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“We are what we can remember”

• We have several types of memory (short-term, long-term, explicit, 

implicit, working, etc.). All are based on changes in synaptic weights.

• It is widely accepted that long-term memories of all kinds are stored in 

the brain in the patterns of synaptic weights in the relevant brain areas 

(i.e. cortex, hippocampus, cerebellum, etc.).

• Do all different brain areas possess the same ability of plastic synaptic 

changes throughout the whole life? 

• It turns out that the so-called primary sensory areas exhibit synaptic 

plasticity only during the so-called critical periods of time after birth 

whereas associative areas of the cortex are plastic all the time.
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Learning and the brain plasticity

• Synaptic plasticity underlies the brain plasticity, which is a lifelong 
ability of the brain to reorganize neural circuits based on new experience. 

• Organism's ability to store, retain, and subsequently recall information is 
called a memory.

• The process of acquisition of memories is called learning.

• We distinguish short-term and long-term memory, which are based on 
short-term and long-term synaptic plasticity, respectively:

– Long-term potentiation of synaptic strengths (LTP)

– Long-term depression of synaptic strengths (LTD) 
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Spines

• Postsynaptic spines are 
numerous small protrusions on 
dendrites.

• 90% of excitatory synapses in 
the cortex are on spines, the 
rest of excitatory and all 
inhibitory synapses are on 
dendritic shafts and soma.

• Red area(s) on spines are PSD 
– postsynaptic density, where 
the postsynaptic receptors and 
their supporting molecules are.

http://synapses.clm.utexas.edu/anatomy/compare/compare.stm

http://synapses.clm.utexas.edu/anatomy/compare/compare.stm
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Synaptic plasticity: mechanisms

• Synaptic plasticity is the ability of the 

synapse to change the strength 

(efficacy) – applies to excitatory 

synapses

• Mechanisms:

– Change in the number or properties 

of postsynaptic receptors 

– Changes in the number of released 

vesicles with neurotransmitter

– Sprouting: synapses grow new 

sprouts, changes in the number of 

synapses

– Changes in the shape of spines 

(affects their electric properties)

spineReceptor changes

Changes in release 

Sprouting

Spine changes
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LTP: change in neurotransmitter release

• https://www.neuroskills.com/brain-injury/neuroplasticity/mechanisms-of-plasticity/



7

LTP and LTD: change in receptor number

• https://courses.lumenlearning.com/wm-biology2/chapter/synaptic-plasticity/
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LTP and LTD: biochemical pathways

• Abbreviations: P = phosphorus, E-LTP = early LTP (1-3 hours),  L-LTP = late LTP (> 

24 hours), CaMK = Ca/Calmodulin dependent protein kinase,  cAMP = cyclic adenosine 

monophosphate, PKA = cAMP-dependent protein kinase A, ERK/MAPK = extracellular signal-

regulated protein kinase/ mitogen-activated protein kinase, RSK2 = ribosomal S6 kinase 2, CREB = 

cAMP-responsive transcription factor, PP1 = protein phosphatase 1, I-1 = inihibitor 1, +P = 

phosphorylation, -P = dephosphorylation.
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LTP: growth of new synapses

• Old synapse • New synapse
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LTP: change of spine size and shape

• Spine shapes and change of spine size and shape during LTP (Hering 

and Sheng, 2001, https://www.nature.com/articles/35104061 

• Benuskova L (2000) The intra-spine electric force can drive vesicles for fusion: a 

theoretical model for long-term potentiation. Neuroscience Letters 280(1): 17-20.

https://www.nature.com/articles/35104061
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LTP and LTD: change in shape and spine number

• Ma and Zuo, 2022, https://doi.org/10.1016/j.semcdb.2021.05.015 

https://doi.org/10.1016/j.semcdb.2021.05.015
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Hebb rule and synaptic scaling

• Schaefer et al., 2017, 

https://doi.org/10.1111/jnc.14107

• Hebb rule: When an axon of cell A 

is near enough to excite a cell B 

and repeatedly or persistently

takes part in firing it, some growth 

process or metabolic change takes 

place in one or both cells such that 

A's efficiency, as one of the cells 

firing B, is increased.” (1949)

• Synaptic scaling or 

heterosynaptic plasticity acts 

through weakening synapses 

adjacent to the potentiated synapse 

to restore homeostasis and optimal 

global firing rate.

https://doi.org/10.1111/jnc.14107
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Plasticity in the developing visual system

• Visual signals travel from neurons in the eye retina through the optic nerve to 

the LGN (lateral geniculate nucleus) in the thalamus and from there to the 

primary visual cortex V1.
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Receptive fields of V1 cells are oriented bars

• Recording neural activity in V1 neurons in response to stimuli of  different 

shapes revealed that neurons respond to the light bars of  different 

orientations (Nobel Prize to Hubel and Wiesel, 1981), thus V1 “receptive 

fields” have the shape of  light bars of  different angles.
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Orientation selective cells V1

• All neurons within a single cortical column respond to the bars of the same 
angle. Columns covering all angles form a hyper-column. “Blobs” are cells 
sensitive to colour.  Each point in the visual field is processed by a single 
hypercolumn (Paulun et al., Front. Comput. Neurosci., 2018) 
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Ocular dominance in V1

• Ocular dominance stripes: cells respond either to the left or right eye or both, 
depending on the stage of development (Luo and O’Leary, 2005) 

• Plastic synaptic connectivity 

during critical period of 

development of V1.
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Right eye          Left eye

Right eye          Left eye

Right eye (open, relays patterned activity)

Left eye (open, relays the same patterns)

Normal Rearing

• Normal development of OD in NR 

(normal rearing) is Hebbian.

• Synapses of the right and left eyes 

drive the cortical cell in sync and they 

both strengthen.

• Initial connectivity and other factors 

cause the spectrum of OD.

Output in sync with both eyes spikes 
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Right eye          Left eye

Right eye          Left eye

Right eye (open, relays patterned activity)

Left eye (closed, relays only noise)

Monocular Deprivation

• The shift in OD in MD is Hebbian.

• Synapses of the right (open) eye that 

drive the cortical cell strengthen.

• Synapses from the left eye (the closed 

one) weaken.

Output in sync with the right eye spikes 
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Right eye     Left eye

Right eye     Left eye

Right eye     Left eye

Reverse suture: not Hebbian

• The Hebbian learning cannot explain 
reverse suture experimental results, 
when formerly closed eye becomes 
dominant.

• Not really, b/c it would predict that 
closed eye synapse will go to zero and 
cannot recover.
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Left 

retina 

LGN

Right 

retina 

LGN

Synapses 

from LGN 

to V1
Synapses 

from LGN 

to V1

Computational model

• The neural network model of the 

development of ocular dominance 

and orientation selectivity in V1

– set up the circuitry reflecting the 

anatomy of the modelled visual 

system

– choose model of a neuron in V1

– implement the synaptic plasticity 

rule for synapses between LGN 

and V1 cortical neuron

– define the activity patterns 

coming from LGN

– simulate the model

image

Receptive Field Plasticity (Harel Shouval)

Neuron in V1
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Rate model of a V1 neuron

Inputs x’j = 

levels of 

shade in the 

given 

image pixel

• Input is comprised of  a “patterned” input (from some input pattern) plus 

random noise, i.e. xj = x’j + random noise. (i.e. small random number)

• If  the eye is closed, then the input is just a random noise: xj = random noise.

jj j xwy =
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),( Mj

j
yx

dt

dw
=

Bienenstock, Cooper & Munro (BCM) theory (1982) 

)(),( MM yyy  −=

• Dependent variables: synaptic weights wj; synaptic inputs xj;  y the output 

frequency and modification threshold M

•  the learning speed, is the parameter.

•  is the modification function and has a shape of  parabola:
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Experimental evidence for M

• It is easier to obtain synaptic potentiation in the cortex of dark-reared animals 

and it is harder to induce synaptic depression in these cortices (cyan curve).

• The opposite is true for light-reared (NR) visual neurons in V1 (green curve).

Low-frequency High-frequency
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The BCM threshold: metaplasticity

• In 1996, Abraham 

and Bear coined 

the term 

metaplasticity, 

i.e. the outcome 

of  synaptic 

plasticity depends 

on the previous 

activity of  a 

neuron (TINS, 

1996)


 2yM =



25

Results of the BCM model: NR

• During NR both eyes receive the 
same patterned input.

• The cortical cell develops the same 
OD for both eyes.

• In this example both eyes are 
equally dominant (the cell response 
is proportional to the weights of 
the inputs synapses).

Picture taken from Clothiaux, Bear, Cooper (1991) Journal of 
Neurophysiology, vol. 66, No. 5, pp. 1785-1804.
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Results of the BCM model: MD after NR

• During MD after NR, first 
both eyes develop binocular 
OD and then only the open 
eye receives patterned input, 
while the closed eye relays only 
random uncorrelated noise 
through its synapses.

• Synapses belonging to the 
closed (left) eye weaken and so 
does the responsiveness of the 
cortical cell to stimulation of 
the closed eye.

• The synapses belonging to the 
open eye become stronger.

Picture taken from Clothiaux, Bear, Cooper (1991) Journal of 
Neurophysiology, vol. 66, No. 5, pp. 1785-1804.
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Results of the BCM model: RS after MD

• During RS after MD, first 

the newly closed (right) eye 

looses dominance because 

its synapses relay only noise.

• The newly opened (left) eye 

synapses began to 

strengthen only after the 

synapses of the formerly 

open eye have had 

weakened first.

Picture taken from Clothiaux, Bear, Cooper (1991) Journal of 
Neurophysiology, vol. 66, No. 5, pp. 1785-1804.
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Success in RS simulation due to dynamic M

• After closing the right eye 

and opening the left eye, 

modification threshold M

slides to the left, because the 

overall activity level drops due 

to the fact that newly closed 

eye relays only noise and 

synapses of  previously open 

eye are still weak.

• The shift in M to the left 

allows the weak left eye 

synapses to strengthen and as 

they get stronger, M gradually

slides to the right.
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Input with the weak activity will depress

Homeostatic (balancing) properties of  M

Input with strong activity will potentiate

• M varies as a function of prior time-averaged postsynaptic activity.

• M varies for all excitatory synapses on the postsynaptic cell.

• M value determines that some synapses will strengthen, and some will 
weaken, leading to an overall balance of all inputs.
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XCAL model of O’Reilly

• XCAL = eXtended Contrastive Attractor Learning model

• It is an unsupervised learning model inspired by the BCM dynamic 

threshold for LTP, but includes also a threshold for depression LTD.

• So XCAL works with two thresholds: − and + and Ca2+ concentration.
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The function f xcal

• Let x be the activity of the sending neuron 

and y be the activity of the receiving 

neuron. Then the change in synaptic weight 

Dw = f xcal .

• The f xcal is the piecewise linear function 

function of the short-term (100 ms) 

average activity of the sending neuron (x) 

times the output receiving neuron (y), i.e. 

<xy>S 

• Where LTD threshold d = 0.1 is a 

constant, and p = <y>l is the dynamic LTP 

threshold equal to the long-term ( 10 s) 

average of the postsynaptic activity y. 

xcalfw =D
d
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The function f xcal

• Let x be the activity of the sending 

neuron and y be the activity of the 

receiving neuron. Then the change in 

synaptic weight Dw = f xcal .

• The f xcal is the piecewise linear function 

mathematically expressed by the formula 

xcalfw =D

𝑓𝑥𝑐𝑎𝑙 = ൝
𝑥𝑦 − 𝜃𝑝 if 𝑥𝑦 > 𝜃𝑝𝜃𝑑

−𝑥𝑦(1 − 𝜃𝑑)/𝜃𝑑 if 𝑥𝑦 ≤ 𝜃𝑝𝜃𝑑

d

• We calculate the average <xy>S over the time interval S  100 ms consisting 

of  iterations 1, 2, …, S as:
𝑥𝑦 𝑆 =

𝑥𝑦1 + 𝑥𝑦2+. . . +𝑥𝑦𝑆
𝑆
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• Let x be the activity of the sending neuron and y be the activity of the 

receiving neuron. Then the change in synaptic weight is:

• Here xy is understood to be the short-term average synaptic activity (on a 

time scale of a few hundred milliseconds – the time scale of Calcium 

accumulation that drives synaptic plasticity, and yl is the long-term average 

activity of the postsynaptic neuron on the scale of tens of seconds.

• yl is calculated like this (l = 1s, min a max are minimal and maximal w, resp.):  

( ) ( )lxcallsxcal xyxyfyxxyfw ,, ==D

( )

( )l

l

ll

l

l

ll

yyy

yyyy

−+=

−+=

min
1

else

max
1

then2.0if





xcalfw =D
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Homeostasis resulting from the function f xcal

• Figure shows how the dynamic threshold  = p drives homeostatis/balance:

• Neurons that have low average activity  = <y>l  are much more likely to 

increase their weights because the threshold  is low (the graph in the middle), 

while those that have high long-term average activity are much more likely to 

decrease their weights because the threshold  is high (the graph on the right).
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Unsupervised learning leads to self-organisation of weights

• Critical elements of the self-organizing learning dynamics in the network of 

excitatory and inhibitory neurons:

– Inhibitory competition – only the most strongly driven neurons get 

over the inhibitory inputs and can get active. These are the ones whose 

current synaptic weights best fit ("detect") the current input pattern.

– Rich get richer, i.e. positive feedback loop – only those neurons that 

get active are capable of learning (b/c when y = 0, then xy = 0, and the 

fxcal = 0 ). Thus, the neurons that already detect the current input are the 

ones that get to further strengthen their ability to detect these inputs.

– Homeostasis. Raising the dynamic threshold  for highly active 

neurons, causes their weights to decrease for all but their most preferred 

input patterns, and thus restoring homeostasis. 
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Error-Driven Learning

• Self-organizing or unsupervised learning is commonly used for finding 

meaningful groupings inherent in the data and exploratory purposes.

• In supervised learning, our goal is to match the input with output using 

available data.

• To learn these more challenging types of problems, we need error-driven 

learning. Intuitively, error-driven learning is much more powerful because it 

drives learning based on differences between the actual and desired 

output y not just the dynamics of input and output signals. 

• Differences (or errors) between expectation and real outcome tell us 

much more precisely what we need to do to learn to solve a problem.
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Medium-time scale dynamic threshold

• The same floating threshold behaviour from the BCM-like self-organizing 

aspect of XCAL learning can be adapted to perform error-driven learning, 

in the form of differences between a real outcome vs. an expectation. 

• Specifically, we speed up the time scale for computing the floating threshold 

and also have it to reflect synaptic activity, not just the receiver activity, i.e.: 

• where <y>m is the new medium-time scale average synaptic activity, 

which we think of as reflecting an emerging expectation about the current 

situation, which develops over roughly one second of neural activity. The 

most recent, short-term neural activity <xy>s reflects the actual 

outcome.

( ) ( )mmssxcalmsxcal yxyxfyxxyfw ,, ==D
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Medium-time scale dynamic threshold

• The figure shows how the dynamic threshold as a function of medium-term 

average synaptic activity produces error-driven learning:

• If the short-term average outcome <xy>s produces greater activation of 

neurons than did expectation  = <xy>m , the weights go up (middle graph), 

while when <xy>s is smaller than expectation, the weights go down (the 

right-most graph). The latter corresponds to low vs. high expectation.
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Error-driven learning in a neural network

• The key idea behind the error-backpropagation learning is that error signals 

arising in an output layer propagate backward down to earlier (hidden) 

layers, so that the network can eventually produce the correct expectations 

on the output layer. 

• Expectation and outcome are calculated in a forward manner whereas Dw is 

calculated in the backward manner, and these two phases alternate until the 

expectation = outcome and learning is stopped.
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The LEABRA framework

• LEABRA stands for Learning 

in an Error-driven and 

Associative, Biologically 

Realistic Algorithm – the name 

is intended to evoke the "Libra" 

balance scale, where in this case 

the balance is reflected in the 

combination of error-driven 

and self-organizing learning 

("associative" is another name 

for Hebbian-like learning).

• The FFFB inhibitory functions 

producing k-Winners-Take-All

dynamics are also implemented 

in the LEABRA framework. 
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Combination of Self-Organizing and Error-Driven Learning in the 

LEABRA framework

• A weighted average of the two ’s is computed, using a "lambda" 

parameter 0 < l < 1 to weight the long-term receiver neuron average (self-

organizing) relative to the medium-term expectation: 

• Such a network can deal with tasks involving forming categories or clusters 

of similar inputs.

( )( )mlmssxcal yyxyxfw )1(, ll −+=D
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Summary

• Learning in a neural network amounts to the modification of synaptic 

weights, in response to the local activity patterns of the sending and 

receiving neurons. These synaptic weights are what determine what an 

individual neuron detects, and thus are the critical parameters for 

determining neuron and network behaviour.

• In other words, everything you know is encoded in the patterns of your 

synaptic weights, and these have been shaped by every experience you’ve 

had - as long as those experiences got your neurons sufficiently active. 

• Critical periods for plasticity were documented in the visual and auditory 

primary cortices, albeit of different duration and sharpness of termination. 

Most cortical and brain areas are plastic during the whole life, i.e. 

somatosensory, motor, frontal and associative areas, etc.
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