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Abstract. In this paper we present a connectionist model of sentence
generation based on the novel idea that sentence meanings are repre-
sented in the brain as sequences of sensorimotor signals which are re-
played during sentence generation. Our model can learn surface patterns
in language as well as abstract word-ordering conventions. The former
is achieved by a recurrent network module; the latter by a feed-forward
network that learns to inhibit overt pronunciation of predicted words
in certain phases of sensorimotor sequence rehearsal. Another novel ele-
ment of the model is adaptive switching of control based on uncertainty
(entropy) of predicted word distributions. Experiments with the model
show that it can learn the syntax, morphology and semantics of a target
language and generalize well to unseen meanings/sentences.
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1 Introduction

Sentence generation can be viewed as the problem of encoding a “message”
as a sequence of words. A simple recurrent network (SRN) has proven to be
particularly successful in learning sequential dependences [4]. When trained for
predicting the next word in the sequence, it can implicitly form syntactic cat-
egories and learn probability distributions conditioned by grammatical rules of
the target language [5]. However, pure SRN models have difficulty generalizing
to patterns that were rarely or never seen during training, even though they
conform to abstract grammatical rules [2, 7]. As a workaround, models were sug-
gested that separate rules from their content (words) and learn sequences of more
abstract elements, e.g. semantic roles [2], abstract word classes [8] or multi-word
phrasal units [3].

In this paper, we present a model of sentence generation that combines learn-
ing surface patterns, such as idioms or fixed expressions, with learning of abstract
rules. The key novel idea of the model is its representation of sentence meaning
as a sequence of semantic representations, rather than as a static assembly of
active units (Sect. 2).
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matics, Comenius University, Mlynská dolina, 842 48 Bratislava, Slovakia.



2 Martin Takac, Lubica Benuskova, and Alistair Knott

The presented model is also interesting from an architectural point of view.
It consists of several modules: a content-blind control network for learning ab-
stract rules, a context-independent vocabulary, and a SRN for learning surface
patterns. These modules need to be mutually coordinated and employed in differ-
ent phases of sentence generation. Control passing among the modules is driven
by another neural network that is trained to use the entropy of the different mod-
ules (i.e. their degree of confidence in their predictions) to select which module
is in control of processing.

In the rest of the paper we introduce the architecture in more detail (Sect. 3),
describe an experiment exploring the model’s ability to acquire different word-
ordering conventions and surface patterns (Sect. 4) and present the results of
this experiment (Sect. 5).

2 Meanings Represented as Sensorimotor Sequences

Declarative sentences typically describe episodes – events or states. We focus
on concrete episodes that can be described by transitive sentences (e.g. John

kisses Mary). The semantic structure of an episode can be modelled as a collec-
tion of thematic roles (e.g. agent, patient, action) with associated fillers. A
connectionist model must employ a scheme for binding semantic objects to par-
ticular roles. The scheme we use is motivated by the embodied view on cognition,
namely that high-level semantic representations of concrete episodes are deliv-
ered by sensorimotor (SM) routines. In our model, the experience of a transitive
episode involves a canonical sequence of SM operations – a deictic routine [1]
(Table 1, for an extensive body of evidence see [6]). Each operation takes place
in an initial context, generates a reafferent signal and establishes a new context.
We also assume that experienced episodes can be stored in working memory as
prepared SM sequences that can be internally replayed. In our model, in order
to express an episode verbally, a speaker needs to internally replay the episode’s
stored SM sequence, in a mode where the replayed signals generate linguistic
side-effects. In this account, the syntactic structure of a sentence is in part a
reflection of the structure of the underlying SM routine.

Table 1. The time course of signals occurring during the replay of a deictic routine
‘an agent grasps a cup’ from working memory.

Sustained signals Transient signals
Initial Operation Reafferent New
context signal context

planattend agent,attend cup,grasp C1 attend agent agent rep C2

planattend agent,attend cup,grasp C2 attend cup cup rep C3

planattend agent,attend cup,grasp C3 grasp agent rep C4

planattend agent,attend cup,grasp C4 cup rep
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3 Architecture

The complete model of language production consists of several functional mod-
ules that work together: an episode rehearsal network, which replays a work-
ing memory episode representation to generate a sequence of SM signals; a word
production network, which maps individual SM signals onto word forms; a
control network, which determines the points during episode rehearsal when
these word forms should be pronounced; and a word sequencing network
which learns surface regularities in word sequences, and several other compo-
nents (Fig. 1). We will now explain each module in turn.
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Fig. 1. The complete model of language production. Besides gating overt pronuncia-
tion, the control network and the entropy network coordinate mode switching between
episode rehearsal and surface word sequencing. Localist linear neurons in the ‘Next
word stem’ and ‘Next word inflection’ blocks are combined using the softmax function
and represent probability distributions.

3.1 The Episode Rehearsal Network

The episode rehearsal network (Fig. 2) consists of four parts. The working
memory (WM) episode area stores a prepared SM sequence (a plan). The
plan is tonically active during the whole rehearsal of a particular episode, but
generates transient activity in two areas (‘context’ and ‘current object’) when it
is replayed. As well as supporting the rehearsal of SM sequences, WM episode
representations also provide the semantics of inflected verbs in our model. They
encode a planned motor action, but also planned actions of attention to the agent
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and patient, which we assume can surface as agreement inflections on the verb
stem. The semantics of nouns come from the ‘current object’ area. We model
the syntactic differences between nouns and verbs using the different temporal
dynamics of current object and WM episodes in the episode rehearsal network.
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Fig. 2. The episode rehearsal network. The ‘Phase’ part (Fig. 1) is not shown. Each
block with circles uses 1-hot localist coding.

The current object area holds a transient representation of the currently
attended object. During the course of episode rehearsal, this area alternately
holds representations of the agent and the patient. Besides a person and number
information (in the same format as in the WM episode), it codes the type of the
currently attended object.

The context and phase (Fig. 1) areas hold a representation of the current
stage during episode rehearsal. This representation helps to drive the episode
rehearsal process. In our simulation there are four possible contexts (see Table 1),
each of which has two phases (see Sect. 3.2). The thick arrows in the diagram
reflect the fact that the sequence of transient representations in the current
object and context areas are generated by a WM episode representation.

3.2 The Word Production Network

The episode rehearsal network provides input to the word production net-
work (WPN), which learns a context-independent lexicon in the form of a map-
ping from single concepts to single words. It also provides input to the word-
sequencing network that will be described in the next section.

The WPN consists of one layer of linear perceptrons taking input from all the
units in the WM episode and the current object parts of the episode rehearsal
system. The input connections are gated by inhibitory links from a cyclic pattern
generator (depicted as ‘Phase’ in Fig. 1) so that at any time input comes either
wholly from the current object or wholly from the WM episode. During episode
rehearsal, the pattern generator cycles through two phases in each context, pro-
viding first an opportunity to read out the current object representation (phase
a), and then the tonically active WM episode (phase b) – i.e. to read out first a
noun and then a verb.

The WPN is trained on the utterances of mature speakers, paired with
episode representations stored in the episode rehearsal network. We are sim-
ulating an infant who experiences episodes in the world and who also hears
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mature speakers talking. The mature utterances the system hears are stored in
a phonological input buffer as sequences of target words in exactly the same
format as words generated by the WPN.

3.3 The Control Network

For a given semantic input from the episode rehearsal network, a word/inflection
output is computed via two independent paths – the WPN and the word-
sequencing network (WSN). We envisage their joint averaged output (JAO) to
be a premotor articulatory plan that may or may not be overtly pronounced,
depending on the decision of other module – the control network that gates
the connection from the joint output to the phonological output buffer.

The episode rehearsal network gated by the phase generator delivers a struc-
tured sequence of semantic signals to the WPN and WSN. For a transitive
episode, the sequence is as shown below.

Context/phase C1a C1b C2a C2b C3a C3b C4a

SM signal agent WM ep. patient WM ep. agent WM ep. patient

Note that this sequence contains multiple occurrences of each concept. Different
languages have different word-ordering conventions (e.g. English has the SVO –
Subject Verb Object word order, while Māori has VSO); the model has to learn
on which occasion the JAO should be pronounced/witheld. This is the task of
the control network – a feed-forward network with one hidden layer, which is
trained on the match between the predicted word (JAO) and the current word
in the phonological input buffer. The desired output is binary (1 for ‘pronounce’
in case of match, 0 for ‘withold’ in the case of a mismatch).

Note that the control network is content blind in the sense it takes no input
from actual semantic concepts, just from the ‘context’ and ‘phase’ parts of the
episode rehearsal system. Hence it has a potential to learn abstract syntactic
rules in terms of contexts/phases when the overt pronunciation should be sup-
pressed. For example, for SVO language, pronunciation should be suppressed in
all context/phases but C1a, C1b, C2a; for VSO in all but C1b, C3a, C4a.

3.4 Learning Surface Patterns

The model described so far can learn a lexicon and a set of abstract word-ordering
conventions for a given language. However, languages also contain surface pat-
terns such as idioms or fixed expressions – sequences of words that occur together
with particularly high frequency and that contribute their meaning collectively
rather than individually, e.g. Winnie the Pooh. Other surface patterns take the
form of statistical tendencies, where in some context a particular word is more
likely to occur than other words. Idioms violate the one-to-one correspondence
between concepts and words; hence we need to extend the model with a device
that can generate more than one word for a particular semantic concept present
at the input. In our model, this is the word-sequencing network – a variant of



6 Martin Takac, Lubica Benuskova, and Alistair Knott

a SRN. Input and output-wise, it mimics the WPN (Fig. 1). Both networks are
trained by the ‘actual’ next word replayed from the phonological input buffer.
However, the WSN has a hidden layer with recurrent connections, which enables
it to learn commonly occurring sequential patterns in its training data.

3.5 The Entropy Network

Since the WSN is able to produce more than one word for any given seman-
tic input, the model needs to decide when to pass control back to the episode
rehearsal network, i.e. when to deliver the next semantic signal.

Imagine the WSN is to produce an idiomatic expression – say Winnie the

Pooh. This expression describes a single semantic signal. Given this signal, the
WSN should begin by predicting the word Winnie with high confidence, and
then, after copying back the surface context, the word the and then (after another
copy operation) the word Pooh, both with high confidence. But after this point,
the network can no longer be so confident. Like a regular SRN, it can at best
predict the category of the following word (e.g. predicting a higher likelihood
for verbs), but not a particular content word. This indicates that the episode
rehearsal network should deliver the next semantic signal.

As a (inverse) measure of confidence, we use the entropy in the word stem part
of the WSN output. If the predicted word has high entropy (many competing
alternatives), it should not be overtly pronounced and the control should be
passed back to the episode rehearsal network. An exact threshold for the entropy
can be task dependent and can change in time, so we use an adaptive feed-
forward network (called the entropy network) that learns the right value. It
takes as its input the entropies of the WSN and WPN outputs and is trained on
the same Boolean ‘match’ signal as the control network. Besides control passing,
the output of the entropy network has a gating function similar to that of the
control network, i.e. to suppress the overt pronunciation of words predicted with
low confidence.

3.6 Sentence Generation in the Trained System

As already mentioned, sentence generation in our conception involves replaying
a particular episode from working memory, generating a sequence of semantic
signals in the episode rehearsal system, from which a sequence of words is pro-
duced in the phonological output buffer. The trained model alternates between
two modes of iteration. In one mode, the episode rehearsal system is in control.
This system iterates through the sequence of SM signals until it reaches a con-
text at which the control network allows a word to be overtly pronounced. In
the other mode, the WSN is in control. At each iteration, the WPN and WSN
jointly predict a probability distribution for the next word given the currently
active SM signal. If they can confidently predict the next word, the word is pro-
nounced, the WSN updates its surface context layer and the model carries on in
this mode until the networks can no longer confidently predict the next word.
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3.7 Training the System

During training, the model alternates between the same two modes as during
generation. In the first mode, episode rehearsal advances (and the control net-
work is trained) until a context/phase is reached in which the control network
gives the ‘pronounce’ signal. Then the network switches into the word sequenc-
ing mode. As long as the WPN and WSN predict the next word with sufficient
confidence and it matches the actual word in the phonological input buffer, they
keep predicting (based on a changing surface context), being trained, and ad-
vancing the phonological input buffer. If the prediction does not match or has a
low confidence, the actual word stays in the phonological input buffer, the sur-
face context is not copied and the model switches back to the episode rehearsal
mode. Details of the training algorithm are given in [9].

4 Experiment

The model we have just described1 was trained on an artificial language with an
English vocabulary (105 words), morphology featuring number (Sg, Pl) inflec-
tions of nouns, number and person (1st, 2nd, 3rd) inflections on verbs, subject-
verb agreement, irregular plurals (leaves, fish, teeth, women, etc.) and personal
pronouns, and the SVO word order. The language consisted of 127088 transitive
sentences, out of which roughly 80 % were regular transitive sentences such as
Mice bite-3pl dog-sg, the rest contained continuous idioms such as Mia-sg lick-

3sg ice cream-sg (13 %) and idioms interleaved with a noun phrase, such as
Daddy-sg kiss-3sg me good bye (6.4 %).

The model was trained on a sample of 4000 randomly selected sentences
paired with their meanings (sequences of semantic signals) for 25 epochs. After
each training epoch, the weights were frozen and the model was tested for sen-
tence generation on a set of 4000 previously unseen meanings. All results were
averaged over 10 runs with different initial random weights of connections and
different training/test samples of the target language.

To test the ability of the model to acquire all possible word-ordering con-
ventions, we created another five target languages with the same vocabulary,
morphology and similar idioms, but with different basic word-ordering (SOV,
VSO, VOS, OVS, OSV) and ran 10 runs for each target language in the same
way as for the SVO language.

5 Results

The control network was able to learn correct word-ordering rules with 100 %
success for all the six word-orders. We also recorded the network’s overall gen-

eration accuracy, measured as the proportion of correctly generated sentences.

1 We conducted a preliminary study of a pure SRN (enhanced with spatially rep-
resented semantic roles) on an analogous language production task [10]. Although
successful in generating certain types of unseen sentences, this network has a problem
in principle – it cannot generalize across semantic roles, as argued in [2].
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We considered an utterance to be correctly generated for a given meaning, if all
thematic roles were expressed with semantically appropriate words, the sentence
was syntactically correct (i.e. it complied with the transcription rules) and all the
words had correct morphology (inflections). Averaged over all six word-orders,
the models achieved 96.6 % (SD=2.7 %) accuracy on training sets and 94.1 %
(SD=4.3 %) accuracy on test sets. Given that they were trained on 3 % of target
sentences, the model achieved good generalisation ability.

6 Conclusion

The main goal of this paper was to introduce a novel connectionist architecture
for sentence generation which is able to learn both abstract grammatical rules
and surface patterns in a language. The experiments reported here show that our
network can generate regular sentences but also sentences containing a variety
of idiomatic surface structures. The main technical innovation which permits
this is our use of sequences to represent sentence meanings (episodes). From
the perspective of embodied cognition, this is helpful in connecting semantic
representations to the sensorimotor system. From the perspective of syntax, it
is helpful in supporting a rich model of patterns in language.
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