Answer Set Programming Extensions

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

Martin Baláž Answer Set Programming

Default Negation in the Heads
 Stable Models

- Motivation
- Queens

Constraints

Stable Models

Definition (Stable Model)

An interpretation *I* is a *stable model* of a logic program Π with a set of constraints *C* if *I* is a stable model of Π and satisfies *C*.

Example (Generate and Test)

color(X, r) v color(X, g) v color(X, b) :- node(X).

:- color(X, C), color(Y, C), edge(X, Y).

Stable Models

Generalized Disjunctive Logic Programs

Definition (Generalized Disjunctive Logic Program)

A generalized disjunctive logic program is a set of rules

$$L_1 \lor \cdots \lor L_m \leftarrow L_{m+1} \land \cdots \land L_n$$

where $1 \le m \le n$ and L_i , $1 \le i \le n$ are literals.

Stable Models

Definition (Program Reduct)

Let *I* be an interpretation. A *reduct* of a generalized disjunctive logic program Π (denoted by Π^I) is a positive disjunctive logic program with constraints obtained from Π by deleting

- rules containing a default literal $L, I \not\models L$ in the body
- rules containing a default literal $L, I \models L$ in the head
- default literals $L, I \models L$ in the bodies of remaining rules
- default literals $L, I \not\models L$ in the heads of remaining rules

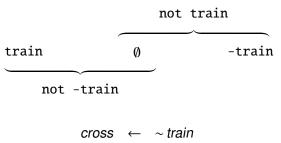
Definition (Stable Model)

An interpretation *I* is a *stable model of* a generalized disjunctive logic program Π if *I* is a minimal model of Π^{I} .

Motivation Queens

Open vs. Closed World Assumption

Employee	
Name	
George	
Janet	


Movie		
Title		
Harry Potter		
Jánošík		

- ? employee(Bob, ...) ? mov:
 - ? movie(Short Movie, ...)

ヘロト 人間 ト 人間 ト 人間 トー

Motivation Queens

Reasoning with Incomplete Knowledge

cross ← ¬ train

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Motivation Queens

Extended Logic Program

Definition (Literal)

An *objective literal* is either an atom or an atom preceded by the symbol \neg . A *default literal* is an objective literal preceded by the symbol \sim . A *literal* is either an objective or a default literal.

Definition (Interpretation)

An *extended Herbrand base* is the set of all ground objective literals. A set of ground objective literals is *coherent* if it does not contain A and $\sim A$ for any ground atom A. A *Herbrand interpretation* is a coherent subset of the extended Herbrand base.

Definition (Satisfiability)

An interpretation *I* satisfies an objective literal *L* if $L \in I$.

ヘロト ヘヨト ヘヨト

Motivation Queens

Example

Example

fly(X) :- bird(X), not ab(X).

ab(X) :- penguin(X).

bird(X) :- penguin(X).

Example

fly(X) :- bird(X), not -fly(X).

-fly(X) :- penguin(X).

bird(X) :- penguin(X).

・ロト ・ 四ト ・ ヨト ・ ヨト ・

크

Motivation Queens

Queens

Example (Domain specification)

```
% domain specification
queen(1..n).
row(1..n).
col(1..n).
```

```
% placing queens
at(Q, R, C) v -at(Q, R, C).
```

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation Queens

Queens

Example (Enumeration)

% queen is placed in at most one location :- at(Q, R1, C1), at(Q, R2, C2), R1 <> R2. :- at(Q, R1, C1), at(Q, R2, C2), C1 <> C2.

% queen is placed in at least one location
placed(Q) :- at(Q, R, C).
:- not placed(Q).

% no two queens are placed in the same location :- at(Q1, R, C), at(Q2, R, C), Q1 <> Q2.

Motivation Queens

Queens

Example (Elimination)

% no two queens are placed in the same row :- at(Q1, R, C1), at(Q2, R, C2), C1 <> C2.

% no two queens are placed in the same column :- at(Q1, R1, C), at(Q2, R2, C), R1 <> R2.

```
% no two queens are placed in the same diagonal
:- at(Q1, R1, C1), at(Q2, R2, C2),
    abs(R1-R2) = abs(C1-C2).
```