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Preface 
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore the full 
breadth of the field, which encompasses logic, probability, and continuous mathematics; perception, 
reasoning, learning, and action; and everything from devices to robotic planetary 
explorers. The book is also big because we go into some depth in presenting results, although we 
strive to cover only the most central ideas in the main part of each chapter. Pointers are given to 
further results in the bibliographical notes at the end of each chapter. 

The subtitle of this book is "A Modern Approach." The intended meaning of this rather empty 
phrase is that we have tried to synthesize what is now known into a common framework, rather than 
trying to explain each of in its own historical context. We apologize to those whose 
subfields are, as a result, less recognizable than they might have been. 

The main unifying theme is the idea of an intelligent agent. We define as the study of 
agents that receive percepts from the environment and perform actions. Each such agent implements a 
function that maps percept sequences to actions, and we cover different ways to represent these func- 
tions, such as production systems, reactive agents, real-time cortditional planners, neural networks, 
and decision-theoretic systems. We explain the role of learning as extending the reach of the designer 
into unknown environments, and we show how that role constrains agent design, favoring explicit 
knowledge representation and reasoning. We treat robotics and vision not as independently defined 
problems, but as occurring in the service of achieving goals. We stress the importance of the task 
environment in determining the appropriate agent design. 

Our primary aim is to convey the ideas that have emerged over past fifty years of research 
and the past two millenia of related work. We have tried to avoid excessive formality in the presen- 
tation of these ideas while retaining precision. Wherever appropriate, we have included pseudocode 
algorithms to make the ideas concrete; our pseudocode is described briefly in Appendix B. Implemen- 
tations in several languages are available on the book's Web site, aima.cs.berkeley.edu. 

This book is primarily intended for use in an undergraduate course or course sequence. It can 
also be used in a graduate-level course (perhaps with the addition of some of the primary sources 
suggested in the bibliographical notes). Because of its comprehensive coverage and large number of 
detailed algorithms, it is useful as a primary reference volume for graduate students and profes- 
sionals wishing to branch out beyond their own subfield. The only prerequisite is familiarity with 
basic concepts of computer science (algorithms, data structures, complexity) at a sophomore level. 
Freshman calculus is useful for understanding neural networks and statistical learning in detail. Some 
of the required mathematical background is supplied in Appendix A. 

Overview of the book 
The book is divided into eight parts. Part I, Artificial Intelligence, offers a view of the enterprise 
based around the idea of intelligent agents-systems that can decide what to do and then do it. Part 

Problem Solving, concentrates on methods for deciding what to do when one needs to think ahead 
several steps-for example in navigating across a country or playing chess. Part Knowledge and 
Reasoning, discusses ways to represent knowledge about the world-how it works, what it is currently 
like, and what one's actions do-and how to reason logically with that knowledge. Part IV, 
Planning, then discusses how to use these reasoning methods to decide what to do, particularly by 
constructing plans. Part Uncertain Knowledge and Reasoning, is analogous to Parts and IV, 
but it concentrates on reasoning and decision making in the presence of uncertainty about the world, 
as might be faced, for example, by a system for medical diagnosis and treatment. 

Together, Parts describe that part of the intelligent agent responsible for reaching decisions. 
Part VI, Learning, describes methods for generating the knowledge required by these decision-making 
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components. Part VII, Communicating, Perceiving, and Acting, describes ways in which an intel- 
ligent agent can perceive its environment so as to know what is going on, whether by vision, touch, 
hearing, or understanding language, and ways in which it can turn its plans into real actions, either as 
robot motion or as natural language utterances. Finally, Part VIII, Conclusions, analyzes the past and 
future of and the philosophical and ethical implications of artificial intelligence. 

Changes from the first edition 
Much has changed in since the publication of the first edition in 1995, and much has changed in this 
book. Every chapter has been significantly rewritten to reflect the latest work in the field, to reinterpret 
old work in a way that is more cohesive with new findings, and to improve the pedagogical flow of 
ideas. Followers of should be encouraged that current techniques are much more practical than 
those of 1995; for example the planning algorithms in the first edition could generate plans of only 
dozens of steps, while the algorithms in this edition scale up to tens of thousands of steps. 
orders-of-magnitude improvements are seen in probabilistic inference, language processing, and other 
subfields. The following are the most notable changes in the book: 

In Part I, we acknowledge the historical contributions of control theory, game theory, economics, 
and neuroscience. This helps set the tone for a more integrated coverage of these ideas in 
subsequent chapters. 
In Part online search algorithms are covered and a new chapter on constraint satisfaction has 
been added. The latter provides a natural connection to the material on logic. 
In Part propositional logic, which was presented as a stepping-stone to first-order logic in 
the first edition, is now presented as a useful representation language in its own right, with fast 
inference algorithms and circuit-based agent designs. The chapters on first-order logic have 
been reorganized to present the material more clearly and we have added the Internet shopping 
domain as an example. 
In Part IV, we include newer planning methods such as GRAPHPLAN and satisfiability-based 
planning, and we increase coverage of scheduling, conditional planning, planning, 
and multiagent planning. 
In Part we have augmented the material on Bayesian networks with new algorithms, such 
as variable elimination and Markov Chain Monte we have created a new chapter on 
uncertain temporal reasoning, covering hidden models, Kalman filters, and dynamic 
Bayesian networks. The coverage of decision processes is deepened, and we add sec- 
tions on game theory and mechanism design. 

Part VI, we tie together work in statistical, symbolic, and neural learning and add sections on 
boosting algorithms, the EM algorithm, instance-based learning, and kernel methods (support 
vector machines). 
In Part VII, coverage of language processing adds sections on discourse processing and gram- 
mar induction, as well as a chapter on probabilistic language models, with applications to in- 
formation retrieval and machine translation. The coverage of robotics stresses the integration of 
uncertain sensor data, and the chapter on vision has updated material on object recognition. 
In Part VIII, we introduce a section on the ethical implications of AI. 

Using this book 
The book has 27 chapters, each requiring about a week's worth of lectures, so working through the 
whole book requires a two-semester sequence. Alternatively, a course can be tailored to suit the inter- 
ests of the instructor and student. Through its broad coverage, the book can be used to support such 
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courses, whether they are short, introductory undergraduate courses or specialized graduate courses on 
advanced topics. Sample syllabi from the more than 600 universities and colleges that have adopted 
the first edition are shown on the Web at aima.cs.berkeley.edu, along with suggestions to help you find 
a sequence appropriate to your needs. 

The book includes 385 exercises. Exercises requiring significant programming are with 
a keyboard icon. These exercises can best be solved by taking advantage of the code repository at 

Some of them are large enough to be considered term projects. A. number of 
exercises require some investigation of the literature; these are marked with a book icon. 

Throughout the book, important points are marked with a pointing icon. We have included an 
extensive index of around 10,000 items to make it easy to ffind things in the book. Wherever a new 

NEW TERM term is first defined, it is also marked in the margin. 

Using the Web site 
At the aima.cs.berkeley.edu Web site you will find: 

implementations of the algorithms in the book in several programming languages, 
a list of over 600 schools that have used the book, many with links to online course materials, 
an annotated list of over 800 links to sites around the with useful content, 
a chapter by chapter list of supplementary material and links, 
instructions on how to join a discussion group for the book, 
instructions on how to contact the authors with questions or comments, 

0 instructions on how to report errors in the book, in the likely event that some exist, and 
copies of the figures in the book, along with slides and other material for instructors. 
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which we try to explain why we consider intelligence to be a subject 
most worthy of study, and in which we try to decide what exactly it is, this being a 
good thing to decide before embarking. 

ARTIFICIAL 
INTELLIGENCE 

We call ourselves Homo sapiens-man the wise-because our mental capacities are so im- 
portant to us. For thousands of years, we have tried to understand how we think; that is, how 
a mere handful of stuff can perceive, understand, predict, arid manipulate a world far larger 
and more complicated than itself. The field of artificial intelligence, or AI, goes further still: 
it attempts not just to understand but also to build intelligent entities. 

is one of the newest sciences. Work started in earnest soon after World War and 
the name itself was coined in 1956. Along with molecular biology, is regularly cited as 
the "field I would most like to be in" by scientists in other disciplines. A student in physics 
might reasonably feel that all the good ideas have already been taken by Galileo, Newton, 
Einstein, and the rest. on the other hand, still has openings for several full-time Einsteins. 

currently encompasses a huge variety of subfields, ranging from general-purpose 
areas, such as learning and perception to such specific tasks as playing chess, proving math- 
ematical theorems, writing poetry, and diagnosing diseases. systematizes and automates 
intellectual tasks and is therefore potentially relevant to any sphere of human intellectual 
activity. In this sense, it is truly a universal field. 

1.1 WHAT AI? 

We have claimed that is exciting, but we have not said what it is. Definitions of artificial 
intelligence according to eight textbooks are shown in Figure These definitions vary 
along two main dimensions. Roughly, the ones on top are concerned with thought processes 
and reasoning, whereas the ones on the bottom address The definitions on the left 
measure success in terms of fidelity to human performance, whereas the ones on the right 

RATIONALITY measure against an ideal concept of intelligence, which we will call rationality. A system is 
rational if it does the "right thing," given what it knows. 



2 Introduction 

Systems that think like humans 
"The exciting new effort to make comput- 
ers think . . . machines with minds, in the 
full and literal sense." (Haugeland, 1985) 

"[The automation activities that we 
associate with human thinking, activities 
such as decision-making, problem solv- 
ing, learning . . (Bellman, 1978) 

Systems that think rationally 
"The study of mental faculties through the 
use of computational models." 
(Chamiak and 1985) 

"The study of the computations that make 
it possible to perceive, reason, and act." 
(Winston, 1992) 

Historically, all four approaches to have been followed. As one might expect, a 
tension exists between approaches centered around humans and approaches centered around 

A human-centered approach must be an empirical science, involving hypothesis 
and experimental confirmation. A rationalist approach involves a combination of mathemat- 
ics and engineering. Each group has both disparaged and helped the other. Let us look at the 
four approaches in more detail. 

Systems that act like humans 

"The art of creating machines that per- 
form functions that require intelligence 
when performed by people." (Kurzweil, 
1990) 
"The study of how to make computers do 
things at which, at the moment, people are 
better." (Rich and Knight, 1991) 

Acting humanly: The Turing Test approach 

Systems that act rationally 

"Computational Intelligence is the study 
of the design of intelligent agents." (Poole 
et 1998) 

. . .is concerned with intelligent be- 
havior in artifacts." (Nilsson, 1998) 

TURING TEST The Test, proposed by Alan Turing was designed to provide a satisfactory 
operational definition of intelligence. Rather than proposing a long and perhaps controversial 
list of qualifications required for intelligence, he suggested a test based on indistinguishability 
from undeniably intelligent entities-human beings. The computer passes the test if a human 
interrogator, after posing some written questions, cannot tell whether the written responses 
come from a person or not. Chapter 26 discusses the details of the test and whether a computer 
is really intelligent if it passes. For now, we note that programming a computer to pass the test 
provides plenty to work on. The computer would need to possess the following capabilities: 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories. 

natural language processing to enable it to communicate successfully in English. PROCESSING 

We should point out that, by distinguishing between and rational behavior, we are not suggesting that 
humans are necessarily "irrational" in the sense of "emotionally unstable" or "insane." One merely need note 
that we are not perfect: we are not all chess grandmasters, even those of us who know all the rules of chess; and, 
unfortunately, not everyone gets an A on the exam. Some systematic errors in human reasoning are cataloged by 
Kahneman et (1982). 
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KNOWLEDGE 
REPRESENTATION 

AUTOMATED 
REASONING 

MACHINE LEARNING 

TOTAL TURING TEST 

COMPUTER 

ROBOTICS 

COGNITIVE SCIENCE 

knowledge representation to store what it or 
automated reasoning to use the stored inforrnation to answer questions and to draw 
new conclusions; 
machine learning to adapt to new circumstances and to detect and extrapolate patterns. 

Turing's test deliberately avoided direct physical interaction between the interrogator and the 
computer, because physical simulation of a person is unnecessary for intelligence. However, 
the so-called total Turing Test includes a video so that the interrogator can test the 
subject's perceptual abilities, as well as the opportunity for the interrogator to pass physical 
objects "through the hatch." To pass the total Turing Test, computer will need 

computer vision to perceive objects, and 
robotics to manipulate objects and move about. 

These six disciplines compose most of AI, and Turing deserves credit for designing a test 
that remains relevant 50 years later. Yet researchers have devoted little effort to passing 
the Turing test, believing that it is more important to study the underlying principles of in- 
telligence than to duplicate an exemplar. The quest for flight" succeeded when the 
Wright brothers and others stopped imitating birds and learned about aerodynamics. Aero- 
nautical engineering texts do not define the goal of their field as making "machines that fly 
so exactly like pigeons that they can fool even other pigeons." 

Thinking humanly: The cognitive modeling approach 
If are going to say that a given program thinks like a we must have some way of 
determining how humans think. We need to get inside the actual of human minds. 
There are two ways to do this: through to catch our own thoughts as 
they go by-and through psychological experiments. we have a sufficiently precise 
theory of the mind, it becomes possible to express the as a computer program. If the 
program's and timing behaviors match corresponding human behaviors, that is 
evidence that some of the program's mechanisms could also be operating in humans. For ex- 
ample, Allen and Herbert Simon, who developed GPS, the "General Problem Solver" 

and Simon, were not content to have their program solve problems correctly. 
They were more concerned with comparing the trace of its reasoning steps to traces of human 
subjects solving the same problems. The interdisciplinary field of cognitive science brings 
together computer models from and experimental techniques from psychology to try to 
construct precise and testable theories of the of the human mind. 

Cognitive science is a fascinating field, worthy of an encyclopedia in itself (Wilson 
and Keil, 1999). We will not attempt to describe what is known of human cognition in this 
book. We will occasionally comment on similarities or between AI techniques 
and human cognition. Real cognitive science, however, is necessarily based on experimental 
investigation of actual humans or animals, and we assume that the reader has access only to 
a computer for experimentation. 

In the early days of there was often confusion the approaches: an author 
would argue that an algorithm performs well on a task and that it is therefore a good model 
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of human performance, or vice versa. Modern authors separate the two kinds of claims; 
this distinction has allowed both and cognitive science to develop more rapidly. The two 
fields continue to fertilize each other, especially in the areas of vision and natural language. 
Vision in particular has recently made advances via an integrated approach that considers 
neurophysiological evidence and computational models. 

Thinking rationally: The "laws of thought" approach 

The Greek philosopher Aristotle was one of the first to attempt to codify "right thinking," that 
SYLLOGISMS is, irrefutable reasoning processes. His syllogisms provided patterns for argument structures 

that always yielded correct conclusions when given correct premises-for example, "Socrates 
is a man; all men are mortal; therefore, is mortal." These laws of thought were 

LOGIC supposed to govern the operation of the mind; their study initiated the field called logic. 
Logicians in the 19th century developed a precise notation for statements about all kinds 

of things in the world and about the relations among them. (Contrast this with ordinary arith- 
metic notation, which provides mainly for equality and inequality statements about numbers.) 
By 1965, programs existed that could, in principle, solve any solvable problem described in 
logical The so-called logicist tradition within artificial intelligence hopes to build 
on such programs to create intelligent systems. 

There are two main obstacles to this approach. First, it is not easy to take informal 
knowledge and state it in the formal terms required by logical notation, particularly when the 
knowledge is less than 100% certain. Second, there is a big difference between being able to 
solve a problem "in principle" and doing so in practice. Even problems with just a few dozen 
facts can exhaust the computational resources of any computer unless it has some guidance 
as to which reasoning steps to try first. Although both of these obstacles apply to any attempt 
to build computational reasoning systems, they appeared first in the logicist tradition. 

Acting rationally: The rational agent approach 
AGENT An agent is just something that acts (agent comes from the Latin to do). But computer 

agents are expected to have other attributes that distinguish them from mere "programs," 
such as operating under autonomous control, perceiving their environment, persisting over a 
prolonged time period, adapting to change, and being capable of taking on another's goals. A 
rational agent is one that acts so as to achieve the best outcome or, when there is uncertainty, 
the best expected outcome. 

In the "laws of thought" approach to the emphasis was on correct inferences. Mak- 
ing correct inferences is sometimes part of being a rational agent, because one way to act 
rationally is to reason logically to the conclusion that a given action will achieve one's goals 
and then to act on that conclusion. On the other hand, correct inference is not all of ratio- 
nality, because there are often situations where there is no provably correct thing to do, yet 
something must still be done. There are also ways of acting rationally that cannot be said to 
involve inference. For example, recoiling from a hot stove is a reflex action that is usually 
more successful than a slower action taken after careful deliberation. 

If there is no solution, the program might never stop looking for one. 
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All the skills needed for the Turing Test are there to allow rational actions. Thus, we 
need the ability to represent knowledge and reason it because this enables us to reach 
good decisions in a wide variety of situations. We need be able to generate comprehensible 
sentences in natural language because saying those sentences helps us get by in a complex 
society. We need learning not just for erudition, but because having a better idea of how the 
world works enables to generate more effective strategies for dealing with it. We need 
visual perception not just because seeing is fun, but get a better idea of what an action 
might achieve-for example, being able to see a tasty helps one to move toward it. 

For these reasons, the study of as rational-agent design has at least two advantages. 
First, it is more general than the "laws of thought" approach, because correct inference is just 
one of several possible mechanisms for achieving Second, it is more amenable to 
scientific development than are approaches based on human behavior or human thought be- 
cause the standard of rationality is clearly defined general. Human behavior, 
on the other hand, is well-adapted for one specific and is the product, in part, 
of a complicated and largely unknown evolutionary that still is far from producing 
perfection. This book will therefore concentrate on general principles of rational agents and 
on components for constructing We will see that despite the apparent simplicity with 
which the problem can be stated, an enormous variety of issues come up when we try to solve 
it. Chapter 2 outlines some of these issues in more detail. 

One important point to keep in mind: We will see too long that achieving perfect 
rationality-always doing right thing-is not feasible in complicated environments. The 
computational demands are just too high. For most of the book, however, we will adopt the 
working hypothesis that perfect rationality is a good starting point for analysis. It simplifies 
the problem and provides the appropriate setting for most of the foundational material in 

LIMITED 
RATIONALITY the field. Chapters 6 and 17 deal explicitly with the issue of limited rationality-acting 

appropriately when there is not enough time to do all the one might like. 

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints, 
and techniques to AI. Like any history, this one is to (concentrate on a small number 
of people, events, and ideas and to ignore others that were important. We organize the 
history around a series of questions. We certainly would not to give the impression that 
these questions are the only ones the disciplines address or that the disciplines have all been 
working toward as their ultimate fruition. 

Philosophy (428 B . .-present) 

Can formal rules be used to draw valid conclusions? 
How does the mental mind arise from a physical 
Where does knowledge come from? 
How does knowledge lead to action? 
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DUALISM 

MATERIALISM 

EMPIRICISM 

INDUCTION 

LOGICAL 

OBSERVATION 
SENTENCES 
CONFIRMATION 
THEORY 

Aristotle (384-322 was the first to formulate a precise set of laws governing the ratio- 
nal part of the mind. He developed an informal system of syllogisms for proper reasoning, 
which in principle allowed one to generate conclusions mechanically, given initial premises. 
Much later, Ramon Lull (d. 13 15) had the idea that useful reasoning could actually be carried 
out by a mechanical artifact. His "concept wheels" are on the cover of this book. Thomas 
Hobbes (1588-1679) proposed that reasoning was like numerical computation, that "we add 
and subtract in our silent thoughts." The automation of computation itself was already well 
under way; around 1500, Leonardo da Vinci (1452-1519) designed but did not build a me- 
chanical calculator; recent reconstructions have shown the design to be functional. The first 
known calculating machine was constructed around 1623 by the German scientist Wilhelm 
Schickard although the Pascaline, built in 1642 by Blaise Pascal 
is more famous. Pascal wrote that "the arithmetical machine produces effects which appear 
nearer to thought than all the actions of animals." Gottfried Wilhelm Leibniz (1646-1716) 
built a mechanical device intended to carry out operations on concepts rather than numbers, 
but its scope was rather limited. 

Now that we have the idea of a set of rules that can describe the formal, rational part 
of the mind, the next step is to consider the mind as a physical system. Descartes 
(1596-1650) gave the first clear discussion of the distinction between mind and matter and of 
the problems that arise. One problem with a purely physical conception of the mind is that it 
seems to leave little room for free will: if the mind is governed entirely by physical laws, then 
it has no more free will than a rock "deciding" to fall toward the center of the earth. Although 
a strong advocate of the power of reasoning, Descartes was also a proponent of dualism. He 
held that there is a part of the human mind (or soul or spirit) that is outside of nature, exempt 
from physical laws. Animals, on the other hand, did not possess this dual quality; they could 
be treated as machines. An alternative to dualism is materialism, which holds that the brain's 
operation according to the laws of physics constitutes the mind. Free will is simply the way 
that the perception of available choices appears to the choice process. 

Given a physical mind that manipulates knowledge, the next problem is to establish the 
source of knowledge. The empiricism movement, starting with Francis Bacon's (1561-1626) 
Novum is characterized by a dictum of John Locke (1632-1704): "Nothing is in 
the understanding, which was not first in the senses." David Hume's (171 1-1776) A Treatise 
of Human Nature (Hume, 1739) proposed what is now known as the principle of induction: 
that general rules are acquired by exposure to repeated associations between their elements. 
Building on the work of Ludwig Wittgenstein (1889-1951) and Bertrand Russell 

the famous Vienna Circle, led by Rudolf developed the doctrine 
of logical positivism. This doctrine holds that all knowledge can be characterized by logical 
theories connected, ultimately, to observation sentences that correspond to sensory 
The confirmation theory of and Carl (1905-1997) attempted to understand 
how knowledge can be acquired from experience. book The Logical Structure of 

An update of Aristotle's or instrument of thought. 
In this picture, all meaningful statements can be verified or falsified either by analyzing the meaning of the 

words or by out experiments. Because this rules out most of metaphysics, as was the intention, logical 
positivism was unpopular in some circles. 
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the World (1928) defined an explicit computational procedure for extracting knowledge from 
elementary experiences. It was probably the first theory of as a computational process. 

The final element in the philosophical picture of the mind is the connection between 
knowledge and action. This question is vital to AI, because intelligence requires action as well 
as reasoning. Moreover, only by understanding how actions are justified can we understand 
how to an agent whose actions are justifiable (or rational). Aristotle argued that actions 
are justified by a logical connection between goals knowledge of the action's outcome 
(the last part of this extract also appears on the front cover of this book): 

But how does it happen that thinking is sometimes accompanied by action and sometimes 
not, sometimes by motion, and sometimes not? looks as if almost the same thing 
happens as in the case of reasoning and making inferences about unchanging objects. But 
in that case the end is a speculative proposition . . . whereas here the conclusion which 
results from the two premises is an action. . . . I covering; a cloak is a covering. I 
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And 
the conclusion, the "I have to make a cloak:' is an action. 1978, p. 40) 

In the Nicomachean Ethics (Book 3, 11 Aristotle further elaborates on this topic, 
suggesting an algorithm: 

We deliberate not about ends, but about means. For a doctor does not deliberate whether 
he shall heal, nor an orator whether he shall persuade, . . . They assume the end and 
consider how and by what means it is attained, and if it seems easily and best produced 
thereby; while if it is achieved by one means only consider how it will be achieved 
by this and by what means this will be achieved, till they come to the first cause, . . . and 
what is last in the order of analysis seems to be first in the order of becoming. And if we 
come on an impossibility, we give up the search, if we need money and this cannot 
be got; but if a thing appears possible we try to do it. 

Aristotle's algorithm was implemented 2300 years later by and Simon in their GPS 
program. We would now call it a regression planning system. (See Chapter 1 1 .) 

Goal-based analysis is useful, but does not say what do when several actions will 
achieve the goal, or when no action will achieve it completely. Antoine Arnauld (1612-1694) 
correctly described a quantitative formula for deciding what action to take in cases like this 
(see Chapter 16). John Stuart Mill's (1806-1873) book Utilitarianism (Mill, 1863) promoted 
the idea of rational decision criteria in all spheres of human activity. The more formal theory 
of decisions is discussed in the following section. 

Mathematics (c. 800-present) 

What are the formal rules to draw valid 
What can be computed? 
How do we reason with uncertain information? 

Philosophers staked out most of the important ideas of but the leap to a formal science re- 
quired a level of mathematical formalization in three areas: logic, computation, 
and probability. 

The idea of formal logic can be traced back to the philosophers of ancient Greece (see 
Chapter 7), but its mathematical development really began the work of George Boole 
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(1 8 15-1 who worked out the details of propositional, or Boolean, logic (Boole, 1847). 
In 1879, Gottlob Frege (1848-1925) extended Boole's logic to include objects and relations, 
creating the first-order logic that is used today as the most basic knowledge representation 

Alfred (1902-1983) introduced a theory of reference that shows how to 
relate the objects in a logic to objects in the real world. The next step was to determine the 
limits of what could be done with logic and computation. 

ALGORITHM The first nontrivial algorithm is thought to be algorithm for computing 
est common denominators. The study of algorithms as objects in themselves goes back to 
al-Khowarazmi, a Persian mathematician of the 9th century, whose writings also introduced 
Arabic numerals and algebra to Europe. Boole and others discussed algorithms for logical 
deduction, and, by the late 19th century, efforts were under way to formalize general math- 
ematical reasoning as logical deduction. In 1900, David Hilbert (1862-1943) presented a 
list of 23 problems that he correctly predicted would occupy mathematicians for the bulk of 
the century. The final problem asks whether there is an algorithm for deciding the truth of 
any logical proposition involving the natural numbers-the famous 
or decision problem. Essentially, Hilbert was whether there were fundamental limits 
to the power of effective proof procedures. In 1930, Kurt (1906-1978) showed that 
there exists an effective procedure to prove any true statement in the first-order logic of Frege 
and Russell, but that first-order logic could not capture the principle of mathematical induc- 
tion needed to characterize the natural numbers. In 1931, he showed that real limits do exist. 
His incompleteness theorem showed that in any language expressive enough to describe the THEOREM 

properties of the natural numbers, there are true statements that are undecidable in the sense 
that their truth cannot be established by any algorithm. 

This fundamental result can also be interpreted as showing that there are some functions 
on the integers that cannot be represented by an algorithm-that is, they cannot be computed. 
This motivated Alan Turing (1912-1954) to try to characterize exactly which functions are 
capable of being computed. This notion is actually slightly problematic, because the notion 
of a computation or effective procedure really cannot be given a formal definition. However, 
the Church-Turing thesis, which states that the Turing machine (Turing, 1936) is capable of 
computing any computable function, is generally accepted as providing a sufficient definition. 
Turing also showed that there were some functions that no Turing machine can compute. For 
example, no machine can tell in general whether a given program will return an answer on a 
given input or run forever. 

Although undecidability and noncomputability are important to an understanding of 
INTRACTABILITY computation, the notion of intractability has had a much greater impact. Roughly speak- 

ing, a problem is called intractable if the time required to solve instances of the problem 
grows exponentially with the size of the instances. The distinction between polynomial and 
exponential growth in complexity was first emphasized in the mid-1960s 1964; 
monds, 1965). It is important because exponential growth means that even moderately large 
instances cannot be solved in any reasonable time. Therefore, one should strive to divide 

Frege's proposed notation for first-order logic never became popular, for reasons that are apparent immediately 
from the example on the front cover. 
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the overall problem of generating intelligent behavior into tractable subproblems rather than 
intractable ones. 

NP-COMPLETENESS How can one recognize an intractable problem? The theory of NP-completeness, 
neered by Steven Cook (1971) and Richard provides a method. Cook and 
showed the existence of large classes of canonical search and reasoning prob- 
lems that are NP-complete. Any problem class to which the: class of NP-complete problems 
can be reduced is likely to be intractable. (Although it has not been proved that NP-complete 
problems are necessarily most theoreticians believe it.) These results contrast 
with the optimism with which the popular press greeted the first computers-"Electronic 
Super-Brains" that were "Faster than Einstein!" Despite the increasing speed of computers, 
careful use of resources will characterize intelligent systems. Put crudely, the world is an 
extremely large problem instance! In recent years, has helped explain why some instances 
of NP-complete problems are hard, yet others are easy (Cheeseman et al., 1991). 

Besides logic and computation, the third contribution of mathematics to is 
PROBABILITY the theory of probability. The Italian Gerolamo (1501-1576) first framed the idea 

of probability, describing it in terms of the possible outcomes of gambling events. Prob- 
ability quickly became an invaluable part of all the quantitative sciences, helping to deal 
with uncertain measurements and incomplete theories. Pierre (1 60 1-1 Blaise 
Pascal James Bernoulli and oth- 
ers advanced the theory and introduced new statistical methods. Thomas Bayes (1702-1 761) 
proposed a rule for updating probabilities in the light of new evidence. Bayes' rule and the re- 
sulting field called Bayesian analysis form the basis of most modern approaches to uncertain 
reasoning in systems. 

Economics (1776-present) 

How should we make decisions so as to maximize payoff? 
How should we do this when others may not go along? 

a How should we do this when the payoff may be in the future? 

The science of economics got its start in 1776, when Scottish philosopher Adam Smith 
(1723-1790) published An Inquiry into the Nature and Causes of the Wealth of Nations. 
While the ancient Greeks and others had made contributions to economic thought, Smith was 
the first to treat it as a science, using the idea that economies can be thought of as consist- 
ing of individual agents maximizing their own economic well-being. Most people think of 
economics as being about money, but economists say that they are really studying how 
people make choices that lead to preferred outcomes. The mathematical treatment of "pre- 
ferred outcomes7' or utility was first formalized by Walras (pronounced "Valrasse") 
(1834- 1910) and was improved by Frank Ramsey (193 1) and later by John von Neumann and 

Morgenstern in their book The Theory of Games Economic Behavior (1944). 
DECISION THEORY Decision theory, which combines probability theory with utility theory, provides a 

mal and complete framework for decisions (economic otherwise) made under 
that is, in cases where probabilistic descriptions appropriately capture the decision-maker's 
environment. This is suitable for "large" economies where each agent need pay no attention 



10 Chapter 1. Introduction 

to the actions of other agents as individuals. For "small" economies, the situation is much 
more like a game: the actions of one player can significantly affect the utility of another 
(either positively or negatively). Von Neumann and Morgenstern's development of game 

GAMETHEORY theory (see also and Raiffa, 1957) included the surprising result that, for some games, 
a rational agent should act in a random fashion, or at least in a way that appears random to 
the adversaries. 

For the most part, economists did not address the third question listed above, namely, 
how to make rational decisions when payoffs from actions are not immediate but instead re- 
sult from several actions taken in sequence. This topic was pursued in the field of operations 

OPERATIONS 
RESEARCH research, which emerged in World War from efforts in Britain to optimize radar 

tions, and later found civilian applications in complex management decisions. The work of 
Richard (1957) formalized a class of sequential decision problems called Markov 
decision processes, which we study in Chapters 17 and 2 1. 

Work in economics and operations research has contributed much to our notion of ra- 
tional agents, yet for many years research developed along entirely separate paths. One 
reason was the apparent complexity of making rational decisions. Herbert Simon (1 91 

the pioneering researcher, won the Nobel prize in economics in 1978 for his early 
SATISFICING work showing that models based on satisficing-making decisions that are "good enough," 

rather than laboriously calculating an optimal decision-gave a better description of actual 
human behavior (Simon, 1947). In the there has been a resurgence of interest in 
decision-theoretic techniques for agent systems (Wellman, 1995). 

Neuroscience (1861-present) 

How do brains process information? 

NEUROSCIENCE Neuroscience is the study of the nervous system, particularly the brain. The exact way in 
which the brain enables thought is one of the great mysteries of science. It has been appre- 
ciated for thousands of years that the brain is somehow involved in thought, because of the 
evidence that strong blows to the head can lead to mental incapacitation. It has also long been 
known that human brains are somehow different; in about 335 Aristotle wrote, "Of all 
the animals, man has the largest brain in proportion to his size." Still, it was not until the 
middle of the 18th century that the brain was widely recognized as the seat of consciousness. 
Before then, candidate locations included the heart, the spleen, and the pineal gland. 

Broca's (1824-1880) study of aphasia (speech deficit) in brain-damaged patients 
in 1861 reinvigorated the field and persuaded the medical establishment of the existence of 
localized areas of the brain responsible for specific cognitive functions. In particular, he 
showed that speech production was localized to a portion of the left hemisphere now called 

NEURONS Broca's By that time, it was known that the brain consisted of nerve cells or neurons, 
but it was not until 1873 that Golgi (1843-1926) developed a staining technique 
allowing the observation of individual neurons in the brain (see Figure 1.2). This technique 

Since then, it has been discovered that some species of dolphins and whales have relatively larger brains. The 
large size of human brains is now thought to be enabled in part by recent improvements in its cooling system. 

Many cite Alexander Hood (1824) as a possible prior source. 
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Figure 1.2 The parts of a nerve cell or neuron. Each consists of a cell body, 
or soma, that contains a cell nucleus. Branching out from the cell body are a number of 
fibers called dendrites and a single long fiber called the axon. The axon stretches out for 
a long distance, much longer than the scale in this diagram indicates. Typically they are 1 
cm long (100 times the diameter of the cell body), but can reach up to 1 meter. A neuron 
makes connections with 10 to 100,000 other neurons at junctions called synapses. Signals are 
propagated from neuron to neuron by a complicated electrochemical reaction. The signals 
control brain activity in the short term, and also enable long-term changes in the position 
and connectivity of neurons. These mechanisms are thought to form the basis for learning 
in the brain. Most information processing goes on in cerebral cortex, the outer layer of 
the brain. The basic organizational unit appears to be a column of tissue about 0.5 in 
diameter, extending the full depth of the cortex, which is about 4 mm in humans. A column 
contains about 20,000 neurons. 

was used by Santiago Ramon y (1852-1934) in his pioneering studies of the brain's 
neuronal structures.' 

We now have some data on the mapping areas of the brain and the parts of the 
body that they control or from which they receive input. Such mappings are able to 

radically over the course of a few weeks, and some animals seem to have multiple 
maps. Moreover, we do not fully understand how other areas can take over functions when 
one area is damaged. There is almost no theory on how an individual memory is stored. 

The measurement of intact brain activity in with the invention by Hans 
Berger of the electroencephalograph (EEG). The recent development of functional magnetic 
resonance imaging (Ogawa et 1990) is giving neuroscientists unprecedentedly 
detailed images of brain activity, enabling measurements that correspond in interesting ways 
to ongoing cognitive processes. These are augmented by advances in single-cell recording of 

Golgi persisted in his belief that the brain's functions were carried out primarily in a continuous medium in 
which neurons were embedded, whereas propounded the "neuronal doctrine." The two shared the Nobel 
prize in 1906 but gave rather antagonistic acceptance speeches. 
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Figure 1.3 A crude comparison of the raw computational resources available to computers 
(circa 2003) and brains. The computer's numbers have all increased by at least a factor of 10 
since the first edition of this book, and are expected to do so again this decade. The brain's 
numbers have not changed in the last 10,000 years. 

neuron activity. Despite these advances, we are still a long way from understanding how any 
of these cognitive processes actually work. 

The truly amazing conclusion is that a collection of simple cells can lead to thought, 
action, and consciousness or, in other words, that brains cause minds (Searle, 1992). The 
only real alternative theory is mysticism: that there is some mystical realm in which minds 
operate that is beyond physical science. 

Brains and digital computers perform quite different tasks and have different properties. 
Figure 1.3 shows that there are times more neurons in the typical human brain than there 
are gates in the CPU of a typical high-end computer. Moore's Law9 predicts that the 
gate count will equal the brain's neuron count around 2020. Of course, little can be inferred 
from such predictions; moreover, the difference in storage capacity is minor compared to the 
difference in switching speed and in parallelism. Computer chips can execute an instruction 
in a nanosecond, whereas neurons are millions of times slower. Brains more than make up 
for this, however, because all the neurons and synapses are active simultaneously, whereas 
most current computers have only one or at most a few Thus, even though a computer 
is a million times faster in raw switching speed, the brain ends up being 100,000 times faster 
at what it does. 

Psychology (1879-present) 

How do humans and animals think and act? 

The origins of scientific psychology are usually traced to the work of the German physi- 
cist Hermann von Helmholtz (1 82 1-1 894) and his student Wilhelm Wundt (1 832-1920). 
Helmholtz applied the scientific method to the study of human vision, and his Handbook 
of Physiological Optics is even now described as "the single most important treatise on the 
physics and physiology of human vision" (Nalwa, 1993, In 1879, Wundt opened the 
first laboratory of experimental psychology at the University of Leipzig. Wundt insisted on 
carefully controlled experiments in which his workers would perform a perceptual or 

Moore's Law says that the number of transistors per square inch doubles every 1 to 1.5 years. Human brain 
capacity doubles roughly every 2 to 4 million years. 
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tive task while introspecting on their thought processes. The careful controls went a long way 
toward making psychology a science, but the subjective nature of the data made it unlikely 
that an experimenter would ever disconfirm his or her own theories. Biologists studying 
animal behavior, on the other hand, lacked introspective data and developed an objective 
methodology, as described by H. S. Jennings in his influential work Behavior of the 

BEHAVIORISM Lower Organisms. Applying this viewpoint to humans, the movement, led by 
Watson rejected any theory involving processes on the grounds 

that introspection could not provide reliable evidence. Behaviorists insisted on studying only 
objective measures of the percepts (or given to animal and its resulting actions 
(or response). Mental constructs such as knowledge, beliefs, goals, and reasoning steps were 
dismissed as unscientific "folk psychology." Behaviorism discovered a lot about rats and pi- 
geons, but had less success at understanding humans. Nevertheless, it exerted a strong hold 
on psychology (especially in the United States) from about to 1960. 

The view of the as an information-processing device, which is a principal 
COGNITIVE 
PSYCHOLOGY teristic of cognitive psychology, can be traced back at least to the works of William 

(1 842-19 10). Helmholtz also insisted that perception involved a form of unconscious log- 
ical inference. The cognitive viewpoint was largely eclipsed by behaviorism in the United 
States, but at Cambridge's Applied Psychology Unit, directed by Frederic Bartlett 

cognitive modeling was able to flourish. The Nature of Explanation, by Bartlett's 
student and successor Kenneth Craik forcefully reestablished the legitimacy of such 
"mental" terms as beliefs and goals, arguing that they are just as scientific as, say, using 
pressure and temperature to talk about gases, despite their being made of molecules that have 
neither. Craik specified the three key steps of a knowledge-based agent: (1) the stimulus 
be translated into an internal representation, (2) the representation is manipulated by cogni- 
tive processes to derive new internal representations, and ( 3 )  these are in turn retranslated 
back into action. He clearly explained why this was a good design for an agent: 

If the organism carries a "small-scale model" of external reality and of its own possible 
actions within its head, it is able to try out various alternatives, conclude which is the best 
of them, react to future situations before they arise, utilize the knowledge of past events 
in dealing with the present and future, and in every to react in a much fuller, safer, 
and more competent manner to the emergencies which face it. (Craik, 1943) 

After Craik's death in a bicycle accident in his work was continued by Don- 
ald Broadbent, whose book Perception and Communication (1958) included some of the 
first information-processing models of psychological phenomena. Meanwhile, in the United 
States, the development of computer modeling led to the creation of the field of cognitive 
science. The field can be said to have started at a workshop in September 1956 at MIT. (We 
shall see that this is just two months after the at itself was "born.") At 
the workshop, George Miller presented The Magic Number Seven, presented 
Three Models of Language, and Allen and Herbert Simon presented The Logic The- 
ory Machine. These three influential papers showed how coniputer models could be used to 

William James was the brother of novelist Henry James. It is said that Henry wrote fiction as if it were 
psychology and William wrote psychology as if it were fiction. 
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address the psychology of memory, language, and logical thinlung, respectively. It is now a 
common view among psychologists that "a cognitive theory should be like a computer pro- 
gram" (Anderson, that is, it should describe a detailed information-processing mecha- 
nism whereby some cognitive function might be implemented. 

Computer engineering (1940-present) 

How can we build an efficient computer? 

For artificial intelligence to succeed, we need two things: intelligence and an artifact. The 
computer has been the artifact of choice. The modern digital electronic computer was in- 
vented independently and almost simultaneously by scientists in three countries embattled in 
World War The first operational computer was the electromechanical Heath 
built in 1940 by Alan Turing's team for a single purpose: deciphering German messages. In 
1943, the same group developed the Colossus, a powerful general-purpose machine based 
on vacuum The first operational programmable computer was the the inven- 
tion of Konrad Zuse in Germany in 1941. Zuse also invented floating-point numbers and the 
first high-level programming language, Plankalkiil. The first electronic computer, the ABC, 
was assembled by John Atanasoff and his student Clifford Berry between 1940 and 1942 
at Iowa State University. Atanasoff's research received little support or recognition; it was 
the ENIAC, developed as part of a secret military project at the University of Pennsylvania 
by a team including John Mauchly and John Eckert, that proved to be the most influential 
forerunner of modern computers. 

In the half-century since then, each generation of computer hardware has brought an 
increase in speed and capacity and a decrease in price. Performance doubles every 18 months 
or so, with a decade or two to go at this rate of increase. After that, we will need molecular 
engineering or some other new technology. 

Of course, there were calculating devices before the electronic computer. The earliest 
automated machines, dating from the 17th century, were discussed on page 6. The first pro- 
grammable machine was a loom devised in 1805 by Joseph Marie Jacquard (1752-1834) that 
used punched cards to store instructions for the pattern to be woven. In the mid-19th century, 
Charles Babbage (1792-1871) designed two machines, neither of which he completed. The 
"Difference Engine," which appears on the cover of this book, was intended to compute math- 
ematical tables for engineering and scientific projects. It was finally built and shown to work 
in 1991 at the Science Museum in London (Swade, 1993). Babbage's "Analytical Engine" 
was far more ambitious: it included addressable memory, stored programs, and conditional 
jumps and was the first artifact capable of universal computation. Babbage's colleague Ada 
Lovelace, daughter of the poet Lord Byron, was perhaps the world's first programmer. (The 
programming language Ada is named after her.) She wrote programs for the unfinished Ana- 
lytical Engine and even speculated that the machine could play chess or compose music. 

Heath Robinson was a cartoonist famous for his depictions of whimsical and absurdly 
tions for everyday tasks such as buttering toast. 

In the postwar period, Turing wanted to use these computers for research-for example, one of the first 
chess programs (Turing et 1953). His efforts were blocked by the British government. 
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also owes a debt to the software side of computer science, which has supplied the 
operating systems, programming languages, and tools needed to write modern programs (and 
papers about them). But this is one area where the debt has been repaid: work in has pio- 
neered many ideas that have made their way back to mainstream computer science, including 
time sharing, interactive interpreters, personal computers with windows and mice, rapid de- 
velopment environments, the linked list data type, automatic storage management, and key 
concepts of symbolic, functional, dynamic, and object-oriented programming. 

Control theory and Cybernetics (1948-present) 

How can artifacts operate under their own control? 

of Alexandria (c. 250 built the first self-controlling machine: a water clock 
with a regulator that kept the flow of water running through it at a constant, predictable pace. 
This invention changed the definition of what an artifact could do. Previously, only living 
things could modify their behavior in response to changes in the environment. Other examples 
of self-regulating feedback control systems include the steam engine governor, created by 
James Watt (1736-1 8 and the thermostat, invented by Drebbel (1 572-1633), 
who also invented the submarine. The mathematical theory of stable feedback was 
developed in the 19th century. 

CONTROL THEORY The central figure in the creation of what is now called control theory was Norbert 
Wiener (1894-1964). Wiener was a brilliant mathematician who worked with Bertrand Rus- 
sell, among others, before developing an interest in biological and mechanical systems 
and their connection to cognition. Like Craik (who also used control systems as psycholog- 
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian challenged 

behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as 
arising from a regulatory mechanism trying to minimize "error"-the difference between 
current state and goal state. In the late Wiener, along with Warren Walter 

and John von Neumann, organized a series of conferences that explored the nevv mathe- 
matical and models of cognition and influenced many other researchers in the 
behavioral sciences. Wiener's book Cybernetics (1948) became a bestseller and avvoke the 
public to the possibility of artificially intelligent machines. 

Modern control theory, especially the branch known as stochastic optimal control, has 
OBJECTIVE 
FUNCTION as its goal the design of systems that maximize an objective function over time. This roughly 

our view of AH: designing systems that behave optimally. Why, then, are and con- 
trol theory two different fields, especially given the close connections among their founders? 
The answer lies in the close coupling between the mathematical techniques that were familiar 
to the participants and the corresponding sets of problems that were encompassed in each 
world view. Calculus and matrix algebra, the tools of control theory, lend themselves to sys- 
tems that are describable fixed sets of continuous variables; furthermore, exact is 
typically feasible only for linear systems. was founded in part as a way to escape from the 
limitations of the mathematics of control theory in the 1950s. The tools of logical inference 

computation allowed researchers to consider some problems such as language, vision, 
planning, that fell completely outside the control theorist's purview. 
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Linguistics (1957-present) 

How does language relate to thought? 

In 1957, B. F. Skinner published Behavior. This was a comprehensive, detailed ac- 
count of the behaviorist approach to language learning, written by the foremost expert in the 
field. But curiously, a review of the book became as well known as the book itself, and served 
to almost kill off interest in behaviorism. The author of the review was Chomsky, who 
had just published a book on his own theory, Syntactic Structures. Chomsky showed how 
the behaviorist theory did not address the notion of creativity in language-it did not explain 
how a child could understand and make up sentences that he or she had never heard before. 

theory-based on syntactic models going back to the Indian linguist (c. 
350 explain this, and unlike previous theories, it was formal enough that it 
could in principle be programmed. 

Modem linguistics and AI, then, were "born" at about the same time, and grew up 
together, intersecting in a hybrid field called computational linguistics or natural language 
processing. The problem of understanding language soon out to be considerably more 
complex than it seemed in 1957. Understanding language requires an understanding of the 
subject matter and context, not just an understanding of the structure of sentences. This might 
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in 
knowledge representation (the study of how to put knowledge into a form that a computer 
can reason with) was tied to language and informed by research in Linguistics, which was 
connected in turn to decades of work on the philosophical analysis of language. 

With the background material behind us, we are ready to cover the development of itself. 

The gestation of artificial intelligence 

The first work that is now generally recognized as was done by Warren McCulloch and 
Walter Pitts (1943). They drew on three sources: knowledge of the basic physiology and 
function of neurons in the brain; a formal analysis of propositional logic due to Russell and 
Whitehead; and Turing's theory of computation. They proposed a model of artificial neurons 
in which each neuron is characterized as being "on" or "off," with a switch to "on" occurring 
in response to stimulation by a sufficient number of neighboring neurons. The state of a 
neuron was conceived of as "factually equivalent to a proposition which proposed its adequate 
stimulus." They showed, for example, that any computable function could be computed by 
some network of connected neurons, and that all the logical connectives (and, or, not, etc.) 
could be implemented by simple net structures. McCulloch and Pitts also suggested that 
suitably defined networks could learn. Donald Hebb (1949) demonstrated a simple updating 
rule for modifying the connection strengths between neurons. His rule, now called Hebbian 
learning, remains an influential model to this day. 
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Two undergraduate students at Harvard, Marvin Minsky and Dean Edmonds, built the 
first neural network in 1950. The SNARC, as it was called, used 3000 vacuum 
tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate a network of 
40 neurons. Later, at Princeton, Minsky studied universal computation in neural networks. 
His committee was skeptical about whether this kind of work should be considered 
mathematics, but von Neumann reportedly said, "If it isn't now, it will be someday." Minsky 
was later to prove influential theorems showing the limitations of neural network research. 

There were a number of early examples of work that can be characterized as AI, but it 
was Alan Turing who first articulated a complete vision of in his 1950 article "Comput- 
ing Machinery and Intelligence." Therein, he introduced the Turing test, machine learning, 
genetic algorithms, and reinforcement learning. 

The birth of artificial intelligence (1956) 

Princeton was home to another influential figure in AI, John McCarthy. After graduation, 
McCarthy moved to Dartmouth College, which was to become the official birthplace of the 
field. McCarthy convinced Minsky, Claude Shannon, and Nathaniel Rochester to help him 
bring together U.S. researchers interested in automata theory, neural nets, and the study of 
intelligence. They organized a two-month workshop at Dartmouth in the summer of 1956. 
There were 10 attendees in all, including Trenchard More from Princeton, Arthur Samuel 
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT. 

Two researchers from Carnegie Allen and Herbert Simon, rather stole 
the show. Although the others had ideas and in some cases programs for particular appli- 
cations such as checkers, and Simon already had a reasoning program, the Logic 
Theorist (LT), about Simon claimed, "We have invented a computer program capable 
of thinking non-numerically, and thereby solved the venerable mind-body Soon 
after the workshop, the program was able to prove most of the theorems in Chapter 2 of Rus- 
sell and Whitehead's Principia Russell was reportedly delighted when Simon 
showed him that the program had come up with a proof for one theorem that was shorter than 
the one in Principia. The editors of the Journal of Symbolic Logic were less impressed; they 
rejected a paper coauthored by Simon, and Logic Theorist. 

The Dartmouth workshop did not lead to any new breakthroughs, but it did introduce 
all the major figures to each other. For the next 20 years, the field would be dominated by 
these people and their students and colleagues at MIT, CMU, Stanford, and IBM. Perhaps 
the longest-lasting thing to come out of the workshop was an agreement to adopt 
new name for the field: artificial intelligence. Perhaps "computational rationality" would 
have been better, but "AI" has stuck. 

Looking at the proposal for the Dartmouth workshop (McCarthy et we can 
see why it was necessary for to become a separate field. Why couldn't all the work done 

NOW Carnegie Mellon University (CMU). 
and Simon also invented a list-processing language, IPL, to write LT. They had no compiler, and 

translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to 
each other as they wrote each instruction to make sure they agreed. 
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in have taken place under the name of control theory, or operations research, or decision 
theory, which, after all, have objectives similar to those of AI? Or why isn't a branch 
of mathematics? The first answer is that from the start embraced the idea of duplicating 
human faculties like creativity, self-improvement, and language use. None of the other fields 
were addressing these issues. The second answer is methodology. is the only one of these 
fields that is clearly a branch of computer science (although operations research does share 
an emphasis on computer simulations), and is the only field to attempt to build machines 
that will function autonomously in complex, changing environments. 

Early enthusiasm, great expectations 

The early years of were full of successes-in a limited way. Given the primitive computers 
and programming tools of the time, and the fact that only a few years earlier computers 
were seen as things that could do and no more, it was astonishing whenever a 
computer did anything remotely clever. The intellectual establishment, by and large, preferred 
to believe that "a machine can never do X." (See Chapter 26 for a long list of X's gathered 
by Turing.) researchers naturally responded by demonstrating one X after another. John 
McCarthy referred to this period as the "Look, Ma, no hands!" era. 

and Simon's early success was followed up with the General Problem Solver, 
or GPS. Unlike Logic Theorist, this program was designed from the start to imitate human 
problem-solving protocols. Within the limited class of puzzles it could handle, it turned out 
that the order in which the program considered and possible actions was similar to 
that in which humans approached the same problems. Thus, GPS was probably the first pro- 
gram to embody the "thinking humanly" approach. The success of GPS and subsequent pro- 
grams as models of cognition led and Simon (1976) to formulate the famous physical 
symbol system hypothesis, which states that "a physical symbol system has the necessary and SYSTEM 

sufficient means for general intelligent action." What they meant is that any system (human 
or machine) exhibiting intelligence must operate by manipulating data structures composed 
of symbols. We will see later that this hypothesis has been challenged from many directions. 

At IBM, Nathaniel Rochester and his colleagues produced some of the first pro- 
grams. Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was 
able to prove theorems that many students of mathematics would find quite tricky. Starting 
in 1952, Arthur Samuel wrote a series of programs for checkers (draughts) that eventually 
learned to play at a strong amateur level. Along the way, he disproved the idea that comput- 
ers can do only what they are told to: his program quickly learned to play a better game than 
its creator. The program was demonstrated on television in February 1956, creating a very 
strong impression. Like Turing, Samuel had trouble finding computer time. at night, 
he used machines that were still on the testing floor at manufacturing plant. Chapter 6 
covers game playing, and Chapter 21 describes and expands on the learning techniques used 
by Samuel. 

John McCarthy moved Dartmouth to and there made three crucial contribu- 
tions in one historic year: 1958. In MIT Lab Memo No. 1, McCarthy defined the high-level 
language Lisp, which was to become the dominant programming language. Lisp is the 
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second-oldest major high-level language in current use, one year younger than FORTRAN. 
With Lisp, McCarthy had the tool he needed, but access to scarce and expensive computing 
resources was also a serious problem. In response, he and others at MIT invented time shar- 
ing. Also in 1958, McCarthy published a paper entitled Programs with Common Sense, in 
which he described the Advice Taker, a hypothetical program that can be seen as the first 
complete system. Like the Logic Theorist and Geometry Theorem Prover, 
program was designed to use knowledge to search for solutions to problems. But unlike the 
others, it was to embody general knowledge of the world. For example, he showed how some 
simple axioms would enable the program to generate a plan to drive to the airport to catch 
a plane. The program was also designed so that it could accept new axioms in the normal 
course of operation, thereby allowing it to achieve competence in new areas without being 
reprogrammed. The Advice Taker thus embodied the central principles of knowledge repre- 
sentation and reasoning: that it is useful to have a formal, explicit representation of the world 
and of the way an agent's actions affect the world and to be able to manipulate these repre- 
sentations with deductive processes. It is remarkable how much of the 1958 paper remains 
relevant even today. 

1958 also marked the year that Marvin Minsky moved to MIT. His initial collabora- 
tion with McCarthy did not last, however. McCarthy stressed representation and reasoning 
in formal logic, whereas Minsky was more interested in getting programs to work and even- 
tually developed an anti-logical outlook. In 1963, McCarthy started the lab at Stanford. 
His plan to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson's 
discovery of the resolution method (a complete theorem-proving algorithm for first-order 
logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical 
reasoning. Applications of logic included Green's question-answering and planning 
systems (Green, and the Shakey robotics project at the new Stanford Research Insti- 
tute (SRI). The latter project, discussed further in Chapter 25, was the first to demonstrate the 
complete integration of logical reasoning and physical activity. 

Minsky supervised a series of students who chose limited problems that appeared to 
require intelligence to solve. These limited domains became known as microworlds. James 
Slagle's SAINT program was able to solve closed-form calculus integration problems 
typical of first-year college courses. Tom Evans's ANALOGY program (1968) solved geomet- 
ric analogy problems that appear in IQ tests, such as the one in Figure 1.4. Daniel 
STUDENT program (1967) solved algebra story problems, such as the following: 

If the number of customers Tom gets is twice the square of 20 percent of the number 
of advertisements he runs, and the number of advertisements he is 45, what is the 
number of customers Tom gets? 

The most famous microvvorld was the blocks world, which consists of a set of solid blocks 
placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.5. 
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand 
that can pick up one block at a time. The blocks world was home to the vision project of 
David the vision and constraint-propagation work of David Waltz 
the learning theory of Patrick Winston the natural language understanding program 
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Figure 1.4 An example problem solved by Evans's ANALOGY program. 

Figure 1.5 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed 
the command, "Find a block which is taller than the one you are holding and put it in the box." 

of Terry and the planner of Scott Fahlman (1974). 
Early work building on the neural networks of and Pitts also flourished. 

The work of and (1963) showed how a large number of elements could 
collectively represent an individual concept, with a corresponding increase in robustness and 
parallelism. Hebb's learning methods were enhanced by Bernie and Hoff, 
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1960; who called his networks adalines, and by Frank Rosenblatt (1962) 
with his perceptrons. Rosenblatt proved the perceptron theorem, showing 
that his learning algorithm could adjust the connection strengths of a perceptron to match any 
input data, provided such a match existed. These topics are covered in Chapter 20. 

A dose of reality (1966-1973) 

From the beginning, researchers were not shy about making predictions of their coming 
successes. The following statement by Herbert Simon in 1957 is often quoted: 

It is not my aim to surprise or shock you-but the simplest way 1 can summarize is to say 
that there are now in the world machines that think, that learn and that create. Moreover, 
their ability to do these things is going to increase rapidly until-in a visible future-the 
range of problems they can handle will be coextensive with the range to which the 
mind has been applied. 

Terms such as "visible future" can be interpreted in various ways, but Simon also made a 
more concrete prediction: that within 10 years a computer would be chess champion, and a 
significant mathematical theorem would be proved by machine. These predictions came true 
(or approximately true) within 40 years rather than 10. Simon's over-confidence was due 
to the promising performance of early systems on simple examples. In almost all cases. 
however, these early systems turned out to fail miserably when tried out on wider selections 
of problems and on more difficult problems. 

The first kind of difficulty arose because most early programs contained little or no 
knowledge of their subject matter; they succeeded by means of simple syntactic manipula- 
tions. A typical story occurred in early machine translation efforts, which were generously 
funded by the U.S. National Research Council in an attempt to speed up the translation of 
Russian scientific papers in the wake of the Sputnik launch in 1957. It was thought ini- 
tially that simple syntactic transformations based on the grammars of Russian and English, 
and word replacement using an electronic dictionary, would suffice to preserve the exact 
meanings of sentences. The fact is that translation requires general knowledge of the subject 
matter in order to resolve ambiguity and establish the content of the sentence. The famous 
re-translation of "the spirit is willing but the flesh is as "the vodka is good but the 
meat is rotten7' illustrates the difficulties encountered. In 1966, a report by an advisory com- 
mittee found that "there has been no machine translation of general scientific text, and none 
is in immediate All U.S. government funding for academic translation projects 
was canceled. Today, machine translation is an imperfect but widely used tool for technical, 
commercial, government, and Internet documents. 

The second kind of difficulty was the intractability of many of the problems that was 
attempting to solve. Most of the early programs solved problems by trying different 
combinations of steps until the solution was found. This strategy worked initially because 
microworlds contained very few objects and hence very few possible actions and very short 
solution sequences. Before the theory of computational complexity was developed, it was 
widely thought that "scaling up" to larger problems was simply a matter of faster hardware 
and larger memories. The optimism that accompanied the development of resolution theorem 
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proving, for example, was soon dampened when researchers failed to prove theorems involv- 
ing more than a few dozen facts. The fact that a program can a solution in principle does 
not mean that the program contains any of the mechanisms needed it in practice. 

The illusion of unlimited computational power was not confined to problem-solving 
MACHINE EVOLUTION programs. Early experiments in machine evolution (now called genetic algorithms) 

berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by 
making an appropriate series of small mutations to a machine code program, one can gener- 
ate a program with good performance for any particular simple task. The idea, then, was to 
try random mutations with a selection process to preserve mutations that seemed useful. De- 
spite thousands of hours of CPU time, almost no progress was demonstrated. Modern genetic 
algorithms use better representations and have shown more success. 

Failure to come to grips with the "combinatorial explosion" was one of the main criti- 
cisms of contained in the Lighthill report (Lighthill, which formed the basis for the 
decision by the British government to end support for research in all but two universities. 
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions 
and personal animosities whose description is beside the point.) 

A third difficulty arose because of some fundamental limitations on the basic structures 
being used to generate intelligent behavior. For example, Minsky and book 

(1969) proved that, although perceptrons (a simple form of neural network) could be 
shown to learn anything they were capable of representing, they could represent very little. 
In particular, a two-input perceptron could not be trained to recognize when its two inputs 
were different. Although their results did not apply to more complex, multilayer networks, 
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new 
back-propagation learning algorithms for multilayer networks that were to cause an enor- 
mous resurgence in neural-net research in the late 1980s were actually discovered first in 
1969 (Bryson and Ho, 1969). 

Knowledge-based systems: The key to power? (1969-1979) 

The picture of problem solving that had arisen during the first decade of research was of 
a general-purpose search mechanism trying to string together elementary reasoning steps to 

WEAK METHODS find complete solutions. Such approaches have been called weak methods, because, although 
general, they do not scale up to large or difficult instances. The alternative to weak 
methods is to use more powerful, domain-specific knowledge that allows larger reasoning 
steps and can more easily handle typically occurring cases in narrow areas of expertise. One 
might say that to solve a hard problem, you have to almost know the answer already. 

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach. 
It was developed at Stanford, where Ed Feigenbaum (a student of Herbert Simon), 
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel 
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the 
information provided by a mass spectrometer. The input to the program consists of the ele- 
mentary formula of the molecule and the mass spectrum giving the masses 
of the various fragments of the molecule generated when it is bombarded by an electron beam. 
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For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass 
of a methyl fragment. 

The naive version of the program generated all possible structures consistent with the 
formula, and then predicted what mass spectrum would be observed for each, comparing this 
with the actual spectrum. As one might expect, this is intractable for decent-sized molecules. 
The DENDRAL researchers consulted analytical chemists and found that they worked by look- 
ing for well-known patterns of peaks in the spectrum that suggested common substructures in 
the molecule. For example, the following rule is used to recognize a ketone subgroup 
(which weighs 28): 

if there are two peaks at and such that 
(a) = + 28 (M is the mass of the whole molecule); 
(b) - 28 is a high peak; 
(c) - 28 is a high peak; 
(d) At least one of and is high. 
then there is a ketone subgroup 

Recognizing that the contains a particular substructure reduces the number of pos- 
sible candidates enormously. DENDRAL was powerful because 

All the relevant theoretical knowledge to solve these problems has been mapped over from 
its general form in the [spectrum prediction component] ("first principles") to efficient 
special forms ("cookbook recipes"). (Feigenbaum et al., 1971) 

The significance of DENDRAL was that it was the first successful knowledge-intensive sys- 
tem: its expertise derived from large numbers of special-purpose rules. Later systems also 
incorporated the main theme of Advice Taker approach-the clean separation of 
the knowledge (in the form of rules) from the reasoning component. 

With this lesson in mind, Feigenbaum and others at Stanford began the Heuristic Pro- 
gramming Project (HPP), to investigate the extent to which the new methodology of expert 

EXPERTSYSTEMS systems could be applied to other areas of human expertise. The next major effort was in 
the area of medical diagnosis. Feigenbaum, Buchanan, and Dr. Edward Shortliffe developed 
MYCIN to diagnose blood infections. With about 450 rules, MYCIN was able perform 
as well as some experts, and considerably better than junior doctors. It also contained two 
major differences from DENDRAL. First, unlike the DENDRAL rules, no general theoretical 
model existed from which the rules could be deduced. They had to be acquired from 
extensive interviewing of experts, who in turn acquired them from textbooks, other experts, 
and direct experience of cases. Second, the rules had to reflect the uncertainty associated with 
medical knowledge. MYCIN incorporated a calculus of uncertainty called certainty factors 
(see Chapter which seemed (at the time) to fit well with how doctors assessed the impact 
of evidence on the diagnosis. 

The importance of domain knowledge was also apparent in the area of understanding 
natural language. Although Winograd's SHRDLU system for understanding natural language 
had engendered a good deal of excitement, its dependence on syntactic analysis caused some 

the same problems as occurred in the early machine translation work. It was able to 
ambiguity and understand pronoun references, but this was mainly because it was 
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FRAMES 

designed specifically for one area-the blocks world. Several researchers, including Eugene 
Charniak, a fellow graduate student of Winograd's at MIT, suggested that robust language 
understanding would require general knowledge about the world and a general method for 
using that knowledge. 

At Yale, the linguist-turned-AI-researcher Roger Schank emphasized this point, claim- 
ing, "There is no such thing as syntax," which upset a lot of linguists, but did serve to start a 
useful discussion. Schank and his students built a series of programs (Schank and Abelson, 
1977; Wilensky, 1978; Schank and 1981; Dyer, 1983) that all had the task of under- 
standing natural language. The emphasis, however, was less on language per and more on 
the problems of representing and reasoning with the knowledge required for language under- 
standing. The problems included representing stereotypical situations (Cullingford, 
describing human memory organization (Rieger, 1976; Kolodner, and understanding 
plans and goals (Wilensky, 1983). 

The widespread growth of applications to real-world problems caused a concurrent in- 
crease in the demands for workable knowledge representation schemes. A large number 
of different representation and reasoning languages were developed. Some were based on 
logic-for example, the language became popular in Europe, and the PLANNER fam- 
ily in the United States. Others, following Minsky's idea of frames adopted a more 
structured approach, assembling facts about particular object and event types and arranging 
the types into a large taxonomic hierarchy analogous to a biological taxonomy. 

becomes an industry (1980-present) 

The first successful commercial expert system, R 1, began operation at the Digital Equipment 
Corporation 1982). The program helped configure orders for new computer 
systems; by 1986, it was saving the company an estimated $40 million a year. By 1988, 
DEC7s group had 40 expert systems deployed, with more on the way. Du Pont had 100 
in use and 500 in development, saving an estimated $10 million a year. Nearly every major 
U.S. corporation had its own group and was either using or investigating expert systems. 

In 198 1, the Japanese announced the "Fifth Generation" project, a 10-year plan to build 
intelligent computers running In response the United States formed the Microelec- 
tronics and Computer Technology Corporation (MCC) as a research consortium designed to 
assure national competitiveness. In both cases, was part of a broad effort, including chip 
design and human-interface research. However, the components of MCC and the Fifth 
Generation projects never met their ambitious goals. In Britain, the Alvey report reinstated 
the funding that was cut by the Lighthill 

Overall, the industry boomed from a few million dollars in 1980 to billions of dollars 
in 1988. Soon after that came a period called the Winter," in which many companies 
suffered as they failed to deliver on extravagant promises. 

TO save embarrassment, a new field called IKBS (Intelligent Knowledge-Based Systems) was invented because 
Artificial Intelligence had been officially canceled. 
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The return of neural networks (1986-present) 

Although computer science had largely abandoned the field of neural networks in the late 
work continued in other fields. Physicists such as John (1982) used tech- 

niques from statistical mechanics to analyze the storage and optimization properties of net- 
works, treating collections of nodes like collections of atoms. Psychologists David 
Rumelhart and Geoff continued the study of neural-net models of As we 
discuss in Chapter 20, the real impetus came in the mid-1980s when at least four different 
groups reinvented the back-propagation learning algorithm first found in 1969 by and 
Ho. The algorithm was applied to many learning problems in computer science and psychol- 
ogy, and the widespread dissemination of the results in the collection Parallel Distributed 
Processing (Rumelhart and 1986) caused great excitement. 

These so-called connectionist models of intelligent systems were seen by some as 
rect competitors both to the symbolic models promoted by and Simon and to the 
logicist approach of and others (Smolensky, 1988). It might seem obvious that 
at some level humans manipulate symbols-in fact, Terrence Deacon's book The Symbolic 
Species (1997) suggests that this is the dejining characteristic of humans, but the most ardent 
connectionists questioned whether symbol manipulation had any real explanatory role in de- 
tailed models of cognition. This question remains unanswered, but the current view is that 
connectionist and symbolic approaches are complementary, not competing. 

becomes a science (1987-present) 

Recent years have seen a revolution in both the content and the methodology of work in 
artificial It is now more common to build on existing theories than to propose 
brand new ones, to base claims on rigorous theorems or hard experimental evidence rather 
than on intuition, and to show relevance to real-world applications rather than toy examples. 

was founded in part as a rebellion against the limitations of existing fields like control 
theory and statistics, but it is embracing those fields. As David (1998) put it, 

In the early period of it seemed plausible that new forms of symbolic computation, 
frames and semantic networks, made much of classical theory obsolete. This led to 

a form of isolationism in which became largely separated from the rest of computer 
science. This isolationism is currently being abandoned. There is a recognition that 
machine learning should not be isolated from information theory, that uncertain reasoning 
should not be isolated from stochastic modeling, that search should not be isolated from 
classical optimization and control, and that automated reasoning should not be isolated 
from formal methods and static analysis. 

In terms of methodology, has finally come firmly under the scientific method. 'To be ac- 
cepted, hypotheses must be subjected to rigorous empirical experiments, and the results must 

Some have characterized this change as a victory of the who think that A1 theories should be 
grounded in mathematical rigor-over the who would rather try out lots of ideas, write some 
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness 
implies that the field has reached a level of stability and maturity. Whether that stability will be disrupted by a 
new scruffy idea is another question. 
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be analyzed statistically for their importance (Cohen, 1995). Through the use of the Internet 
and shared repositories of test data and code, it is now possible to replicate experiments. 

The field of speech recognition illustrates the pattern. In the a wide variety of 
different architectures and approaches were tried. Many of these were rather ad and 
fragile, and were demonstrated on only a few specially selected examples. In recent years, 
approaches based on hidden Markov models (HMMs) have come to dominate the area. Two 
aspects of HMMs are relevant. First, they are based on a rigorous mathematical theory. This 
has allowed speech researchers to build on several decades of mathematical results developed 
in other fields. Second, they are generated by a process of training on a large corpus of 
real speech data. This ensures that the performance is robust, and in rigorous blind tests the 
HMMs have been improving their scores steadily. Speech technology and the related field of 
handwritten character recognition are already making the transition to widespread industrial 
and consumer applications. 

Neural networks also fit this trend. Much of the work on neural nets in the 1980s was 
done in an attempt to scope out what could be done and to learn how neural nets differ from 
"traditional" techniques. Using improved methodology and theoretical frameworks, the field 
arrived at an understanding in which neural nets can now be compared with corresponding 
techniques from statistics, pattern recognition, and machine learning, and the most promising 
technique can be applied to each application. As a result of these developments, so-called 

DATA MINING data mining technology has spawned a vigorous new industry. 
Judea Pearl's (1988) Probabilistic Reasoning in Intelligent Systems led to a new accep- 

tance of probability and decision theory in AI, following a resurgence of interest epitomized 
by Peter Cheeseman's (1985) article "In Defense of Probability." The Bayesian network 
formalism was invented to allow efficient representation of, and rigorous reasoning with, 
uncertain knowledge. This approach largely overcomes many problems of the probabilistic 
reasoning systems of the 1960s and 1970s; it now dominates research on uncertain reason- 
ing and expert systems. The approach allows for learning from experience, and it combines 
the best of classical and neural nets. Work by Judea Pearl and by Eric Horvitz and 
David Heckerman (Horvitz and Heckerman, 1986; Horvitz et al., 1986) promoted the idea of 
normative expert systems: ones that act rationally according to the laws of decision theory 
and do not try to imitate the thought steps of human experts. The windowsTM operating sys- 
tem includes several normative diagnostic expert systems for correcting problems. Chapters 
13 to 16 cover this area. 

Similar gentle revolutions have occurred in robotics, computer vision, and knowledge 
representation. A better understanding of the problems and their complexity properties, com- 
bined with increased mathematical sophistication, has led to workable research agendas and 
robust methods. In many cases, formalization and specialization have also led to fragmenta- 
tion: topics such as vision and robotics are increasingly isolated from "mainstream" work. 
The unifying view of as rational agent design is one that can bring unity back to these 
disparate fields. 
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The emergence of intelligent agents (1995-present) 

Perhaps encouraged by the progress in solving the subproblems of AI, researchers have also 
started to look at the "whole agent" problem again. The work of Allen John Laird, 
and Paul Rosenbloom on SOAR 1990; Laird et al., 1987) is the best-known example 
of a complete agent architecture. The so-called situated movement aims to understand the 
workings of agents embedded in real environments with continuous sensory inputs. One 
of the most important environments for intelligent agents is the Internet. systems have 
become so common in web-based applications that the suffix has entered everyday 
language. Moreover, technologies underlie many Internet tools, such as search engines, 
recommender systems, and Web site construction systems. 

Besides the first edition of this text (Russell and Norvig, other texts have 
also adopted the agent perspective (Poole et al., 1998; Nilsson, 1998). One consequence of 
trying to build complete agents is the realization that the previously isolated of 
might need to be reorganized somewhat when their results are to be tied together. In particular, 
it is now widely appreciated that sensory systems (vision, sonar, speech recognition, etc.) 
cannot deliver perfectly reliable information about the environment. Hence, reasoning and 
planning systems must be able to handle uncertainty. A second major consequence of the 
agent perspective is that has been drawn into much closer contact with other such 
as control theory and economics, that also deal with agents. 

1.4 THE STATE OF THE 

What can do today? A concise answer is difficult, because there are so many activities in 
so many subfields. Here we sample a few applications; others appear throughout the book. 

Autonomous planning and scheduling: A hundred million miles from Earth, NASA's 
Remote Agent program became the first on-board autonomous planning program control 
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated 
plans from high-level goals specified from the ground, and it monitored the operation of the 
spacecraft as the plans were executed-detecting, diagnosing, and recovering from problems 
as they occurred. 

Game playing: Deep Blue became the first computer program to defeat the 
world champion in a chess match when it bested Garry Kasparov by a score of 3.5 to 2.5 in 
an exhibition match (Goodman and Keene, 1997). Kasparov said that he felt a "new kind of 
intelligence" across the board from him. magazine described the match as "The 
brain's last stand." The value of stock increased by $18 billion. 

Autonomous control: The ALVINN computer vision system was trained to steer a car 
to keep it following a lane. St was placed in computer-controlled minivan 
and used to navigate across the United States-for 2850 miles it was in control of steering the 
vehicle 98% of the time. A human took over the other mostly at exit ramps. has 
video cameras that transmit road images to ALVINN, which then computes the best direction 
to steer, based on experience from previous training runs. 
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Diagnosis: Medical diagnosis programs based on probabilistic analysis have been able 
to perform at the level of an expert physician in several areas of medicine. (1991) 
describes a case where a leading expert on lymph-node pathology scoffs at a program's diag- 
nosis of an especially difficult case. The creators of the program suggest he ask the computer 
for an explanation of the diagnosis. The machine points out the major factors influencing its 
decision and explains the subtle interaction of several of the symptoms in this case. Eventu- 
ally, the expert agrees with the program. 

Logistics Planning: During the Persian Gulf crisis of 1991, U.S. forces deployed a 
Dynamic Analysis and Replanning Tool, DART (Cross and Walker, to do automated 
logistics planning and scheduling for transportation. This involved up to 50,000 vehicles, 
cargo, and people at a time, and had to account for starting points, destinations, routes, and 
conflict resolution among all parameters. The planning techniques allowed a plan to be 
generated in hours that would have taken weeks with older methods. The Defense Advanced 
Research Project Agency (DARPA) stated that this single application more than paid back 

30-year investment in AI. 
Robotics: Many surgeons now use robot assistants in microsurgery. 

et al., 1996) is a system that uses computer vision techniques to create a three-dimensional 
model of a patient's internal anatomy and then uses robotic control to guide the insertion of a 
hip replacement prosthesis. 

Language understanding and problem solving: PROVERB (Littman et 1999) is a 
computer program that solves crossword puzzles better than most humans, using constraints 
on possible word fillers, a large database of past puzzles, and a variety of information sources 
including dictionaries and online databases such as a list of movies and the actors that appear 
in them. For example, it determines that the clue "Nice Story" can be solved by "ETAGE 
because its database includes the pair "Story in and because it 
recognizes that the patterns "Nice and "X in France" often have the same solution. The 
program does not know that Nice is a city in France, but it can solve the puzzle. 

These are just a few examples of artificial intelligence systems that exist today. Not 
magic or science fiction-but rather science, engineering, and mathematics, to which this 
book provides an introduction. 

This chapter defines and establishes the cultural background against which it has devel- 
oped. Some of the important points are as follows: 

Different people think of differently. Two important questions to ask are: Are you 
concerned with thinking or behavior? Do you want to model humans or work from an 
ideal standard? 
In this book, we adopt the view that intelligence is concerned mainly with rational 
action. Ideally, an intelligent agent takes the best possible action in a situation. We 
will study the problem of building agents that are intelligent in this sense. 
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Philosophers (going back to 400 B.c.) made conceivable by considering the ideas 
that the mind is in some ways like a machine, that it operates on knowledge encoded in 
some internal language, and that thought can be used to choose what actions to take. 
Mathematicians provided the tools to manipulate statements of logical certainty as well 
as uncertain, probabilistic statements. They also set the groundwork for understanding 
computation and reasoning about algorithms. 
Economists formalized the problem of making decisions that maximize the expected 
outcome to the decision-maker. 
Psychologists adopted the idea that humans and animals can be considered 
processing machines. Linguists showed that language use fits into this model. 
Computer engineers provided the artifacts that make applications pro- 
grams tend to be large, and they could not work without the great advances in speed and 
memory that the computer industry has provided. 
Control theory deals with designing devices that act optimally on the basis of feedback 
from the environment. Initially, the mathematical tools of control theory were quite 
different from AI, but the fields are coming closer together. 
The history of has had cycles of success, misplaced optimism, and resulting cutbacks 
in enthusiasm and funding. There have also been cycles of introducing new creative 
approaches and systematically refining the best ones. 

has advanced more rapidly in the past decade because of greater use of the scientific 
method in experimenting with and comparing approaches. 
Recent progress in understanding the theoretical basis for intelligence has gone hand in 
hand with improvements in the capabilities of real systems. The subfields of have 
become more integrated, and has found common ground with other disciplines. 

AND HISTORICAL NOTES 

The methodological status of artificial intelligence is investigated in The Sciences of the 
by Herb Simon which discusses research areas concerned with ar- 

tifacts. It explains how can be viewed as both science and mathematics. (1995) 
gives an overview of experimental methodology within AI. Ford and Hayes (1995) give an 
opinionated view of the usefulness of the Turing Test. 

Intelligence: The Very Idea, by John Haugeland (1985) gives a readable ac- 
count of the philosophical and practical problems of AI. Cognitive science is well described 
by several recent texts (Johnson-Laird, 1988; Stillings et al., 1995; Thagard, 1996) and by 
the Encyclopedia of the Cognitive Sciences (Wilson and Keil, 1999). Baker (1989) covers 
the syntactic part of modern linguistics, and Chierchia and (1990) cover 
semantics. and Martin (2000) cover computational linguistics. 

Early is described in Feigenbaum and Feldman's Computers and Thought 
Minsky's Semantic Processing and the Machine Intelligence series edited 
by Donald Michie. A large number of influential papers have been anthologized by Webber 
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and Nilsson (1981) and by Luger (1995). Early papers on neural networks are collected in 
Neurocomputing (Anderson and Rosenfeld, 1988). The Encyclopedia of AI (Shapiro, 1992) 
contains survey articles on almost every topic in AI. These articles usually provide a good 
entry point into the research literature on each topic. 

The most recent work appears in the proceedings of the major conferences: the bi- 
ennial International Joint Conference on (IJCAI), the annual European Conference on 
(ECAI), and the National Conference on AI, more often known as AAAI, after its sponsoring 
organization. The major journals for general are Artificial Intelligence, Computational 
Intelligence, the IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE In- 
telligent Systems, and the electronic Journal Intelligence Research. There are also 
many conferences and journals devoted to specific areas, which we cover in the appropriate 
chapters. The main professional societies for are the American Association for Artificial 
Intelligence (AAAI), the ACM Special Interest Group in Artificial Intelligence (SIGART), 
and the Society for Artificial Intelligence and Simulation of Behaviour (AISB). AI 
Magazine contains many topical and tutorial articles, and its aaai.org, contains news 
and background information. 

These exercises are intended to stimulate discussion, and some might be set as term projects. 
Alternatively, preliminary attempts can be made now, and these attempts can be reviewed 
after the completion of the book. 

1.1 Define in your own words: (a) intelligence, (b) artificial intelligence, (c) agent. 

1.2 Read Turing's original paper on (Turing, 1950). In the paper, he discusses several 
potential objections to his proposed enterprise and his test for intelligence. Which objec- 
tions still carry some weight? Are his refutations valid? Can you think of new objections 
arising from developments since he wrote the paper? In the paper, he predicts that, by the 
year 2000, a computer will have a 30% chance of passing a five-minute Turing Test with an 

interrogator. What chance do you think a computer would have today? In another 
50 years? 

1.3 Every year the Loebner prize is awarded to the program that comes closest to passing 
a version of the Turing test. Research and report on the latest winner of the Loebner prize. 
What techniques does it use? How does it advance the state of the art in AI? 

1.4 There are well-known classes of problems that are intractably difficult for computers, 
and other classes that are provably undecidable. Does this mean that is impossible? 

1.5 Suppose we extend Evans's ANALOGY program so that it can score 200 on a standard 
test. Would we then have a program more intelligent than a human? Explain. 

1.6 How could introspection-reporting on one's inner thoughts-be inaccurate? Could I 
be wrong about what I'm thinking? Discuss. 
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1.7 Examine the literature to discover whether the following tasks can currently be 
solved by computers: 

a. Playing a decent game of table tennis (ping-pong). 
b. Driving in the center of Cairo. 
c. Buying a week's worth of groceries at the market. 
d. Buying a worth of groceries on the web. 
e. Playing a decent game of bridge at a competitive level. 
f. Discovering and proving new mathematical theorems. 
g. Writing an intentionally funny story. 
h. Giving competent legal advice in a specialized area of law. 
i. Translating spoken English into spoken Swedish in real time. 

Performing a complex surgical operation. 

For the currently infeasible tasks, try to find out what the difficulties are and predict when, if 
ever, they will be overcome. 

1.8 Some authors have claimed that perception and motor skills are the most important part 
of intelligence, and that level" capacities are necessarily parasitic-simple add-ons to 
these underlying facilities. Certainly, most of evolution and a large part of the brain have been 
devoted to perception and motor whereas has found tasks such as game playing and 
logical inference to be easier, in many ways, than perceiving and acting in the real world. Do 
you think that traditional focus on higher-level cognitive abilities is misplaced? 

1.9 Why would evolution tend to result in systems that act rationally? What goals are such 
systems designed to achieve? 

1.10 Are reflex actions (such as moving your hand away from a hot stove) rational? Are 
they intelligent? 

1.11 "Surely computers cannot be intelligent-they can do only what their programmers 
tell them." Is the latter statement true, and does it imply the former? 

1.12 "Surely animals cannot be intelligent-they can do only what their genes tell them." 
Is the latter statement true, and does it imply the former? 

1.13 "Surely animals, humans, and computers cannot be intelligent-they can do only what 
their constituent atoms are told to do by the laws of physics." Is the latter statement true, and 
does it imply the former? 


