Syntax Semantics

Answer Set Programming Syntax and Semantics

Martin Baláž

Department of Applied Informatics Comenius University in Bratislava

2009/2010

ヘロト ヘヨト ヘヨト ヘヨト

Alphabet

Definition (Alphabet)

An alphabet A consists of:

- *variables* V = {*X*, *Y*, *Z*, ... }
- function symbols $F = \{f, g, h, ...\}$ with arity
 - constants
- predicate symbols $P = \{p, q, r, ...\}$ with arity
 - propositional variables
- logical connectives
 - nullary $\{\bot, \top\}$
 - unary {~}
 - binary {∧, ∨, ←}
- o quantifiers {∀, ∃}
- punctuation symbols {"(", ")", ","}

ヘロト ヘヨト ヘヨト ヘヨト

æ

Definition (Language)

A language \mathcal{L} is a triple (*F*, *P*, *arity*) where

- F is a set of function symbols (or constants)
- G is a set of predicate symbols (or propositional variables)
- arity is an arity function $F \cup P \mapsto N$

イロト イヨト イヨト イヨト

크

Definition (Term)

A term is inductively defined as follows:

- A variable is a term.
- A constant is a term.
- If *f* is an n-ary function symbol and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

A term is said *ground* if no variable occurs in it. A *Herbrand universe* is the set of all ground terms.

イロト イポト イヨト イヨト

Atoms

Definition (Atom)

An atom is defined as follows:

- A propositional variable is an atom.
- If *p* is an n-ary predicate symbol and t_1, \ldots, t_n are terms then $p(t_1, \ldots, t_n)$ is an atom.

An atom is said *ground* if no variable occurs in it. A *Herbrand base* is the set of all ground atoms.

ヘロト ヘヨト ヘヨト

Definition (Formula)

A formula is inductively defined as follows:

- An atom is a formula.
- A nullary connective is a formula.
- If *F* is a formula, then $\sim F$ is a formula.
- If F and G are formulae, then F ∧ G, F ∨ G, and G ← F are formulae.
- If X is a variable and F is a formula, then (∀X)F and (∃X)F are formulae.

Rules

Definition (Literal)

A *default literal* is an atom preceded by the symbol \sim . A *literal* is either an atom or a default literal.

Definition (Rule)

A rule is a formula of the form

$$L_1 \lor \cdots \lor L_m \leftarrow L_{m+1} \land \cdots \land L_n$$

where L_i , $1 \le i \le n$ are literals. The formula $L_1 \lor \cdots \lor L_m$ is called the *head* and the formula $L_{m+1} \land \cdots \land L_n$ is called the *body* of a rule. A rule with an empty body (m = n) and a single disjunct in the head (m = 1) is called a *fact*. A rule with an empty head (m = 0) is called a *constraint*.

Logic Programs

Definition (Logic Program)

A logic program is a set of rules.

A *positive* logic program does not contain default negation. A *normal* logic program can contain default negation only in the bodies of rules. A *generalized* logic program can contain default negation also in the heads of rules. If a logic program is *disjunctive*, it can contain rules with disjunction in the head, otherwise it can not.

generalized	normal	positive (definite)
logic program	logic program	logic program
generalized disjunctive	normal disjunctive	positive disjunctive
logic program	logic program	logic program

< A > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B >

Syntax Semantics

Example

variable: constant: function symbol: predicate symbol: terms: atoms: literals: Herbrand universe: Herbrand base: fact: rule: logic program:

Х 0 s (arity 1) p (arity 1) $X, 0, s(X), s(0), s(s(X)), s(s(0)), \dots$ $p(X), p(0), p(s(X)), p(s(0)), \dots$ $p(X), \sim p(X), p(0), \sim p(0), \dots$ $0, s(0), s(s(0)), \ldots$ $p(0), p(s(0)), p(s(s(0))), \ldots$ p(0). $p(s(s(X))) \leftarrow p(X).$ $\{p(s(0)) \leftarrow, p(s(s(X))) \leftarrow p(X)\}$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

э

Definition (Interpretation)

An *interpretation I* of a language $\mathcal{L} = (F, P, arity)$ is a pair (D, i) where

- D is a domain (non-empty set)
- *i* is an interpretation function

•
$$i(f): D^{arity(f)} \to D$$
 for $f \in F$

•
$$i(p): D^{arity(p)} \rightarrow \{0, 1\}$$
 for $p \in P$

イロト イヨト イヨト イヨト

크

Definition (Variable Valuation)

A variable valuation v is a function $V \mapsto D$ from the set of variables V to the given domain D.

Definition (Term Valuation)

Let I = (D, i) be an interpretation. The value of a term *t* with respect to a variable valuation v (denoted by t[v]) is inductively defined as follows:

- v(t) if t is a variable
- $i(f)(t_1[v],...,t_n[v])$ if $t = f(t_1,...,t_n)$ is a function

イロト イヨト イヨト イヨト

Satisfiability

Definition (Satisfiability)

An interpretation I = (D, i) satisfies a formula F with respect to the variable valuation v (denoted by $I \models F[v]$) if

- $i(p)(t_1[v],...,t_n[v]) = 1$ if $F = p(t_1,...,t_n)$ is an atom
- $F = \top$ if F is a nullary connective
- not $I \models F'$ if $F = \sim F'$
- $I \models F_1[v]$ and $I \models F_2[v]$ if $F = F_1 \land F_2$
- $I \models F_1[v]$ or $I \models F_2[v]$ if $F = F_1 \lor F_2$
- $I \models F_2[v]$ whenever $I \models F_1[v]$ if $F = F_2 \leftarrow F_1$
- for all $a \in D$ holds $I \models F'[v(X \mapsto a)]$ if $F = (\forall X)F'$
- there exists $a \in D$ such that $I \models F'[v(X \mapsto a)]$ if $F = (\exists X)F'$

イロト イヨト イヨト イヨト

Definition (Model)

An interpretation *I* satisfies a formula *F* (denoted by $I \models F$) if *I* satisfies a formula *F* with respect to all variable valuations. An interpretation *I* is a *model of* a set of formulae *S* if *I* satisfies all formulae in *S*.

Example

$$(\forall Y)((\forall X) \sim taller(X, Y) \Rightarrow wise(Y))$$

Herbrand Interpretations

Definition

A Herbrand interpretation of a language $\mathcal{L} = (F, P, arity)$ is an interpretation (D, i) where

• D is a Herbrand universe

•
$$i(f): (t_1,\ldots,t_n) \mapsto f(t_1,\ldots,t_n)$$

イロト イヨト イヨト イヨト

æ

Theorem

A logic program has a model iff it has a Herbrand model.

Sketch of Proof.

Clearly, if a logic program has a Herbrand model, it has a model. Let I be a model of a logic program P. Let H be a Herbrand interpretation such that

$$H \models A \Leftrightarrow I \models A$$

where A is a ground atom. By induction on the structure of $r \in P$ we can prove that H is a model of r, i.e. H is a model of P.

< ロト < 同ト < ヨト < ヨト

Example

Example

man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
:- single(X), husband(X).

- $M_1 = \{ man(dilbert), husband(dilbert) \}$
- M₂ = {man(dilbert), single(dilbert)}

イロト イポト イヨト イヨト

3