Answer Set Programming Stable Models

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

ヘロト ヘヨト ヘヨト ヘヨト

Outline

- Least Model
- Immediate Consequence Operator
- 2 Normal Logic Programs
 - Default Negation
 - Stable Model
- Positive Disjunctive Logic Programs
 Minimal Models
- Normal Disjunctive Logic Programs
 Stable Model

|| (日) ((日) (日) (日) (日) ((1)) (

Least Model Immediate Consequence Operator

Positive Logic Programs

Definition (Positive Logic Program)

A positive (definite) logic program is a set of rules

 $A_0 \leftarrow A_1 \wedge \cdots \wedge A_n$

where $n \ge 0$ and $A_i, 0 \le i \le n$ are atoms.

Example

```
edge(a, b).
...
path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).
```

イロト イヨト イヨト イヨト

Positive Logic Programs

Normal Logic Programs Positive Disjunctive Logic Programs Normal Disjunctive Logic Programs

Least Model

Least Model Immediate Consequence Operator

Theorem

The intersection of the Herbrand models of a positive logic program is its unique minimal Herbrand model.

Sketch of proof.

Every positive logic program has a model - the Herbrand base is a model. If M_1 and M_2 are models, then $M_1 \cap M_2$ is a model too.

Least Model Immediate Consequence Operator

Immediate Consequence Operator

Definition (Immediate Consequence Operator)

Let Π be a positive logic program. An *immediate consequence* operator is defined as follows:

$$T_{\Pi}(I) = \{A \in \mathcal{B}_{\Pi} \mid \exists r \in \Pi : head(r) = A, I \models body(r)\} \\ T_{\Pi} \uparrow \alpha = \begin{cases} \emptyset & \text{if } \alpha = 0 \\ T_{\Pi}(T_{\Pi} \uparrow \beta) & \text{if } \alpha \text{ is a successor ordinal of } \beta \\ \bigcup_{\beta < \alpha} T_{\Pi} \uparrow \beta & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$

Theorem

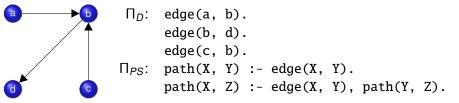
 $T_{\Pi} \uparrow \omega$ is the least model of a positive logic program Π .

イロト イボト イヨト イヨト

Positive Logic Programs

Normal Logic Programs Positive Disjunctive Logic Programs Normal Disjunctive Logic Programs Least Model Immediate Consequence Operator

Example



$$T_{\Pi} \uparrow 0 = \emptyset$$

$$T_{\Pi} \uparrow 1 += \{ edge(a, b), edge(b, d), edge(c, b) \}$$

$$T_{\Pi} \uparrow 2 += \{ path(a, b), path(b, d), path(c, b) \}$$

$$T_{\Pi} \uparrow 3 += \{ path(a, d), path(c, d) \}$$

$$T_{\Pi} \uparrow 4 = T_{\Pi} \uparrow 3$$
...
$$T_{\Pi} \uparrow \omega = T_{\Pi} \uparrow 3$$

Positive Logic Programs

Normal Logic Programs Positive Disjunctive Logic Programs Normal Disjunctive Logic Programs Least Model Immediate Consequence Operator

Example

Example	
p(0).	
p(f(X)) :- p(X).	J

$$T_{\Pi} \uparrow 0 = 0$$

$$T_{\Pi} \uparrow 1 += \{p(0)\}$$

$$T_{\Pi} \uparrow 2 += \{p(f(0))\}$$

$$T_{\Pi} \uparrow 3 += \{p(f(f(0)))\}$$

$$T_{\Pi} \uparrow 3 += \{p(f(f(f(0)))\}$$

...

$$T_{\Pi} \uparrow \omega = \{p(0), p(f(0)), p(f(f(0))), ...\}$$

イロト 不留 トイヨト イヨト

æ

Default Negation Stable Model

Normal Logic Programs

Definition (Normal Logic Program)

A normal logic program is a set of rules

 $A_0 \leftarrow L_1 \land \cdots \land L_n$

where $n \ge 0$, A_0 is an atom, and L_i , $1 \le i \le n$, are literals.

Example

```
man(dilbert).
```

```
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
```

Default Negation Stable Model

Immediate Consequence Operator

$T_{\Pi}(I) = \{A \in \mathcal{B}_{\Pi} \mid \exists r \in \Pi : head(r) = A, I \models body(r)\}$

Example	
a :- not b.	
o :- not a.	

$$T_{\Pi} \uparrow 0 = \emptyset$$

$$T_{\Pi} \uparrow 1 = \{a, b\}$$

$$T_{\Pi} \uparrow 2 = \emptyset$$

$$T_{\Pi} \uparrow 3 = \{a, b\}$$

. . .

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Default Negation Stable Model

Default Negation

Example

```
fly(X) :- bird(X), not ab(X).
ab(X) :- penguin(X).
bird(X) :- penguin(X).
```

```
bird(tweety).
penguin(skippy).
```

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Default Negation Stable Model

Stable Model

Definition (Reduct)

Let *I* be an interpretation. A *reduct* of a normal logic program Π (denoted by Π^{I}) is a positive logic program obtained from Π by deleting

- rules containing a default literal $L, I \not\models L$
- default literals $L, I \models L$ from remaining rules

Definition (Stable Model)

An interpretation *I* is a *stable model* of a normal logic program Π iff *I* is the least model of Π^{I} .

イロト イヨト イヨト イヨト

Default Negation Stable Model

Example

Example

fly(X) :- bird(X), not ab(X). ab(X) :- penguin(X). bird(X) :- penguin(X).

```
bird(tweety).
penguin(skippy).
```


Minimal Models

Positive Disjunctive Logic Programs

Definition (Positive Disjunctive Logic Program)

A positive disjunctive logic program is a set of rules

$$A_1 \lor \cdots \lor A_m \leftarrow A_{m+1} \land \cdots \land A_n$$

where $n \ge m \ge 1$ and A_i , $1 \le i \le n$, are atoms.

Example

```
man(dilbert).
```

```
single(X) v husband(X) :- man(X).
```

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Minimal Models

Minimal Models

Theorem

Every positive disjunctive logic program has a Herbrand model.

Sketch of Proof.

The Herbrand base is a model of a positive disjunctive logic program.

ヘロト 人間 ト 人間 ト 人間 トー

Minimal Models

Properties

There exist more minimal models of Π^{I} .

Example

```
man(dilbert).
```

single(X) v husband(X) :- man(X).

- M1 = {man(dilbert), single(dilbert)}
- M₂ = {man(dilbert), husband(dilbert)}

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Stable Model

Normal Disjunctive Logic Programs

Definition (Normal Disjunctive Logic Program)

A normal disjunctive logic program is a set of rules

$$A_1 \lor \cdots \lor A_m \leftarrow L_{m+1} \land \cdots \land L_n$$

where $n \ge m \ge 1$ and A_i , $1 \le i \le m$, are atoms, L_i , $m < i \le n$ are literals.

Example

```
man(dilbert).
```

```
single(X) v husband(X) :- man(X).
```

イロト イポト イヨト イヨト

Stable Model

Stable Model

Definition (Reduct)

Let *I* be an interpretation. A *reduct* of a normal disjunctive logic program Π (denoted by Π^{I}) is a positive disjunctive logic program obtained from Π by deleting

- rules containing a default literal $L, I \not\models L$
- default literals $L, I \models L$ from remaining rules

Definition (Stable Model)

An interpretation *I* is a *stable model* of a normal disjunctive logic program Π iff *I* is a minimal model of Π^{I} .

ヘロト ヘヨト ヘヨト ヘヨト