Answer Set Programming Properties

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

イロト イヨト イヨト イヨト

Martin Baláž Answer Set Programming

ヘロト ヘヨト ヘヨト ヘヨト

Classes of Logic Programs

- Default Negation
 - without default negation
 - default negation in the bodies
 - default negation also in the heads
- Disjunction
 - without disjunction
 - disjunction in the heads
- Explicit Negation
 - without explicit negation
 - with explicit negation
- Constraints
 - without constraints
 - with constrains

・ 戸 ト ・ ヨ ト ・ ヨ ト

Stable Models

Definition (Program Reduct)

Let *I* be an interpretation. A *reduct* of a generalized disjunctive extended logic program with constraints Π (denoted by Π^I) is a positive disjunctive extended logic program with constraints obtained from Π by deleting

- rules containing a default literal $L, I \not\models L$ in the body
- rules containing a default literal $L, I \models L$ in the head
- default literals $L, I \models L$ in the bodies of remaining rules
- default literals $L, I \not\models L$ in the heads of remaining rules

Definition (Stable Model)

An interpretation *I* is a *stable model of* a generalized disjunctive extended logic program with constraints Π if *I* is a min. model of Π^{I} .

Problems

- Existence of Stable Model
 - For given logic program, does exist a stable model?
 - Does exist a logic program with at least two stable models?
- Minimality
 - Is a stable model of a logic program minimal?
- Support
 - For any objective atom, does exist a supporting rule?

< ロト < 同ト < ヨト < ヨト

Logic Programs without Default Negation

Theorem

Let Π be a positive logic program. Then $T_{\Pi} \uparrow \omega$ is the only stable model of Π .

Theorem

Let Π be a positive disjunctive logic program. Then there exists a stable model of Π .

Example (Two stable models)

a v b.

$$M_1 = \{a\}$$

 $M_2 = \{b\}$

イロト イヨト イヨト イヨト

Remaining Classes of Logic Programs

Example (Normal Logic Programs)

a :- not a.

Example (Extended Logic Programs)

a.

-a.

Example (Logic Programs with Constraints)

a.

:- a.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・

Brave Reasoning

E	Example
ā	avb.
ā	a?
9	6 dlv -brave test1
ā	a is bravely true, evidenced by {a}

Examp	le
-------	----

bvc.

a?

\$ dlv -brave test2

a is bravely false

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Cautious Reasoning

Example

avb. a?

\$ dlv -cautious test1
a is cautiously false, evidenced by {b}

Example

```
a :- not a.
a?
```

\$ dlv -cautious test3
a is cautiously true

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Minimality

Theorem

Stable model of a normal disjunctive extended logic program is minimal.

Theorem

Stable model of a general extended logic program is minimal.

Example (Generalized Disjunctive Logic Programs)

a v not a.

$$\begin{array}{rcl}M_1 &=& \emptyset\\M_2 &=& \{a\}\end{array}$$

イロト イヨト イヨト イヨト

크

Proof

Lemma

Let I and I' be interpretations and Π be a normal disjunctive logic program. Then $I' \subseteq I \Rightarrow \Pi^I \subseteq \Pi^{I'}$.

Lemma

Let I be an interpretation and Π be a logic program. Then I is a model of Π iff I is a model of Π^{I} .

Proof of Theorem.

A stable model *I* of a normal disjunctive logic program Π is a minimal model of Π^{I} .

Let $l' \subset l$ be a model of Π . Then l' is a model of Π' . Because $\Pi^{l} \subseteq \Pi^{l'}$, l' is a model of $\Pi^{l'}$. Because *l* is a minimal model of $\Pi^{l'}$, $l' \notin l$.

Logic Programs without Disjunction

Definition (Support)

Let *I* be an interpretation and Π be a generalized logic program. A rule $r \in \Pi$ supports an atom $A \in I$ if

- A = head(r)
- $I \models body(r)$

An interpretation *I* is *supported* if for all atoms $A \in I$ there exists a rule $r \in \Pi$ such that *r* supports *A*.

Example (Supported Model, but Not Stable Model)

a :- a.

$$M = \{a\}$$

イロト イポト イヨト イヨト

Logic Programs without Disjunction

Theorem

Let I be a stable model of a normal logic program Π . Then I is a supported model of Π .

Proof.

Stable model *I* of a normal logic program Π is the least model of Π^{I} . Let $A \in I$ be a non-supported atom. We show that $I' = I \setminus \{A\}$ is a model of Π^{I} , i.e. *I* is not the least model of Π . Let $r \in \Pi^{I}$. If $A \in body(r)$ then $I' \models r$ because $I' \not\models body(r)$. Let $A \notin body(r)$. If $I' \not\models body(r)$ then $I' \models r$. If $I' \models body(r)$ then $I \models body(r)$ and because *A* is not supported, $A \notin head(r)$. Then $I' \models head(r)$.

イロト イヨト イヨト イヨト

Well-Support

Definition (Well-Support)

Let *I* be an interpretation, Π be a normal logic program and ℓ be a level mapping. A rule $r \in \Pi$ well-supports an atom $A \in I$ if r supports A and

• $\ell(A) > \ell(B)$ for all atoms $B \in body(r)$

An interpretation *I* of Π is *well-supported* if for all atoms $A \in I$ there exists a rule well-supporting *A*.

Theorem

An interpretation I is a stable model of a normal logic program Π iff there exists a level mapping such that I is well-supported model of Π .

イロト イボト イヨト イヨ

Example

Example					
p :- a.					
p :- b.					
a :- not -a.					
-a :- not a.					
b :- not -b.					
-b :- not b.					
p :- not p.					

$$\ell(A) = n + 1 \quad \text{if } A \in I, A \notin T_{P^{I}} \uparrow n, A \in T_{P^{I}} \uparrow (n + 1)$$
$$\ell(A) = 0 \qquad \text{if } A \notin I$$
$$\ell(A) = n \quad \Rightarrow \quad A \in T_{P^{I}} \uparrow n$$

(日)

Logic Programs with Disjunction

Definition (Support)

Let *I* be an interpretation and Π be a generalized disjunctive logic program. A rule $r \in \Pi$ weakly supports an atom $A \in I$ if

- A ∈ head(r)
- $I \models body(r)$

A rule $r \in \Pi$ supports an atom $A \in I$ if in addition

• $\forall A' \in head(r) : A' \neq A \Rightarrow I \not\models A'$

An interpretation *I* is *(weakly)* supported if for all atoms $A \in I$ there exists a rule $r \in \Pi$ such that *r* (weakly) supports *A*.

Example (Weakly Supported Model, but Not Supported)

a v b.

< ロト < 同ト < ヨト < ヨト

Logic Programs with Disjunction

Theorem

Let I be a stable model of a normal disjunctive logic program Π . Then I is a supported model of Π .

Proof.

Stable model *I* of a normal disjunctive logic program Π is a minimal model of Π^{I} . Let $A \in I$ be a non-supported atom. We show that $I' = I \setminus \{A\}$ is a model of Π^{I} , i.e. *I* is not a minimal model of Π . Let $r \in \Pi^{I}$. If $A \in body(r)$ then $I' \models r$ because $I' \not\models body(r)$. Let $A \notin body(r)$. If $I' \not\models body(r)$ then $I' \models r$. If $I' \models body(r)$ then $I \models body(r)$ then $I \models body(r)$. Because *I* is a model of Π^{I} , $I \models head(r)$, and because *A* is not supported, there exists $B \in I$, $I \models B$. Then $I' \models head(r)$.

イロト イポト イヨト イヨト

Example			
a v b.			
a :- b.			
b :- a.			

$$M = \{a, b\}$$

Even all atoms are supported, the model *M* can not be iteratively computed from the empty interpretation only by using strongly supporting rules.

イロト イポト イヨト イヨト