

𝑑𝑁

𝑑𝑡
= 𝑘 𝑁



Step 4: solution

◼ In order to be able to predict the change of rabbit population we 

must know the size of population at time zero N0 , the so-called 

initial condition, i.e.

◼ Next, we want to predict the value of N at various times in the 

future, e.g. N(10) or N(100), i.e. we want to know concrete values of 

quantity N(t) for each value of t, that satisfy this equation:

◼ To find a solution to this equation means to find a function N(t) 

whose derivative is the product k with N(t).

𝑑𝑁

𝑑𝑡
= 𝑘 𝑁

𝑁(𝑡0) = 𝑁0 > 0



Analytical solution

◼ The solution of the differential equation: 

◼ is an exponential function 

◼ Where       is the initial population

◼ Now we can make predictions about the size of the population in the 
future provided we know the value N0 and k. The value of k can be 
derived by fitting the model to real data. We simply try different 
values of k and see which one yields the best fit with the data.

𝑁(𝑡) = 𝑁0𝑒𝑘𝑡

𝑑𝑁

𝑑𝑡
= 𝑘 𝑁

𝑁(𝑡0) = 𝑁0 > 0
N0

time

N(t)

N0



Computational model: changing parameter value

◼ Once we develop a mathematical or 

computational model, we have to 

compare predictions of the model with 

data from the system to check for 

empirical support or falsification.

◼ If the model prediction and the data 

disagree, then we first try different 

values of parameters, if this does not 

help then we change our assumptions 

and re-formulate the model.
𝑦(𝑥) = 𝑦0𝑒𝑘𝑥
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Making the model more realistic

◼ What would happen if there are two species, one of which is a 
predator and one of which is the predator’s prey?

◼ Our theory might state that: 

❑ (1) the prey population N grows in proportion to its size but 
declines as the predator population P grows and eats it; and 

❑ (2) the predator population P grows in proportion to its size and 
the amount of the prey N but declines in the absence of prey. 
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Prediction no. 1

◼ From this theory we can predict that the prey population N grows 
initially (provided there is enough food and no diseases). 

◼ As the prey population N grows, the predator population P can 
grow faster. 

◼ As the predator population P grows, this limits the rate at which the 
prey population N can grow. 

◼ At some point, an equilibrium is reached when both predator P and 
prey sizes N are in balance.
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Alternative prediction

◼ We might wonder whether there is a second possible prediction 
from the theory. 

◼ Perhaps the predator population P grows so quickly that it is able to 
make the prey population N extinct. Once the prey has gone N = 0, 
the predator is also doomed to extinction P = 0. 

◼ Now we are faced with the problem that there is one theory but two 
possible conclusions; the theory is logically inconsistent.

◼ What will happen to the population of prey N and predators P? Will 
they become extinct, or will they stabilize? Can the mathematical 
model help us?
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Mathematical model (Lotka and Volterra 1925)

◼ For a prey population with size N(t) and a predator population with 
size P(t), it is assumed that 

◼ (1) the prey population grows in proportion to its size N and 
declines in proportion to the rate at which predator and prey meet 
(assumed to be the product of the two population sizes, NP), i.e.:

 
𝑑𝑁

𝑑𝑡
= a N – b NP 

◼ (2) at the same time, there is an increase in the predator population 
size P in proportion to NP and decline in the absence of prey: 

   
𝑑𝑃

𝑑𝑡
= 𝑐 NP – d P 

◼ The parameters a, b, c and d are constants.
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Mathematical model (Lotka and Volterra 1925)

◼ Behaviour of the Lotka–Volterra model of predator–prey 
interactions, with parameters a = b = c = d = 1 (upper graph), and 
a = 1,  b = c = 20, d = 1 (lower graph).



24

Comments on the solution

◼ It turns out that neither of our guesses was correct. Instead of both 
species surviving in equilibrium or going extinct, the predator and 
prey populations oscillate over time. 

◼ At the start of each cycle, the prey population grows. After a lag, the 
predator population starts to grow, due to the abundance of prey. 
This causes a sharp decrease in prey, which almost causes its 
extinction, but not quite. Thereafter, the predator population 
declines and the cycle repeats. 

◼ It might now seem obvious that oscillations would be predicted by 
the theory. However, the step of putting the theory into equations 
(model) was required in order to reach this understanding. 
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How do we fix the model parameter values?

◼ Step 1:  Fix the known parameter values and make educated guesses 
for the remaining unknown parameter values.

◼ Step 2: Use the model to simulate experiments and/or observations, 
producing model data.

◼ Step 3: Compare the model data with experimental data.

◼ Step 4: Adjust one or more parameter values and repeat from Step 2 
until the simulated data sufficiently matches experimental data.
❑ We simply try different values of parameters and see which ones yield the best 

fit with the data

❑ It is recommended to change only one parameter value at a time, in order to 
distinguish, which parameter affects the results and how.



If we have several alternative models

◼ The aim is to explain a phenomenon with 
the fewest assumptions and select the 
simplest model to predict data.

❑ Simplicity and elegance in problem-solving.

◼ Occam’s Razor: when faced with competing 
hypotheses or explanations, the one that 
requires the fewest assumptions, entities, or 
complexities should be preferred. 

❑ This principle of parsimony is attributed to 
14th-century English theologian William of 
Ockham.
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Computational Neuroscience

◼ To understand the nervous system 

requires an understanding at many 

different levels.

◼ At each of these levels there are 

detailed computational models for 

how the elements at that level 

function and interact.

◼ In this course, it’ll be neurons, 

networks of neurons, synapses and 

ions involved in signalling 

pathways inside neurons.
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Simulation environment NEURON

◼ A free open-source software developed at Duke and Yale by Michael 
Hines and Ted Carnevale available at https://neuron.yale.edu/neuron/

◼ Used world-wide to build and simulate neurons with realistic dendritic 
trees and biological networks of hundreds of neurons. More than a 
thousand of scientific publications reported work that was done with 
NEURON. 

◼ NEURON is actively developed and supported, with new standard 
releases each year, supplemented by bug fixes as needed. Available for 
number of operating systems (i.e., Linux, Windows and MacOS).

◼ ModelDB website provides a free location for storing and retrieving 
computational neuroscience models for sharing. 

https://neuron.yale.edu/neuron/
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Simulation environment GENESIS

◼ GENESIS (the GEneral NEural SImulation System) is freely 
available at http://www.genesis-sim.org/GENESIS/

◼ GENESIS was originally developed in the laboratory of Dr. James 
M. Bower at Caltech.

◼ GENESIS was the first broad scale modeling system in 
computational biology and is based on Unix / Linux. 

◼ But wasn’t open source so it lost the race with NEURON.

◼ Now it’s open source too.

http://www.genesis-sim.org/GENESIS/
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Plan

◼ Next lecture, I will start to teach you how to run simulations in 

NEURON. 

◼ We will also build a soma with NEURON that implements the 

Hodgkin-Huxley model.

◼ After the next lecture you will have your first code in NEURON.

◼ During the semester, we will make this code more complex, thus 

simulating more complex neural behaviour and we will also build a 

small network of neurons.
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