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Abstract. In this paper we present a connectionist architecture called
C-block combining several powerful and cognitively relevant features. It
can learn sequential dependencies in incoming data and predict proba-
bility distributions over possible next inputs, notice repeatedly occurring
sequences, automatically detect sequence boundaries (based on surprise
in prediction) and represent sequences declaratively as chunks/plans for
future execution or replay. It can associate plans with reward, and also
with their effects on the system state. It also supports plan inference
from an observed sequence of behaviours: it can recognize possible plans,
along with their likely intended effects and expected reward, and can re-
vise these inferences as the sequence unfolds. Finally, it implements goal-
driven behaviour, by finding and executing a plan that most effectively
reduces the difference between the current system state and the agent’s
desired state (goal). C-block is based on modified self-organizing maps
that allow fast learning, approximate queries and Bayesian inference.

Keywords: sequence learning; self-organizing maps, planning

1 Introduction

In many domains of human action, it is important to learn sequences of items,
and to represent these sequences declaratively. Sometimes these sequences are
actions produced by the agent; in this case, the agent needs to find sequences that
are useful, or rewarding. Sometimes, they are sequences of stimuli perceived in
the world; in this case, the agent needs to identify frequently occurring stimuli.
In either case, the items being sequenced can be of many different types: the
sequences can be of motor actions, or perceived movements, or spoken words, or
whole events.

There is good evidence that the brain makes use of a general-purpose circuit
for learning to recognise, perform, and represent sequences, which is replicated
for different cognitive faculties, that sequence different types of item. This idea
is at the heart of many current general models of cognition, e.g. [1, 3, 7].
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In this paper we present a connectionist model of such a circuit. We name it
the ‘C-block’ circuit, where the ‘C’ stands for chunking. The process of chunking
is the process of learning a declarative representation of a temporal sequence of
items. The representation of a whole chunk can serve for identification (inferring
what chunk is being generated after seeing its first few elements), or generation
(where the chunk serves as a motor schema: a high-level representation of a
sequence of actions, that guides generation of this sequence).

In many contexts, the elements of a temporal sequence can be thought of
as actions that have an effect on the global state of the system, whatever that
state is. Learned chunks then correspond to plans that take the system from
one state to another. The planning component of C-block learns associations
between chunks and their effects (potentially including an externally provided
reward signal). This allows the C-block to operate in a goal-driven mode, wherein
it selects a plan supposed to reduce as effectively as possible the differences
between the system’s current state and a desired goal state, or a plan most
likely to bring about an expected reward. Plan selection is dynamic: each time
a plan completes (or fails), the new current state is used to recompute a new
difference between the current state and the goal state, and the plan which most
effectively reduces this new difference is selected.

We have been successfully using C-block in BabyX [9]—a hyperrealistic vir-
tual simulation of a human baby combining models of the facial motor system
and models of basic neural systems involved in interactive behaviour and learn-
ing. Different C-block instances are used for sequencing of the baby’s own motor
movements, and for sequencing a wide variety of events she can perceive in the
world, from low-level events involved in the production of facial expressions,
to high-level events associated with utterances in a dialogue. In this paper we
illustrate the operation of C-block on a simple artificial example of chunking
sequences of letters into words.

2 The Architecture

The C-block consists of two components: a sequencer and a planner. The se-
quencer learns to predict the next element in a sequence, and in the process,
learns declarative representations of whole sequences: that is, chunks. Chunk
boundaries can be identified through two separate methods. One method im-
plements the idea that chunk boundaries are associated with surprise [6]. The
other method implements the idea that chunks are associated with reward states
[4]. (We implement this by setting a ‘chunk boundary’ signal whenever a reward
signal occurs.) At a chunk boundary, however it is identified, the planner learns
a declarative representation of the preceding sequence, and associates this repre-
sentation with the effect achieved by the whole sequence on a multidimensional
system state, and with a reward signal (if one was provided).

The C-block circuit can operate in three different modes. In observation mode
it receives a sequence of items, together with information about the global state
and/or reward, and learns to represent chunks and their effects. At each moment,
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the circuit generates a Bayesian prediction about the most likely next item, and
makes inferences about the plan that likely generated the sequence thus far,
and the likely effect of this inferred plan. In generation mode, the C-block’s
predictions are used to actively influence the global state of the world, through
motor actions.5 Generation is goal-driven: the C-block begins with an active
goal, then selects a plan that is expected to achieve this goal, then predicts a
sequence of items that implement this plan. The third collaboration mode is a
combination of observation and generation. The C-block begins by observing a
fragment of a sequence, and makes inferences about the likely plan (and goal)
that produced it, as usual. If there is a pause in the observed sequence, and the
C-block is confident in its inference, it can adopt the inferred goal itself, and
actively produce the rest of the sequence. This kind of cooperation is seen in
infants at an early age.

2.1 Architecture of the Sequencer

At the core of the sequencer is a neural network trained to predict the next
item in the incoming sequence. Because the next item is often a function of the
recent items, neural networks for sequence learning usually use recurrent connec-
tions that enrich the immediate input with a context—an exponentially decaying
encoding of the history of preceding elements. A seminal solution for this task
is the simple recurrent network (SRN) [2], trained with back-propagation of er-
ror, and using a softmaxed output layer. As long as the output representation
is localist, i.e. there is one neuron for each possible next element, the softmaxed
output can be interpreted as a probability distribution and standard measures
such as entropy or KL-divergence can be applied to it. The SRN trained on the
next element prediction task is known to learn transition probabilities between
elements [2]. A SRN can be augmented with a tonic input that drives the predic-
tion and biases it towards a particular declaratively represented sequence. This
tactic was used, for instance, in Reynolds et al.’s [8] model of event segmentation,
where the tonic signal represented an event and significantly helped to stabilise
the prediction of the event’s elements.

In the C-block, we use a recurrent version of the self-organising map
(SOM) [5] as the sequence-learning engine, rather than a SRN. The reason
for that is twofold. First, backpropagation is slow and it takes many training
epochs before the prediction reflects transition probabilities implicit in the train-
ing data. Second, the SRN operates in one direction only: it predicts the next
element of the sequence from the immediate input, the recurrent context and
the declarative representation of the chunk. We would like the system to also
predict the likely chunk based on the fragment of the sequence seen so far.

The recurrent SOM implementing the sequencer network is shown in Fig-
ure 1. A SOM basically learn declarative representations of common patterns
on its input media. Unlike networks trained with backprop, a trained SOM can

5 This happens outside the C-block proper. ‘Reafferent’ representations of executed
actions are passed back to the system as perceptual inputs at the next time step.
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operate with partial inputs, and reconstruct the missing ones. (Note that unlike
a SRN, the sequencing SOM takes the ‘next’ item as one of its inputs.) A SOM
basically implements an auto-associative memory over its inputs, by retrieving
a best-matching stored weight vector for any partial or noisy input. We have
significantly refined this ability with two modifications to the standard SOM:

1. Instead of using a simple Euclidean distance for finding the best match, we
use a weighted Euclidean distance where differences in some parts of the
vector can be emphasized, deemphasized, or even ignored (by setting the
mixing weight to zero).

2. Instead of returning the weights of the best-matching neuron, we reconstruct
the input as a combination of all weight vectors with mixing coefficients pro-
portional to their degree of match. This effectively turns the SOM into a
Bayesian probabilistic device computing the expected value of the input
based on posterior probabilities that the input falls into categories repre-
sented by the neurons in the map (see the Appendix for details).

The SOM in Figure 1 thus learns to associate the next item (Next) with
the most recent item (Recent), the context representing the history of previous
elements (Context) and the Tonic—declarative representation of the whole se-
quence. It can be queried to predict the next item based on the Tonic, Content
and Recent, or to estimate Tonic based on the remaining parts of the input
vector.

SOM

NextRecentContextTonic

Fig. 1. The sequencing SOM: the C-block’s sequence-learning device.

The Context is computed as an overlay/sum of localist representations of
previous inputs (preceding the most recent item) exponentially decaying into
the past. This implements a variant of the merge SOM [10].

To illustrate how this merge SOM-like recurrent architecture works, assume
it is receiving a stream of letters, that spell people’s names. Say the SOM has
been trained on the word JAMES. When the first three letters (JAM) have been
presented to the SOM, and the fourth letter E is then presented, the SOM’s Next
field will hold a localist representation of E. The Recent field will hold M (the
previous input), and the Context field will hold representations of A and J, with
the most recent of these most strongly represented.6 When the letter E arrives,
the SOM is trained on the input fields as just described. Then its plasticity

6 More formally, we can write this A+c·J+c2 ·prev, where ‘prev’ is whatever preceded
J, and c < 1 is a decay coefficient, usually between 0.5–0.9.
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is turned off, and the input fields are updated. Then three things happen: the
Context field is multiplied by c, and the contents of the Recent field are added
to it; the letter in the Next field (E) is copied to the Recent field; and the mixing
weight of the Next field in the Euclidean distance is set to zero, so that the
network starts predicting the next element from its other inputs. Thanks to the
localist representation in the next layer and the SOM reconstructing the input
from its full activity (instead of just the best-matching neuron), the result can
be interpreted as a probability distribution over possible next letters. In this
case, if it is already trained, it will predict S, with some confidence.

Besides this basic next element prediction functionality, the SOM also has
an input field where a representation of chunks can be learned: the Tonic input,
shown in red in Figure 1. As the name suggests, the contents of this field should
have tonic, or persistent, activity, during sequential presentation of all elements
of the chunk. In the letter sequencing example, chunks are names. Crucially, the
circuit must have the capacity to infer possible chunks from an incomplete letter
sequence. Since there can be several possible chunks consistent with the items
presented so far, our Tonic input field holds an intermediate representation with
some tonic properties, that is underspecified between alternative possible chunks.

In fact, our underspecified Tonic representation is the same kind of represen-
tation as that maintained in Context field: an overlaid combination of the items
presented so far, but with the emphasis on the earliest, not the latest items. At
the chunk boundary (based on an external signal or a mismatch in prediction),
the chunk representation is reset and the Tonic field is simply set to hold a copy
of the Recent field (which is the first item in a new chunk). If the chunk boundary
occurs again, the Tonic will be filled in with the new Recent; otherwise it will
be retained and the new Recent (multiplied with a decaying constant) will be
overlaid on it.7 In this way, the tonic and the context layers form complementary
representations decaying in opposite directions.

We will illustrate the above scheme with an example of two words that start
with the same subsequence: JOHN and JOSEPH. After both chunk representa-
tions have been successfully learned, they will both contain J as the most active
item, O as the second most active and then decaying HN, or SEPH respectively.
When a J is observed as the onset of a new sequence, the tonic representation
will only contain J at that moment and will be consistent with both JOHN and
JOSEPH (and any other chunk starting with J). The identity of the chunk will
be progressively specified in a natural way as more items arrive. In a strict sense,
the chunk representation is not tonic, because it is evolving in time, but because
of its nature, there should be a high similarity between J, JO, JOH and JOHN.

The progressively specified Tonic representation supports the inference of
fully-specified chunk representations in the other part of the C-block, the plan-
ner, which we will now describe.

7 A similar approach to encoding chunks is used in [8], with the difference that they
use a SRN instead of an SOM and their tonic representation follows a more complex
update rule and is more noisy.
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2.2 Architecture of the Planner

The complete C-block circuit is shown in Figure 2, with the sequencer (Sequenc-
ing SOM) on the right, and the planner (Plan SOM) on the left. The planner

Fig. 2. The complete C-block, including the planner. During observation (black ar-
rows), the system is trained to recognize the sequence and its outcome (reward and
effect) from a fragment and predict its next element (purple arrows). In goal-driven
mode (green arrows) it selects the best plan to achieve the goal and conditions the
sequence generation on the tonic retrieved top-down from the planner.

is implemented by the same kind of modified SOM as the sequencer (with the
weighted Euclidean distance for different parts of the input and option to either
reconstruct from the best matching unit or from the full SOM activity). Its main
function is to learn declarative representations of the chunks identified by the
Tonic field of the sequencer, and to use these for goal-driven behaviour. Recall
that representations of chunks are gradually constructed, item by item, in the
sequencing SOM’s Tonic field. The planner, by contrast, only learns its repre-
sentations of chunks at chunk boundaries, when the representation of a chunk in
the Tonic field is complete. Because of its autoassociative property, the trained
plan SOM is able to reconstruct a full chunk representation from a fragment
of an evolving sequence (either the best matching one or a mixture of several
chunk representations proportional to their similarity with the fragment). In the
letter sequencing example given above, if JO is presented, the activity in the
plan SOM will be high in areas representing the names JOHN and JOSEPH and
the retrieved tonic will reflect their mixture. But if the letter S is then presented,
the plan SOM will update to a distribution highlighting only JOSEPH.

Associating Plans with Reward Values The planner is more than just
autoassociative memory for tonic chunk representations. It can also learn asso-
ciations between chunks and their effects/outcomes. The simplest outcome is a
scalar reward state, encoded in the Reward input field of the plan SOM. When
a chunk boundary is reached, the plan SOM not only learns a declarative rep-
resentation of the chunk encoded in the Tonic input field, but also learns an
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association between this chunk and the current reward. After training of this
type, the plan SOM can be queried with a high reward value, to retrieve plans
associated with high reward, and then select one of these to execute. We will
describe this process in more detail below.

Plans as State Update Operations The plan SOM can also represent chunks
more semantically, as plans that have a particular effect on the state of the world,
as represented by the agent. In the same way that the plan SOM associates a
completed chunk with a reward value, it can also associate a completed chunk
with a state update representation, in the Effect input field of the plan SOM.

In the C-block, our representation of ‘state’ is very general: it is an n-
dimensional vector. We will discuss our conception of state in more detail below.
We will begin by illustrating how plans can be associated with state updates.

Assume a simple state space with six dimensions, each occupied by either 1
or 0. Say the agent starts off in state [000011], and then performs a sequence
of actions associated with a chunk C1, that leave it in the state [110011]. The
plan SOM can learn to associate the chunk with a state update operation,
that represents the change in state the chunk brings about. The change in state
is just the difference (‘delta’) between the two states: in this case, [110000].

The utility in associating plans with state updates, rather than directly with
states, is that updates generalise over the elements of the state which a plan
leaves unchanged, and focus on the elements that need to be changed. Say the
agent has the goal of achieving state [110000], and it is currently in state [000000].
The C-block computes a goal state update (in this case, [110000]), and then
presents this goal update in the Effect input field to the plan SOM, as a query.
Even though during training, chunk C1 resulted in the state [110011]—which
is different from the current goal state—we are querying the plan SOM with
a desired change in state, and the plan SOM can retrieve chunk C1 from this
query. The overall paradigm here is that at the end of each chunk, the C-block
computes a new goal state update, by taking the difference between the goal
state and the current state, and then presents this goal state update as a query
to the plan SOM. Note that the ‘full’ goal state update might decompose into
several separate state updates, which are associated with distinct chunks. In this
case, we have the equivalent of a partially ordered plan at the higher level, where
some actions can be taken in an arbitrary order. For instance, say the plan SOM
has learned two chunks, associated with updates [110000] and [001100]. If the
agent is currently in state [000000], and desires to be in state [111100], both
chunks will be (somewhat) activated, and can be performed in either order.

Attentional Modulation of Effect/State Inputs to the Plan SOM Not
every aspect of the current state is equally relevant to the agent at any given
time. It needs to attend to different aspects of the state vector at different times.
For instance, if it is thirsty, it might pay more attention to a state dimension
encoding the presence/absence of water.
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These attentional emphases can be neatly encoded by setting the coefficients
in the weighted Euclidean distance in the SOM calculations on each individual
dimension of the Effect input field to the plan SOM, that encodes a desired
state update. Dimensions with a zero coefficient will be ignored in the selection
of plans, while dimensions with high values will have a significant influence in
selecting the next plan. The same mechanism can also be used to weight the
contribution of the Reward input field (which is entirely neutral to state) against
the more content-focussed contribution of the Effect field.

2.3 Operation of the C-block in Observation and Generation Mode

We have already mentioned the difference between observation and goal-driven
generation modes of operation of the C-block. More formally, the difference is
charted in the arrows in Figure 2 that depict the direction of information flow.
The crucial issue is how the Tonic input shared by the plan SOM and sequencing
SOM is activated.

Observation mode In observation mode (black arrows in Figure 2), the tonic
representation of the whole sequence is gradually constructed from the incoming
inputs, as their overlay decaying into the future, and at each point is passed as
a bottom-up input to the plan SOM for plan recognition. This SOM works as
an autoassociator, retrieving the distribution over plans most likely to have pro-
duced the sequence seen so far.8 This in turn is used by the sequencer alongside
the context and the most recent element to predict the next element.

Generation mode In generation mode (green arrows in Figure 2), the plan
SOM is first queried with a goal state update, and reward, appropriately weighted
by attentional coefficients, to evoke an activity pattern representing the proba-
bility distribution over plans. The winning plan is then selected from this distri-
bution, and used to reconstruct a representation in the Tonic input. This is then
used as a tonically active input to the sequencing SOM to produce a sequence
of inputs.9

The plan terminates in one of the following ways:

– Surprise: plan terminates unexpectedly because of a mismatch in prediction.
– Plan completion: the ‘end-of-sequence’ signal is predicted.
– Goal reached: a good match is achieved between the goal (desired effect

and/or reward along with their attention coefficients) and the actual effect
and reward.

8 The distribution is encoded by the SOM activity. We can pick the most active plan,
or reconstruct its expected value based on the whole distribution (see Appendix for
details).

9 Actually, what is produced is a sequence of probability distributions over possible
inputs, from each of which a 1-hot input is selected.
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An inhibition-of-return (IOR) scheme operates on plans, to encourage selec-
tion of different plans. When a plan is selected, it receives a small amount of
inhibition, that decays slowly over time. If two plans are equally activated by
a given goal/reward state, this inhibition means that if one plan is picked, and
fails, the other plan is likely to be picked next.

3 Experiments

3.1 Training Set

We demonstrate the C-block operation on sequences of letters that form words
as chunks. In order to demonstrate fast learning, the network was exposed to
each letter sequence only once. At the end of each sequence the system got an
external chunk boundary signal (EoS) together with high reward value r = 1:
JASON(EoS)ANDREW(EoS)LIAM(EoS)CAROLINE(EoS)KHURRAM(EoS)
MARTIN(EoS)ALI(EoS)MARK(EoS)DAVID(EoS)NICOLAS(EoS)TIM(EoS)
PAULA(EoS)PAULINE(EoS)ROB(EoS)SIMON(EoS)OLEG(EoS)XUEYUAN
(EoS)RACHEL(EoS)GREG(EoS)KIERAN. We also maintained a representa-
tion of the ‘current state’ after each letter input. To simulate the effects brought
about by whole chunks, we updated this state representation at the end of each
word, to create an ‘effect’ input for the network, as described in Section 3.2.

3.2 Network Parameters

The sequencing SOM had 50x50 neurons. Tonic, Context, Recent, Next fields
had 100 neurons each. Incoming letters in the Recent and Next parts were coded
1-hot in their first 26 components.10 The plan SOM had 30x30 neurons. The
Tonic and Effect parts of its input had 100 components each; the reward was
scalar (1 component). The Effect input was computed as a difference between the
system’s state at the beginning and end of the chunk. We represented the effect
of generating the words listed above with localist coding (counters) in the first
20 components of the system’s state. Each time a generated sequence happened
to correspond to one of the words, the respective counter was incremented. For
example, generating JASON incremented the first component, ANDREW the
second, etc. Both SOMs had a high learning rate (0.9) and a small Gaussian
neighbourhood size (σ = 0.6). The decay coefficient was 0.6 for both Context
and Tonic and 0.4 for plan IOR.

3.3 Sequence Prediction and Plan Recognition

We began by testing the trained system in ‘observation mode’. We randomly
shuffled the words in the training set and played them to the C-block’s input

10 The remaining 74 components were zero all the time. This was because we used the
same parameters and network sizes across several applications, in some of which we
needed more neurons to encode the input.
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letter by letter. We then measured the match between the most strongly pre-
dicted letter and the actual next letter.11 The prediction was correct in 94.1%
cases (80 out of 85). All 5 errors occurred at places with genuine ambiguity. For
instance, when presented with the sequence MAR, which appeared in training
both in MARK and MARTIN, it predicted K most strongly. If the test word hap-
pened to be MARTIN, then after seeing the next letter T, the C-block revised its
hypothesis about the chunk, and correctly predicted I as the next letter. Given
the Bayesian nature of our SOMs, both hypotheses K and T should have high
probability in the soft-reconstructed Next field. To verify this, we also computed
the Kullback-Leibler divergence (KLD) between the prediction in the Next field
and the actual input in the next step. Because the actual input is always 1-hot,
the KLD reduces to the negative log surprise − log26(p) where p is the predicted
activity at the position of the actual next letter. If the system’s predictions about
the next letter are accurate, we expect the mean value of surprise for all but the
first position to be close to zero.12 Indeed, mean KLD excepting first letters of
words was 0.06 (SD=0.22).

Table 1. Success rate and the negative log surprise for predictions of the ‘effect’ of a
chunk after seeing its first N elements.

N 1 2 3 4 5+

Ratio 15/20 18/20 18/20 16/17 28/28
Proportion 75.0% 90.0% 90.0% 94.1% 100%
Surprise mean (SD) 0.34 (0.40) 0.14 (0.29) 0.14 (0.29) 0.12 (0.25) 0.10 (0.21)

We also explored whether the C-block can accurately identify whole words
(chunks) while their letters are arriving, and accurately predict the ‘effect’ of the
currently arriving word on the global state. To do this, we inspected the system’s
predicted ‘effect’ field after each letter of each arriving word. We counted how
often this prediction was correct (see Table 1), and we computed negative log
surprise for the prediction after each letter (i.e. KLD with the effect that will
actually occur). On all these measures, we found good performance from the
earliest letters of words. Errors were again only found for ambiguous words.
This shows the C-block is able to correctly identify chunks and predict their
effects while they are still arriving.

3.4 Sequence Generation to Achieve Desired States

We then tested the model’s ability to autonomously choose and generate se-
quences for a composite desired effect. To do this, we configured the C-block to
‘want’ to bring about a global state in which the effects associated with each
word are all true, by setting the first 20 components in the ‘Desired State’ input
to 1, and setting the attention coefficients for Effect to 1, and for Reward and

11 We did this for all but the first position in a chunk, because C-block has no means
to predict the continuation of a chunk before it has started.

12 Predicting the winner with probability p = 1 leads to KLD=0. Flat predicted dis-
tribution p = 1/26 leads to KLD=1.
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Tonic to 0. We then ran the C-block in goal-driven generation mode. Because the
C-block updates the difference between the desired state and the actual state at
each chunk boundary, it was then able to execute all the plans without repetition
(in random order). All words were generated with all letters at correct positions.

3.5 Sequence Generation to Achieve Reward States

We also tested the model when configured to ‘replay rewarding plans’. To do
this, we set the attention coefficients for Reward to 1, and for Effect and Tonic
to 0 and set the Desired reward to 1; then we again ran the C-block in goal-
driven mode. In this mode, the C-block first selected and generated the word
most strongly associated with reward. On completion of this word, its inhibition-
of-return mechanism led it to select a different word, and cycle through a varied
sequence of words. All letters were again generated at correct positions.

3.6 Collaboration mode

Finally, we tested the model in ‘collaboration mode’, by presenting it with the
first two letters of a word and allowing it time to complete the intended word
itself. The C-block did so correctly in all cases (except for ambiguous cases
MARK/MARTIN and PAULA/PAULINE where it completed the first option).

4 Summary

The C-block is a network that can learn sequences, and learn to group particular
sequences into chunks. In this paper, we have shown how the C-block can use
these abilities both in perception, to predict sequences and upcoming states,
and in action, to generate sequences based on higher-level goals. While most
sequencing models in current AI use backprop-trained deep networks, SOM-
based models have some interesting strengths of their own, which we have tried
to emphasise here. For one thing, they can be configured to learn very rapidly,
as in the experiments we report. They also have great versatility: because a
SOM can operate flexibly with different patterns of input and output, the same
network can be co-opted for a variety of sequence-related functions, both in
perception and motor control.

A Bayesian Inference in the SOM

In our version of SOM, the activity Ai of each unit is computed as

Ai =
ai∑N
j=1 aj

, where ai = exp
(
−c · d2(x,wi)

)
·mi . (1)

d2(x,wi) is the squared Euclidean distance between the input x and the weight
vector wi, ai is the (unnormalized) activity of the i-th unit, mi is the activation
mask for the i-th unit. Activities Ai are normalized to sum to 1.
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Comparing Equation 1 with the standard Bayes’ rule

p(hi|d) =
p(d|hi) · p(hi)

p(d)
=

p(d|hi) · p(hi)∑N
j=1 p(d|hj) · p(hj)

(2)

we can interpret the activity of each unit as the posterior probability p(hi|d) of
the hypothesis that the current SOM input (data) belongs to the class repre-
sented by the unit i. The Gaussian13 term exp

(
−c · d2(wi,x)

)
corresponds to

the likelihood p(d|hi). The mask mi corresponds to the prior probability of the

i-th hypothesis p(hi). The denominator
∑N

j=1 aj in the formula for normalized
activities Ai is a total response of the map to the current input and corresponds
to
∑p

j=1(d|hj) · p(hj) = p(d), which is just the probability of the data itself. A
very low total activity in the map indicates strange (or novel) input data.

By specifying coefficients mi, we can choose different prior bias on the SOM,
for example relative frequency of how often the i-th neuron became the best-
matching unit in the past. All mi equal to the same value would effectively mean
a uniform prior and will have no influence.

Normalized activity of the whole SOM corresponds to the posterior proba-
bility distribution over all the hypotheses/neurons given the current input/data.
We can reconstruct the most likely input either as the weights of the winner
(‘hard’ output) or as an activity-weighted combination of the weights of all the

neurons (‘soft’ output): y =
∑N

j=1Aj ·wj , which corresponds to the expected
value of the input given the distribution.
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