Answer Set Programming Quick Summary

Jozef Siska

Department of Applied Informatics Comenius University in Bratislava

2015/2016

Definition (Language of LP)

- constants a, b, c, ...
- variables X, Y, Z,...
- function symbols f, g, h, ... with arity
- predicate symbols p, q, r, ... with arity
- logical connectives \leftarrow , ,
- punctuation symbols "(", ")", ","

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Terms

Definition (Term)

A term is inductively defined as follows:

- A variable is a term.
- A constant is a term.
- If *f* is an n-ary function symbol and t_1, \ldots, t_n are terms then $f(t_1, \ldots, t_n)$ is a term.

A term is said *ground* if no variable occurs in it. A *Herbrand universe* is the set of all ground terms.

ヘロト ヘヨト ヘヨト

Atoms

Definition (Atom)

An atom is defined as follows:

- A propositional variable is an atom.
- If *p* is an n-ary predicate symbol and t_1, \ldots, t_n are terms then $p(t_1, \ldots, t_n)$ is an atom.

An atom is said *ground* if no variable occurs in it. A *Herbrand base* is the set of all ground atoms.

Rules

Definition (Literal)

A *default literal* is an atom preceded by the symbol \sim . A *literal* is either an atom or a default literal.

Definition (Rule)

A rule is a formula of the form

$$L_1, \ldots, L_m \leftarrow L_{m+1}, \ldots, L_n$$

where L_i , $1 \le i \le n$ are literals.

The formula L_1, \ldots, L_m is called the *head* and the formula L_{m+1}, \ldots, L_n is called the *body* of a rule. A rule with an empty body (m = n) and a single disjunct in the head (m = 1) is called a *fact*. A rule with an empty head (m = 0) is called a *constraint*.

Jozef Siska

Answer Set Programming

Logic Programs

Definition (Logic Program)

A logic program is a set of rules.

A *positive* logic program does not contain default negation. A *normal* logic program can contain default negation only in the bodies of rules. A *generalized* logic program can contain default negation also in the heads of rules. If a logic program is *disjunctive*, it can contain rules with disjunction in the head, otherwise it can not.

generalized	normal	positive (definite)
logic program	logic program	logic program
generalized disjunctive	normal disjunctive	positive disjunctive
logic program	logic program	logic program

Example

man(dilbert).
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
:- single(X), husband(X).

$$M_1 = \{ man(dilbert), husband(dilbert) \}$$

M₂ = {man(dilbert), single(dilbert)}

Least Model Immediate Consequence Operator

Positive Logic Programs

Definition (Positive Logic Program)

A positive (definite) logic program is a set of rules

 $A_0 \leftarrow A_1 \land \cdots \land A_n$

where $n \ge 0$ and $A_i, 0 \le i \le n$ are atoms.

Example

```
edge(a, b).
...
path(X, Y) :- edge(X, Y).
path(X, Z) :- edge(X, Y), path(Y, Z).
```

Least Model Immediate Consequence Operator

Least Model

Theorem

The intersection of the Herbrand models of a positive logic program is its unique minimal Herbrand model.

Sketch of proof.

Every positive logic program has a model - the Herbrand base is a model. If M_1 and M_2 are models, then $M_1 \cap M_2$ is a model too.

イロト イヨト イヨト

Least Model Immediate Consequence Operator

Immediate Consequence Operator

Definition (Immediate Consequence Operator)

Let Π be a positive logic program. An *immediate consequence operator* is defined as follows:

$$T_{\Pi}(I) = \{A \in \mathcal{B}_{\Pi} \mid \exists r \in \Pi : head(r) = A, I \models body(r)\} \\ T_{\Pi} \uparrow \alpha = \begin{cases} \emptyset & \text{if } \alpha = 0 \\ T_{\Pi}(T_{\Pi} \uparrow \beta) & \text{if } \alpha \text{ is a successor ordinal of } \beta \\ \bigcup_{\beta < \alpha} T_{\Pi} \uparrow \beta & \text{if } \alpha \text{ is a limit ordinal} \end{cases}$$

Theorem

 $T_{\Pi} \uparrow \omega$ is the least model of a positive logic program Π .

Least Model Immediate Consequence Operator

Example

$$T_{\Pi} \uparrow 0 = \emptyset$$

$$T_{\Pi} \uparrow 1 += \{ edge(a, b), edge(b, d), edge(c, b) \}$$

$$T_{\Pi} \uparrow 2 += \{ path(a, b), path(b, d), path(c, b) \}$$

$$T_{\Pi} \uparrow 3 += \{ path(a, d), path(c, d) \}$$

$$T_{\Pi} \uparrow 4 = T_{\Pi} \uparrow 3$$
...
$$T_{\Pi} \uparrow \omega = T_{\Pi} \uparrow 3$$

Least Model Immediate Consequence Operator

Example

xample	
(0).	
(f(X)) := p(X).	

$$T_{\Pi} \uparrow 0 = \emptyset$$

$$T_{\Pi} \uparrow 1 += \{p(\emptyset)\}$$

$$T_{\Pi} \uparrow 2 += \{p(f(\emptyset))\}$$

$$T_{\Pi} \uparrow 3 += \{p(f(f(\emptyset)))\}$$

$$T_{\Pi} \uparrow 3 += \{p(f(f(f(\emptyset))))\}$$

$$\dots$$

$$T_{\Pi} \uparrow \omega = \{p(\emptyset), p(f(\emptyset)), p(f(f(\emptyset))), \dots\}$$

イロト イヨト イヨト イヨト

æ

Default Negation Stable Model

Normal Logic Programs

Definition (Normal Logic Program)

A normal logic program is a set of rules

$$A_0 \leftarrow L_1 \wedge \cdots \wedge L_n$$

where $n \ge 0$, A_0 is an atom, and L_i , $1 \le i \le n$, are literals.

Example

man(dilbert).

```
single(X) :- man(X), not husband(X).
husband(X) :- man(X), not single(X).
```

Default Negation Stable Model

Immediate Consequence Operator

 $T_{\Pi}(I) = \{A \in \mathcal{B}_{\Pi} \mid \exists r \in \Pi : head(r) = A, I \models body(r)\}$

Example	
a :- not b.	
o :- not a.	

$$T_{\Pi} \uparrow 0 = \emptyset$$

$$T_{\Pi} \uparrow 1 = \{a, b\}$$

$$T_{\Pi} \uparrow 2 = \emptyset$$

$$T_{\Pi} \uparrow 3 = \{a, b\}$$

. . .

・ロト ・ 四ト ・ ヨト ・ ヨト ・

Default Negation Stable Model

Default Negation

Example

```
fly(X) :- bird(X), not ab(X).
ab(X) :- penguin(X).
bird(X) :- penguin(X).
```

```
bird(tweety).
penguin(skippy).
```

・ロト ・ 四ト ・ ヨト ・ ヨト ・

æ

Default Negation Stable Model

Stable Model

Definition (Reduct)

Let *I* be an interpretation. A *reduct* of a normal logic program Π (denoted by Π^{I}) is a positive logic program obtained from Π by deleting

- rules containing a default literal $L, I \not\models L$
- default literals $L, I \models L$ from remaining rules

Definition (Stable Model)

An interpretation *I* is a *stable model* of a normal logic program Π iff *I* is the least model of Π^{I} .

Default Negation Stable Model

Example

Example

fly(X) :- bird(X), not ab(X).
ab(X) :- penguin(X).
bird(X) :- penguin(X).
bird(tweety).
penguin(skippy).

Minimal Models

Positive Disjunctive Logic Programs

Definition (Positive Disjunctive Logic Program)

A positive disjunctive logic program is a set of rules

$$A_1 \lor \cdots \lor A_m \leftarrow A_{m+1} \land \cdots \land A_n$$

where $n \ge m \ge 1$ and A_i , $1 \le i \le n$, are atoms.

Example

```
man(dilbert).
```

```
single(X) v husband(X) :- man(X).
```

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Minimal Models

Minimal Models

Theorem

Every positive disjunctive logic program has a Herbrand model.

Sketch of Proof.

The Herbrand base is a model of a positive disjunctive logic program.

ヘロト ヘ部ト ヘヨト ヘヨト

Minimal Models

Properties

There exist more minimal models of Π^{I} .

Example

```
man(dilbert).
```

```
single(X) v husband(X) :- man(X).
```

- M1 = {man(dilbert), single(dilbert)}
- $M_2 = \{ man(dilbert), husband(dilbert) \}$

Normal Disjunctive Logic Programs

Definition (Normal Disjunctive Logic Program)

A normal disjunctive logic program is a set of rules

$$A_1 \lor \cdots \lor A_m \leftarrow L_{m+1} \land \cdots \land L_n$$

where $n \ge m \ge 1$ and A_i , $1 \le i \le m$, are atoms, L_i , $m < i \le n$ are literals.

Example

```
man(dilbert).
```

```
single(X) v husband(X) :- man(X).
```