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Language

Definition (Language of LP)

constants a, b , c, . . .

variables X ,Y ,Z , . . .

function symbols f , g, h, . . . with arity

predicate symbols p, q, r , . . . with arity

logical connectives←, ,

punctuation symbols “(”, “)”, “,”
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Terms

Definition (Term)

A term is inductively defined as follows:

A variable is a term.

A constant is a term.

If f is an n-ary function symbol and t1, . . . , tn are terms then
f(t1, . . . , tn) is a term.

A term is said ground if no variable occurs in it. A Herbrand
universe is the set of all ground terms.
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Atoms

Definition (Atom)

An atom is defined as follows:

A propositional variable is an atom.

If p is an n-ary predicate symbol and t1, . . . , tn are terms then
p(t1, . . . , tn) is an atom.

An atom is said ground if no variable occurs in it. A Herbrand base
is the set of all ground atoms.
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Rules

Definition (Literal)

A default literal is an atom preceded by the symbol ∼. A literal is
either an atom or a default literal.

Definition (Rule)

A rule is a formula of the form

L1, . . . , Lm ← Lm+1, . . . , Ln

where Li , 1 ≤ i ≤ n are literals.
The formula L1, . . . , Lm is called the head and the formula
Lm+1, . . . , Ln is called the body of a rule.
A rule with an empty body (m = n) and a single disjunct in the
head (m = 1) is called a fact.
A rule with an empty head (m = 0) is called a constraint.
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Logic Programs

Definition (Logic Program)

A logic program is a set of rules.
A positive logic program does not contain default negation. A
normal logic program can contain default negation only in the
bodies of rules. A generalized logic program can contain default
negation also in the heads of rules. If a logic program is
disjunctive, it can contain rules with disjunction in the head,
otherwise it can not.

generalized normal positive (definite)
logic program logic program logic program

generalized disjunctive normal disjunctive positive disjunctive
logic program logic program logic program
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Example

Example
man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
:- single(X), husband(X).

M1 = {man(dilbert), husband(dilbert)}
M2 = {man(dilbert), single(dilbert)}
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Least Model
Immediate Consequence Operator

Positive Logic Programs

Definition (Positive Logic Program)

A positive (definite) logic program is a set of rules

A0 ← A1 ∧ · · · ∧ An

where n ≥ 0 and Ai , 0 ≤ i ≤ n are atoms.

Example
edge(a, b).
...
path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).
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Least Model
Immediate Consequence Operator

Least Model

Theorem
The intersection of the Herbrand models of a positive logic
program is its unique minimal Herbrand model.

Sketch of proof.
Every positive logic program has a model - the Herbrand base is a
model. If M1 and M2 are models, then M1 ∩M2 is a model too. �
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Least Model
Immediate Consequence Operator

Immediate Consequence Operator

Definition (Immediate Consequence Operator)

Let Π be a positive logic program. An immediate consequence
operator is defined as follows:

TΠ(I) = {A ∈ BΠ | ∃r ∈ Π : head(r) = A , I |= body(r)}

TΠ ↑ α =


∅ if α = 0
TΠ(TΠ ↑ β) if α is a successor ordinal of β⋃
β<α

TΠ ↑ β if α is a limit ordinal

Theorem
TΠ ↑ ω is the least model of a positive logic program Π.
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Least Model
Immediate Consequence Operator

Example

a b

cd

ΠD : edge(a, b).
edge(b, d).
edge(c, b).

ΠPS : path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).

TΠ ↑ 0 = ∅

TΠ ↑ 1 += {edge(a, b), edge(b, d), edge(c, b)}
TΠ ↑ 2 += {path(a, b), path(b, d), path(c, b)}
TΠ ↑ 3 += {path(a, d), path(c, d)}
TΠ ↑ 4 = TΠ ↑ 3

. . .
TΠ ↑ ω = TΠ ↑ 3
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Least Model
Immediate Consequence Operator

Example

Example
p(0).
p(f(X)) :- p(X).

TΠ ↑ 0 = ∅

TΠ ↑ 1 += {p(0)}
TΠ ↑ 2 += {p(f(0))}
TΠ ↑ 3 += {p(f(f(0)))}
TΠ ↑ 3 += {p(f(f(f(0))))}

. . .
TΠ ↑ ω = {p(0), p(f(0)), p(f(f(0))), ...}
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Default Negation
Stable Model

Normal Logic Programs

Definition (Normal Logic Program)

A normal logic program is a set of rules

A0 ← L1 ∧ · · · ∧ Ln

where n ≥ 0, A0 is an atom, and Li , 1 ≤ i ≤ n, are literals.

Example
man(dilbert).

single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
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Default Negation
Stable Model

Immediate Consequence Operator

TΠ(I) = {A ∈ BΠ | ∃r ∈ Π : head(r) = A , I |= body(r)}

Example
a :- not b.
b :- not a.

TΠ ↑ 0 = ∅

TΠ ↑ 1 = {a, b}
TΠ ↑ 2 = ∅

TΠ ↑ 3 = {a, b}
. . .
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Default Negation
Stable Model

Default Negation

Example
fly(X) :- bird(X), not ab(X).
ab(X) :- penguin(X).
bird(X) :- penguin(X).

bird(tweety).
penguin(skippy).

Jozef Siska Answer Set Programming



Positive Logic Programs
Normal Logic Programs

Positive Disjunctive Logic Programs
Normal Disjunctive Logic Programs

Default Negation
Stable Model

Stable Model

Definition (Reduct)

Let I be an interpretation. A reduct of a normal logic program Π
(denoted by ΠI) is a positive logic program obtained from Π by
deleting

rules containing a default literal L , I 6|= L

default literals L , I |= L from remaining rules

Definition (Stable Model)

An interpretation I is a stable model of a normal logic program Π iff
I is the least model of ΠI.
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Default Negation
Stable Model

Example

Example
fly(X) :- bird(X), not ab(X).
ab(X) :- penguin(X).
bird(X) :- penguin(X).
bird(tweety).
penguin(skippy).

M = {bird(tweety), penguin(skippy), bird(skippy),
ab(skippy), fly(tweety)}

Example
a :- not a.
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Minimal Models

Positive Disjunctive Logic Programs

Definition (Positive Disjunctive Logic Program)

A positive disjunctive logic program is a set of rules

A1 ∨ · · · ∨ Am ← Am+1 ∧ · · · ∧ An

where n ≥ m ≥ 1 and Ai , 1 ≤ i ≤ n, are atoms.

Example
man(dilbert).

single(X) v husband(X) :- man(X).
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Minimal Models

Minimal Models

Theorem
Every positive disjunctive logic program has a Herbrand model.

Sketch of Proof.
The Herbrand base is a model of a positive disjunctive logic
program. �
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Minimal Models

Properties

There exist more minimal models of ΠI.

Example
man(dilbert).

single(X) v husband(X) :- man(X).

M1 = {man(dilbert), single(dilbert)}
M2 = {man(dilbert), husband(dilbert)}
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Normal Disjunctive Logic Programs

Definition (Normal Disjunctive Logic Program)

A normal disjunctive logic program is a set of rules

A1 ∨ · · · ∨ Am ← Lm+1 ∧ · · · ∧ Ln

where n ≥ m ≥ 1 and Ai , 1 ≤ i ≤ m, are atoms, Li ,m < i ≤ n are
literals.

Example
man(dilbert).

single(X) v husband(X) :- man(X).
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