Answer Set Programming

Syntax and Semantics

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

Alphabet

Definition (Alphabet)

An alphabet \mathcal{A} consists of:

- variables $V=\{X, Y, Z, \ldots\}$
- function symbols $F=\{f, g, h, \ldots\}$ with arity
- constants
- predicate symbols $P=\{p, q, r, \ldots\}$ with arity
- propositional variables
- logical connectives
- nullary $\{\perp, T\}$
- unary \{~\}
- binary $\{\wedge, \vee, \leftarrow\}$
- quantifiers $\{\forall, \exists\}$
- punctuation symbols \{"(", ")", ","\}

Language

Definition (Language)

A language \mathcal{L} is a triple (F, P, arity) where

- F is a set of function symbols (or constants)
- G is a set of predicate symbols (or propositional variables)
- arity is an arity function $F \cup P \mapsto N$

Terms

Definition (Term)

A term is inductively defined as follows:

- A variable is a term.
- A constant is a term.
- If f is an n-ary function symbol and t_{1}, \ldots, t_{n} are terms then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
A term is said ground if no variable occurs in it. A Herbrand universe is the set of all ground terms.

Atoms

Definition (Atom)

An atom is defined as follows:

- A propositional variable is an atom.
- If p is an n-ary predicate symbol and t_{1}, \ldots, t_{n} are terms then $p\left(t_{1}, \ldots, t_{n}\right)$ is an atom.
An atom is said ground if no variable occurs in it. A Herbrand base is the set of all ground atoms.

Formulae

Definition (Formula)

A formula is inductively defined as follows:

- An atom is a formula.
- A nullary connective is a formula.
- If F is a formula, then $\sim F$ is a formula.
- If F and G are formulae, then $F \wedge G, F \vee G$, and $G \leftarrow F$ are formulae.
- If X is a variable and F is a formula, then $(\forall X) F$ and $(\exists X) F$ are formulae.

Rules

Definition (Literal)

A default literal is an atom preceded by the symbol ~. A literal is either an atom or a default literal.

Definition (Rule)

A rule is a formula of the form

$$
L_{1} \vee \cdots \vee L_{m} \leftarrow L_{m+1} \wedge \cdots \wedge L_{n}
$$

where $L_{i}, 1 \leq i \leq n$ are literals.
The formula $L_{1} \vee \cdots \vee L_{m}$ is called the head and the formula $L_{m+1} \wedge \cdots \wedge L_{n}$ is called the body of a rule.
A rule with an empty body $(m=n)$ and a single disjunct in the head $(m=1)$ is called a fact.
A rule with an empty head $(m=0)$ is called a constraint.

Logic Programs

Definition (Logic Program)

A logic program is a set of rules.
A positive logic program does not contain default negation. A normal logic program can contain default negation only in the bodies of rules. A generalized logic program can contain default negation also in the heads of rules. If a logic program is disjunctive, it can contain rules with disjunction in the head, otherwise it can not.

generalized logic program	normal logic program	positive (definite) logic program
generalized disjunctive logic program	normal disjunctive logic program	positive disjunctive logic program

Example

variable:
constant:
function symbol:
predicate symbol:
terms:
atoms:
literals:
Herbrand universe:
Herbrand base:
fact:
rule:
logic program:
X
0
s (arity 1)
p (arity 1)
$X, 0, s(X), s(0), s(s(X)), s(s(0)), \ldots$
$p(X), p(0), p(s(X)), p(s(0)), \ldots$
$p(X), \sim p(X), p(0), \sim p(0), \ldots$
$0, s(0), s(s(0)), \ldots$
$p(0), p(s(0)), p(s(s(0))), \ldots$
$p(0)$.
$p(s(s(X))) \leftarrow p(X)$.
$\{p(s(0)) \leftarrow, p(s(s(X))) \leftarrow p(X)\}$

Interpretation

Definition (Interpretation)

An interpretation I of a language $\mathcal{L}=(F, P$, arity $)$ is a pair (D, i) where

- D is a domain (non-empty set)
- i is an interpretation function
- $i(f): D^{\text {arity }(f)} \rightarrow D$ for $f \in F$
- $i(p): D^{\operatorname{arity}(p)} \rightarrow\{0,1\}$ for $p \in P$

Valuation

Definition (Variable Valuation)

A variable valuation v is a function $V \mapsto D$ from the set of variables V to the given domain D.

Definition (Term Valuation)

Let $I=(D, i)$ be am interpretation. The value of a term t with respect to a variable valuation v (denoted by $t[v]$) is inductively defined as follows:

- $v(t)$ if t is a variable
- $i(f)\left(t_{1}[v], \ldots, t_{n}[v]\right)$ if $t=f\left(t_{1}, \ldots, t_{n}\right)$ is a function

Satisfiability

Definition (Satisfiability)

An interpretation $I=(D, i)$ satisfies a formula F with respect to the variable valuation v (denoted by $I \models F[v]$) if

- $i(p)\left(t_{1}[v], \ldots, t_{n}[v]\right)=1$ if $F=p\left(t_{1}, \ldots, t_{n}\right)$ is an atom
- $F=\mathrm{T}$ if F is a nullary connective
- not $I \vDash F^{\prime}$ if $F=\sim F^{\prime}$
- $I \models F_{1}[v]$ and $I \models F_{2}[v]$ if $F=F_{1} \wedge F_{2}$
- $I \models F_{1}[v]$ or $I \models F_{2}[v]$ if $F=F_{1} \vee F_{2}$
- $I \models F_{2}[v]$ whenever $I \models F_{1}[v]$ if $F=F_{2} \leftarrow F_{1}$
- for all $a \in D$ holds $I \vDash F^{\prime}[v(X \mapsto a)]$ if $F=(\forall X) F^{\prime}$
- there exists $a \in D$ such that $I \models F^{\prime}[v(X \mapsto a)]$ if $F=(\exists X) F^{\prime}$

Models

Definition (Model)

An interpretation I satisfies a formula F (denoted by $I \models F$) if I satisfies a formula F with respect to all variable valuations. An interpretation I is a model of a set of formulae S if I satisfies all formulae in S.

Example

$$
(\forall Y)((\forall X) \sim \operatorname{taller}(X, Y) \Rightarrow \text { wise }(Y))
$$

Herbrand Interpretations

Definition

A Herbrand interpretation of a language $\mathcal{L}=(F, P$, arity $)$ is an interpretation (D, i) where

- D is a Herbrand universe
- $i(f):\left(t_{1}, \ldots, t_{n}\right) \mapsto f\left(t_{1}, \ldots, t_{n}\right)$

Theorem

A logic program has a model iff it has a Herbrand model.

Sketch of Proof.

Clearly, if a logic program has a Herbrand model, it has a model. Let I be a model of a logic program P. Let H be a Herbrand interpretation such that

$$
H \models A \Leftrightarrow I \models A
$$

where A is a ground atom. By induction on the structure of $r \in P$ we can prove that H is a model of r, i.e. H is a model of P.

Example

Example

```
man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
:- single(X), husband(X).
```

 \(M_{1}=\{\operatorname{man}(\) dilbert), husband(dilbert) \}
 \(M_{2}=\{\operatorname{man}(d i l b e r t)\), single(dilbert) \(\}\)