Answer Set Programming Translation of Logic Programs

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

Outline

2 Constraints

4 Disjunction

Martin Baláž Answer Set Programming

ヘロト ヘヨト ヘヨト ヘヨト

Translation of Logic Programs

For a logic program from one class, does exists an equivalent logic program from another class?

Example	
a v b.	
b :- not a.	
a :- not b.	J

イロト イポト イヨト イヨト

Equivalence

Definition (Equivalence)

Let Π_1 and Π_2 be a logic programs.

We say that $\Pi_1 < \Pi_2$ if every stable model of Π_1 is a stable model of Π_2 .

We say that $\Pi_1 \equiv \Pi_2$ if $\Pi_1 < \Pi_2$ and $\Pi_2 < \Pi_1$.

Example

a v b.

b :- not a.

a :- not b.

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Translation

Theorem

Let Π be a generalized logic program (with constraints). Let Π' be a normal logic program with constraints containing

 $A \leftarrow body(r)$

for all
$$r \in \Pi$$
, head $(r) = A$,

 $\leftarrow \textit{body}(r) \land A$

for all $r \in \Pi$, head $(r) = \sim A$, and

 \leftarrow body(r)

for all $r \in \Pi$, head $(r) = \bot$. Then $\Pi \equiv \Pi'$.

Equivalence

Definition (Restricted Equivalence)

Let Π_1 and Π_2 be a logic programs and $A \subseteq \mathcal{B}_{\Pi_1} \cap \mathcal{B}_{\Pi_2}$ be a set of grounded atoms. We say that $\Pi_1 \prec_A \Pi_2$ if for all stable models M_1 of Π_1 there exists a stable model $M_1 \in \Pi_2$ and that $M_1 \in A$.

a stable model M_2 of Π_2 such that $M_1 \cap A = M_2 \cap A$.

We say that $\Pi_1 \equiv_A \Pi_2$ if $\Pi_1 \prec_A \Pi_2$ and $\Pi_2 \prec_A \Pi_1$.

Example

```
in(X) v out(X).
in(X) :- not -in(X).
-in(X) :- not in(X).
```

ヘロト ヘヨト ヘヨト ヘヨト

Translation

Theorem

Let Π be a logic program with constraints and inconsistent be a new propositional variable. Let Π' be a logic program containing

 $head(r) \leftarrow body(r)$

for all $r \in \Pi$, head $(r) \neq \bot$, and

inconsistent $\leftarrow \sim$ inconsistent \land body(r)

for all $r \in \Pi$, head $(r) = \bot$. Then $\Pi \equiv_{\mathcal{B}_{\Pi}} \Pi'$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Equivalence

Definition (Homomorphic Equivalence)

Let Π_1 and Π_2 be a logic programs and $h: \mathcal{B}_{\Pi_1} \mapsto \mathcal{B}_{\Pi_2}$ be a homomorphism.

We say that $\Pi_1 \prec_h \Pi_2$ if for all stable models M_1 of Π_1 holds $M_2 = h(M1) = \{h(A) \mid A \in M_1\}$ is a stable model of Π_2 . We say that $\Pi_1 \equiv_h \Pi_2$ if *h* is an isomorphism and $\Pi_1 \prec_h \Pi_2$ and $\Pi_2 \prec_{h^{-1}} \Pi_1$.

Example

```
in(X) v out(X).
in(X) :- not -in(X).
-in(X) :- not in(X).
```

Translation

Theorem

Let Π be an extended logic program (with constrains). Let Π' be a logic program with constraints obtained from Π by

- replacing all objective literals ¬ A by −A
- adding constraints $\leftarrow A \land -A$ for all atoms A.

Then $\Pi \equiv_h \Pi'$ where $h : \mathcal{B}_{\Pi}^{\neg} \mapsto \mathcal{B}_{\Pi'}$ is an isomorphism such that

- h(A) = A
- $h(\neg A) = -A$

for all $A \in \mathcal{B}_{\Pi}$.

< ロ > < 部 > < き > < き > .

Head Cycle Free

Definition (Literal Dependency Graph)

The *literal dependency graph* of a normal disjunctive logic program Π is a directed graph where \mathcal{B}_{Π} is the set of nodes and there is an edge from A' to A if there exists a rule r with $A \in head(r)$ and $A' \in body(r)$.

Definition (Head Cycle Free Disjunctive Logic Program)

A disjunctive logic program is *head cycle free* if its literal dependency graph does not contain directed cycles that go through two literals that belong to the head of the same rule.

イロト イポト イヨト イヨト

Translation

Theorem

Let Π be a head cycle free normal disjunctive logic program. Let Π' be a normal logic program containing

$$A_i \leftarrow body(r) \land \sim A_1 \land \dots \land \sim A_{i-1} \land \sim A_{i+1} \land \sim A_m$$

for all $r \in \Pi$, head $(r) = A_1 \lor \cdots \lor A_m$ and $1 \le i \le m$. Then $\Pi \equiv \Pi'$.

Example

avbvc.

- a :- not b, not c.
- b :- not a, not c.
- c :- not a, not b.

Negative Acyclic

Definition

A generalized disjunctive logic program Π is *negative acyclic* if there is a level mapping ℓ such that

- for every $L_1 \in head^+(r)$ and $L_2 \in head^-(r)$ holds $\ell(L_1) > \ell(L_2)$
- for every $L_1 \in head^+(r)$ and $L_2 \in body^+(r)$ holds $\ell(L_1) \ge \ell(L_2)$

Example

a v not a.

ヘロト ヘヨト ヘヨト ヘヨト

Translation

Theorem (Removing ~ from the Head)

Let Π be a negative acyclic generalized disjunctive logic program. Let Π' be a normal disjunctive logic program containing

 $head^+(r) \leftarrow \sim head^-(r) \land body(r)$

for all $r \in \Pi$. Then $\Pi \equiv \Pi'$.

Example

a v not b.

b :- a.

$$M_1 = \emptyset$$
$$M_2 = \{a, b\}$$

~

. .

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

æ