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Abstract. The second postulate of Katsuno and Mendelzon characterizes irrel-
evant updates. We show that the postulate has to be modified, if nonmonotonic
assumptions are considered. Our characterization of irrelevant updates is based
on a dependency framework, which provides an alternative semantics of multidi-
mensional dynamic logic programming.
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1 Introduction

Background Nonmonotonic knowledge bases (NMKB) represent an important topic
for a logic-based research in artificial intelligence. There are essentially two sources of
nonmonotony in knowledge bases – an evolution of incomplete knowledge and a use of
assumptions which can be overridden (falsified).

We discuss in this paper the second postulate for updates by Katsuno and Mendel-
zon, 2[KM] hereafter: if an update follows from a knowledge base (KB), then the up-
dated KB and the original KB should be equivalent according to the postulate [10]. In
other words: if an update follows from a KB, then the update is irrelevant.

Tautological and unsupported cyclic updates represent an important problem also
for multidimensional dynamic logic programming (MDyLP) research [2, 11, 12, 3]).
MDyLP contributed to logic-based knowledge representation research by focusing on
dynamic aspects of knowledge; it can be considered as a formal model of NMKB with
preferences (also along dimensions different from time). The role of both sources of
nonmonotony, as mentioned above, is taken into account in MDyLP.

Problem Unwanted generation of new models caused by cyclic or tautological updates
(they should be irrelevant) has been a serious problem of MDyLP for a time. Recently,
the problem has been solved for dynamic logic programs in [3] and for general MDyLP
in [4]. The solution of [3] is based on a principle, called refined extension principle
and its ambition is to express fundamental features enabling to distinguish the “right”
semantics of logic program updates. Unfortunately, the principle has not been extended
to the general case of MDyLP and, moreover, the trivial semantics assigning empty
set of models to each dynamic logic program satisfies the principle, see [4]. Finally, the
principle is expressed in terms too close to the specific conceptual apparatus of MDyLP.
Semantics of MDyLP are based on rejection of rules. They satisfy the causal rejection
principle (CRP): if there is a conflict between heads of rules, the less preferred rule is



rejected. CRP has some drawbacks,1 see [14], which challenges an effort to find a more
general platform for expressing the notion of irrelevant updates.

On the other hand, 2[KM] is not an appropriate one, if (nonmonotonic) assumptions
are considered (see Example 25).

Goal and proposed solution The main task of this paper is an analysis of the problem
of irrelevant updates. Cyclic and tautological updates do not represent the only source
of unwanted generation of models after an update. We are aiming to extend the horizon
behind CRP and behind cyclic and tautological updates.

We represent an NMKB in terms of a dependency framework, where nonmonotonic
assumptions and dependencies on assumptions are “first class citizens”. Motivations
for the dependency framework and an alternative semantics of MDyLP were presented
in [14]. Each knowledge base consisting of rules (hence, also a logic program and a
MDyLP) can be mapped into the dependency framework. Nonmonotony of a knowl-
edge base is manifested in the framework by (nonmonotonic) assumptions which can be
falsified and by solving of conflicts. We emphasize the role of nonmonotonic assump-
tions for the theory of updates of NMKB. The notion of irrelevant updates proposed in
this paper modifies 2[KM] by focusing on nonmonotonic assumptions.

For a short version of this paper see [15],

Main contributions of the paper are as follows:

– analysis and definition of irrelevant updates,
– an adaptation of 2[KM] for updates of NMKB,
– we show that irrelevant updates do not generate new models and that models of the

original program are preserved after an irrelevant update (Theorem 33 and Conse-
quence 34).

The rest of the paper is organized as follows: First, an informal explanation of the notion
of nonmonotonic knowledge base is presented. A brief view on semantics of MDyLP
based on CRP is provided in Section 3. The dependency framework is introduced in
Section 4. Irrelevant updates are discussed in Section 5 and defined in Section 6.

2 Nonmonotonic knowledge base

In this section we provide a schematic view on a NMKB. We assume an unspecified
language L for knowledge representation. (An example of such language is presented
in Section 3.) Pairs of conflicting expressions are specified for L. A notion of rule is
defined in L. A knowledge base is a set of rules. We assume that a semantics of L is
defined as a mapping from L to a set of models. (An example of such semantics, stable
model semantics, is presented in Section 3.)

We are proceeding to the basic features of L and of its semantics which enable to
speak about nonmonotony of a knowledge base.

1 There are conflicts which cannot be recognized according to CRP. On the other hand, some
conflicts recognized as conflicts between heads of rules should be considered as irrelevant.



– Some expressions of L are considered as assumptions. To each assumptions is as-
signed a conflicting expression. (Negative literals are assumptions of the language
introduced in Section 3.)

– The semantics of assumptions satisfies the condition as follows: an assumption is
true unless it is known that the conflicting expression is true.

– Some principles for solving conflicts in sets of expressions of L are specified.
– A nonmonotonic consequence operator is specified for L.

MDyLP represent a well understood formalization of NMKBs, see Section 3. Also
programs in AnsProlog [5], prioritized logic programs [6], DeLP [8] etc. can be con-
sidered as idealizations of NMKBs. We are interested in mappings from sets of rules to
sets of dependencies (where dependencies on nonmonotonic assumptions are of crucial
importance). Comparison of various formalisms in terms of the dependency framework
is a goal of our future research.

MDyLP as a language for NMKBs representation (and its mapping into the depen-
dency framework) is considered in this paper. However, the dependency framework is
independent on MDyLP and our results can be generalized into a form independent on
MDyLP.

3 Multidimensional dynamic logic programs

The language of MDyLP. i.e. a propositional language with default negations also in
heads, is introduced in this section.

Let A be a set of atoms. The set of literals is defined as Lit = A ∪ {not A :
A ∈ A}. Literals of the form not A, where A ∈ A are called negative. Notation:
Ngt = {not A | A ∈ A}. A convention: not not A = A. If X is a set of literals then
not X = {not L | L ∈ X}.

A rule is each expression of the form L ← L1, . . . , Lk, where k ≥ 0, L,Li are lit-
erals. If r is a rule of the form as above, then L is denoted by head(r) and {L1, . . . , Lk}
by body(r). A finite set of rules is called generalized logic program (program hereafter).

The set of conflicting literals is defined as CON = {(L1, L2) | L1 = not L2}.
Two rules r1, r2 are called conflicting, if head(r1) and head(r2) are conflicting literals.
Notation: r1 1 r2. A set of literals S is consistent if it does not contain a pair of
conflicting literals. An interpretation is a consistent set of literals. A total interpretation
is an interpretation I such that for each atom A either A ∈ I or not A ∈ I . Let I be an
interpretation. Then I− = I ∩Ngt . A literal is satisfied in an interpretation I iff L ∈ I .
A set of literals S is satisfied in I iff S ⊆ I . Stable model of generalized logic programs
is defined in [2] as follows.

Definition 1 ([2]) A total interpretation S is a stable model of a program P iff

S = least(P ∪ S−),

where P ∪ S− is considered as a Horn theory and least(P ∪ S−) is the least model of
the theory. 2



The set of all stable models of a program P is denoted by SM (P ). A program is called
coherent2 iff it has a stable model.

A literal L (set of literals X) SM-follows from a program P iff it is satisfied in each
S ∈ SM (P ) (notation: P |=SM L, P |=SM X). A rule r SM-follows from P iff for
each S ∈ SM (P ) holds that head(r) is satisfied in S whenever body(r) is satisfied in
S (P |=SM r). If U is a set of rules then P |=SM U iff ∀r ∈ U P |=SM r.

A multidimensional dynamic logic program (also multiprogram hereafter) is a set
of programs with a preference relation on programs. The relation is specified by an
acyclic directed graph. If the preference relation collapsed to a sequence (to a strict
linear order), the corresponding multiprogram is called dynamic logic program.

There are various different semantics of multiprograms, based on rejection of rules.
For a comparison see [12, 13, 9]. They all can be viewed as instances of the abstract
schema below.

Let a semantics be a mapping Σ from multiprograms to sets of total interpretations.
If P is a multiprogram and M is a total interpretation then M ∈ Σ(P) holds iff

M = least((P \ Rejected(P,M)) ∪Assumptions(P,M). (1)

Various semantics differ in definitions of predicates Rejected and Assumptions . In-
tuitively, Rejected(P,M) represents the set of all rules rejected from P w.r.t. M and
Assumptions(P,M) represents the set of all accepted default negations.

In this paper we consider — because of limited space – only the simplest multipro-
grams of the form 〈P,U〉, where U is more preferred than P , notation P ≺ U . U is
called an update of P . However, it is straightforward to generalize the analysis, notions
and results to the case of arbitrary multiprograms.

We will now define the instance of Assumptions(〈P,U〉,M) used in this paper as

{not A | ¬∃r ∈ P ∪ U (A = head(r),M |= body(r))}.

Two instances of Rejected – Rej and RejR – are defined as follows. Dynamic sta-
ble model semantics [2] of a multiprogram 〈P,U〉 w.r.t. interpretation M , notation
DSM (〈P,U〉,M), uses Rej :

Rej (〈P,U〉,M) = {r ∈ P | ∃r′ ∈ U (r 1 r′,M |= body(r′))}.

Refined dynamic stable model semantics (RDSM (〈P,U〉,M)) enables also mutual re-
jection of rules in one program, [3]. RejR(P,M) is defined as the set

{r ∈ P | ∃r′ ∈ P∪U (r 1 r′,M |= body(r′))}∪{r ∈ U | ∃r′ ∈ U (r 1 r′,M |= body(r′))}.

Dynamic stable model semantics of multiprograms suffers from tautological and
cyclic updates.

2 We prefer this term over ‘consistent”, see also [5].



Example 2 ([3])

P = {d← not n U = {s← v

n← not d v ← s}
s← n,not c

not s←

There are two dynamic stable models of 〈P,U〉: M1 = {d,not n,not c,not s,not v}
and M2 = {s, v, n,not d,not c}. However, M2 is a counterintuitive model – truth of
s and v is not supported and rejection of the fact not s ← by a cyclic dependence of s
on s is not a reasonable one. 2

Refined semantics solves the problem. It obeys the refined extension principle (REP),
introduced in [3]. However, the principle is expressed in terms too close to the specific
conceptual apparatus of MDyLP. Two (not very intuitive) sequences of logic programs
are considered in the definition of REP and the definition uses predicates Assumptions
and Rejected .

Moreover, refined semantics for the general case of multiprograms is not known.
The well supported semantics for general multiprograms is defined in [4] and it solves
the problem of cyclic updates. The well supported semantics for MDyLP coincides with
the refined one on dynamic logic programs. We focus on the simplest dynamic logic
programs of the form 〈P,U〉 in this paper, therefore the refined semantics is discussed in
examples. However, our arguments are relevant w.r.t. any semantics based on rejection
of rules and satisfying CRP.

The main goal of [3] is to explore the conditions guaranteeing that the addition of
a set of rules to a dynamic logic program does not generate new models. The authors
of REP observed in [4] that REP is too weak. For example, the trivial semantics that
assigns to each dynamic logic program the empty set of models satisfies the principle.
It is noted in [4] that stronger criteria and techniques are needed.

We believe that the dependency framework of [14] enables to create such criteria
and techniques by providing a finer analysis of unwanted models of updated logic pro-
grams.

4 Dependency framework

We now introduce the dependency framework of [14] in order to be able to analyze the
problem of irrelevant updates.

Definition 3 (Dependency relation) A dependency relation is a set of pairs {(L,W ) |
L ∈ Lit , W ⊆ Lit , L 6∈W}. 2

The notion of dependency relation is rather a general one and it is not connected to a
special logical form (of a knowledge base or logic program). Each knowledge base con-
sisting of a set of rules (with one literal in the head) can be mapped into a dependency
relation. We define now a mapping for the language introduced in Section 3.



Definition 4 (�P ) A literal L depends on a set of literals W , L 6∈ W , with respect to
a program P (L �P W ) iff there is a sequence of rules 〈r1, . . . , rk〉, k ≥ 1, ri ∈ P
and

– head(rk) = L,
– W |= body(r1),
– for each i, 1 ≤ i < k, W ∪ {head(r1), . . . , head(ri)} |= body(ri+1).

It is said that the dependency relation�P is generated by the program P . 2

Notice that a literal cannot depend on itself (also in a context of other literals).

Example 5 Let P be

a← not b

c← a

It holds that a �P {not b}, c �P {a}, c �P {not b}. We can see that some
dependencies of L on W are of crucial interest, namely those, where W ⊆ Ngt and W
generates (or contributes to a generation) of a stable model. 2

Note that�P does not coincide with the derivability from P .

Definition 6 (Closure property) A closure operator Cl assigns the set of all pairs

{(L,W ) | L�W ∨ (∃U (L� U ∧ ∀L′ ∈ U \W (L′ �W )))}

to a dependency relation�.
A dependency relation� has the closure property iff Cl(�) =�. 2

Proposition 7 Let P be a program. Then Cl(�P ) =�P .

We have seen in Example 5 that dependencies on negative literals are crucial from
the viewpoint of stable model semantics. Therefore the role of (default) assumptions is
emphasized.

Definition 8 (SSOA, TSSOA) Xs ⊆ Ngt is called a sound set of assumptions (SSOA)
with respect to the dependency relation� iff the set

Cn�(Xs) = {L ∈ Lit | L� Xs} ∪Xs

is non-empty and consistent.
It is said that Xs , a SSOA, is total (TSSOA) iff for each A ∈ A holds either A ∈

Cn�(Xs) or not A ∈ Cn�(Xs).
The set of all (T)SSOAs w.r.t.� is denoted by (T )SSOA(�). 2



Example 9 Let P be

a← not b

b← not a

There are two TSSOAs w.r.t.�P : Xs1 = {not b} and Xs2 = {not a}. Cn�P
(Xs1) =

{not b, a} and Cn�P
(Xs2) = {not a, b}. Notice that both TSSOAs generate (all) sta-

ble models of P . 2

Also an empty set of literals may be a (T)SSOA w.r.t. some�P .

Theorem 10 X is a TSSOA w.r.t.�P iff Cn�P
(X) is a stable model of P .

Let S be a stable model of P . Then there is X ⊆ Ngt , a TSSOA w.r..t. �P s.t.
S = Cn�P

(X). 2

Proof is straightforward from Definitions 1 and 4.
Semantics based on assumptions and dependencies. Consider two mappings Σ,Σ′.

Let Σ assign to each program P the set of all its stable models. Let Σ′ assign to each
program P the set of all TSSOAs w.r.t. �P . We have seen in Theorem 10 that (the
semantics characterized by) Σ is equivalent to (the semantics characterized by) Σ′. So,
we can speak about a semantics based on assumptions and dependencies.

Dependencies in a multiprogram. We intend to use our framework for handling
conflicting dependencies in a multiprogram. Note that dependencies in a multiprogram
are well defined.

Proposition 11 Let 〈P,U〉 be a multiprogram. Then�P∪U is well defined. It holds

(�P ∪ �U ) ⊆�P∪U ,

but the converse inclusion does not hold.

Sketch of a proof: Suppose that a sequence of rules from P or from U , which satis-
fies Definition 4 is given. Hence, we have a sequence of rules from P ∪ U satisfying
Definition 4. The converse inclusion does not hold, see Example 12. 2

Example 12 Consider a multiprogram 〈P,U〉, where P is as in Example 9 and U is as
follows.

c← a

b← c

not b← not a

P ∪ U is a program and it generates a dependency relation. Observe that c �P∪U

{not b}, but (c, {not b}) 6∈ (�P ∪ �U ). 2

In general, dependencies on assumptions in a multiprogram can be conflicting. There
are essentially two possible sources of incoherence/inconsistency:3

3 (In)coherent dependency relation is defined in Definition 18 and we use (in)coherence as a
technical term in the paper.



– two conflicting literals depend on a set of literals,
– or literal L1 depends on a set of literals W , (L1, L2) ∈ CON and L2 ∈W .

Definition 13 It is said that� contains a conflict C (where C ⊆�) iff for some A ∈ A
is C = {(A, Y ), (not A, Y ) | Y ⊆ Ngt} or C = {(A, Y ) | Y ⊆ Ngt ,not A ∈ Y }. 2

Definition 13 does not contain a reference w.r..t. a (multi)program. Moreover, it is pos-
sible to replace pairs A,not A by a more general objects – pairs of conflicting literals
containing a (general) nonmonotonic assumption.

Example 14 Dependency relation �P∪U from Example 12 contains conflicts C1 =
{(b, {not a}), (not b, {not a})} and C2 = {(b, {not b})}. 2

It is assumed that the preference relation P ≺ U is preserved also for dependency re-
lations assigned to the programs:�P≺�U . It enables us to prefer some dependencies
according to the preference relation defined for programs when solving conflicts.

We propose to solve a conflict by ignoring some dependencies (taking away from
given dependency relation). Good solutions of a conflict are sets of dependencies, which
are minimal (w.r.t. the set inclusion) and minimally preferred (w.r.t. the given preference
relation).

Definition 15 It is said that a set of dependencies D is a solution of the conflict C iff
each d ∈ D is of the form L�P W or of the form L�U W and C 6⊆ Cl((�P ∪ �U

) \D). D is called minimal iff there is no proper subset of D which is a solution of C.
Let D and D′ be minimal solutions of C. It is said that D is more suitable than

D′ iff there is an injection κ : D −→ D′ such that ∀d ∈ D (d ∈�P ∧ κ(d) ∈�P

∪ �U ). If the cardinality of D and D′ is the same then for at least one d ∈ D holds
d ∈�P ∧ κ(d) ∈�U . A minimal solution D of a conflict C is called good solution iff
there is no more suitable solution of C. 2

Example 16 Consider conflicts from Example 14. D = {(not b, {not a})} is a mini-
mal solution of C1 = {(b, {not a}), (not b, {not a})}. However, D

′
= {(b, {not a})

is a more suitable solution of C1 than D and it is also the good solution of C1 2

Definition 17 An assumption not A, where A ∈ A, is falsified in a dependency rela-
tion� iff A� ∅, not A 6� ∅ and ∅ is a SSOA w.r.t.�.

A set of assumptions Xs ⊆ Ngt is falsified in� iff it contains a literal falsified in
�. 2

The notion of falsified assumption is illustrated in Example 21.

Definition 18 (Coherent dependency relation) A dependency relation� is called co-
herent iff there is a TSSOA w.r.t.�. A dependency relation is called incoherent iff it is
not a coherent one. 2



The approach based on the dependency framework is focused on looking for as-
sumptions which can serve as TSSOA w.r.t. a subset of given dependency relation
�P∪U . The goal is to construct all possible dependency (sub)relations which are co-
herent (w.r.t. a TSSOA).

Definition 19 (Semantics of multiprograms) Semantics of multiprograms (of the form
〈P,U〉) is a mapping Σ which assigns to 〈P,U〉 a set of pairs of the form (Z,View),
where View is a coherent subset of�P∪U and Z is a TSSOA w.r.t. View .

Example 20 Recall examples 12 and 14. Σ(〈P,U〉) = {({not a,not b,not c},View)},
where View =�U .

5 Irrelevant updates – intuitions

We motivate the notion of irrelevant updates by an analysis of a set of examples in this
section.4 Afterward a definition of irrelevant updates is given in next section.

Example 21 ([7])

P = it is cloudy ← it is raining

it is raining ←
U = not it is raining ← not it is cloudy

RDSM (〈P,U〉) = {{not it is raining,not it is cloudy}, {it is raining, it is cloudy}}.
The assumption not it is cloudy is falsified in�P∪U because of it is cloudy �P∪U

∅. Information given by U does not override the information of P (which is based on
the empty set of assumptions). The only TSSOA w.r.t.�P∪U is ∅. 2

In general, troubles with all semantics based on rejection of rules are caused also
by a too free choice of an interpretation involved in the fixpoint condition (1). We mean
an interpretation containing assumptions (default negations) which are falsified by the
multiprogram. Interpretations generated by falsified assumptions do not provide an ap-
propriate candidate for a semantic characterization of a multiprogram (according to our
view). A remark is in place: conflicts involving assumptions did not attract an adequate
attention until now.

If an update U has only such TSSOAs w.r.t.�U which are falsified in�P∪U , we
consider it as irrelevant. However, some further criteria of irrelevant updates are needed.
The first, rather naive, idea how to understand the principle of minimal change for the
case 〈P,U〉 is as follows: if P ∪U is a coherent program, then an update of P specified
by U is irrelevant and the meaning of P ∪ U is retained by inertia.5

Next example shows that that idea is not an appropriate one.
4 Multiprograms of the form 〈P, U〉 are used in the examples. However, the dependency frame-

work is used in the analysis and our intuitions apply to an arbitrary NMKB which can be
mapped to the dependency framework.

5 Consider Example 21. The only stable model of P ∪ U , {it is raining, it is cloudy}, pro-
vides a reasonable semantic characterization of 〈P, U〉.



Example 22 Let P be {not a← not b} and U be {a← not b; b← not a}.
P ∪ U has only one stable model S = {not a, b}. However, if we respect the

preference of U over P then we have to ignore the information of P . The dependence of
not a on not b should be ignored. Hence, also {not b} is a TSSOA w.r.t. the modified
dependency relation and interpretation S′ = {not b, a} represents an intended meaning
of 〈P,U〉, too.

We emphasize the role of (new) assumptions. Acceptance of new assumptions can
provide a basis for a generation of some alternative belief sets. In general, this observa-
tion may be relevant for investigation of hypothetical reasoning. 2

Next step when looking for a formalization of irrelevant updates may be 2[KM]. It
can be expressed in terms of logic program updates as follows: if P |=SM U then update
of P by U is equivalent to P . It means, a (stable-models-like) semantic characterization
of 〈P,U〉 should coincide with stable models of P . It is straightforward to show that a
weaker condition than coherence of P ∪ U is supposed in 2[KM], if P is coherent.

Proposition 23 Let P be coherent. If P |=SM U then P ∪ U is coherent (but not vice
versa).

Proof Sketch: If P |=SM U and P is coherent, then each stable model of P is also
a stable model of P ∪ U . A counterexample to the converse implication: Example 22
(P ∪ U is coherent, but P 6|=SM U ). 2

Note that condition P |=SM U is an important one. If we add seemingly irrelevant
(cyclic) update U to a program P and P 6|=SM U , then this may lead to cutting off some
models.

Example 24 ([3])

P = {friends← not alone U = {depressed← alone

alone← not friends alone← depressed}
happy ← not depressed

depressed← not happy}

P has four models (only first letters are used): {f, d,not a,not h}, {f, h,not a,not d},
{a, h,not d,not f}, {a, d,not h,not f}. Notice that P 6|=SM U . It is natural to reject
the models of P which do not satisfy the more preferred program U . U eliminates two
of the models of P : {f, d,not a,not h} and {a, h,not d,not f} (if alone is true,
depressed is forced to be true and vice versa). 2

It seems that 2[KM] could be a criterion of irrelevant updates of logic programs.
Unfortunately, 2[KM] does not work as the criterion.

Example 25

P = {a1 ← not b1 U = {b2 ← not a2}
b1 ← not a1

a2 ← not b2

not b2 ← not a2}



There are two stable models of P : S1 = {not b1, a1,not b2, a2} and S2 = {not a1, b1,not b2, a2}.
U is satisfied both in S1 and in S2. Note that assumption not b2 holds in both models.

However, there is no reason to reject an alternative assumption not a2 (which is
false in both stable models of P ). The set of assumptions {not a2} is a SSOA w.r.t.
�U and Cn�P

({not a})∪Cn�U
({not a}) is inconsistent. The inconsistency can be

overridden if we prefer b2 �U {not a2} over not b2 �P {not a2}.
Hence, it is reasonable to accept also interpretations S3 = {not b1, a1,not a2, b2}

and S4 = {not a1, b1,not a2, b2} as intended meanings of the updated program. U
is really a relevant update: it provides a reasonable alternative assumption not a2. By
“reasonable” we mean that unwanted dependencies on {not a2} are overridden because
of the preference relation. 2

If a set of axioms is extended in a monotonic logic then the set of models is reduced
or the same. However, in NMKBs (and in stable model semantics, too) it is not true:

Example 26 ([1]) Let be P = {a ← not b; b ← not a; c ← not a; c ← not c}, U =
{c←}.

While P has the only stable model S = {not a, b, c}, P ∪U has two stable models
– besides S also S′ = {a,not b, c}. Observe that the only model of P encodes in a
way that the truth of c is dependent on the assumption not a. Hence, the dependence of
beliefs on assumptions is implicit also in the stable model semantics.

Note that P |=SM U , but Cn�U
(∅) \ Cn�P

(∅) 6= ∅. Some literals depend on
∅ w.r.t. �U , but they do not depend on ∅ w.r.t. �P . This could be generalized to a
criterion of a relevant update. 2

Example 27

P = {a← not b} U = {b← not a}

P |=SM U , but U introduces a new assumption, which is false in all stable models of
P and generates a new stable model of P ∪ U . 2

In order to summarize: If P 6|=SM U , then U is a relevant update of P . Otherwise,
if P |=SM U , then U is a relevant update of P in two (classes of) cases. First, U
introduces assumptions, which contribute to a new TSSOA w.r.t.�P∪U (see Example
26 or Example 27). Second, U introduces a set of assumptions which is inconsistent
with P , but a coherent view on�P∪U is possible thanks to the preference relation (see
Example 25).

Let P |=SM U . A set of assumptions Xs ⊆ Ngt of a relevant update U satisfies
the conditions as follows. The conditions 1 - 3 are common to both classes of cases
mentioned above. The condition 4 should be satisfied by the first case (contribution to
a new TSSOA w.r.t.�P∪U ). The conditions 5 and 6 should be satisfied by the second
case.

1. Xs is not falsified in�P∪U ,
2. Xs is false in each stable model of P ,
3. Xs ∈ SSOA(�U ) and Cn�U

(Xs) \Xs 6= ∅,



4. there is Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(�P∪U ),
5. Cn�P

(Xs) ∪ Cn�U
(Xs) is inconsistent,

6. there is View ⊂�P∪U and Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(View)

Note that the condition 3 qualifies cyclic updates as irrelevant. Recall Example 2, it
holds that Cn�U

(Xs) \Xs = ∅ for each set Xs ⊆ Ngt .

6 Irrelevant updates – formal elaboration

Irrelevant updates are defined in this section for programs of the form 〈P,U〉 and for
corresponding dependency relations�P∪U . However, we can abstract from programs
– a generalization to arbitrary dependency relation (on which a preference is defined) is
straightforward.

Convention 28 Let 〈P,U〉 be a multiprogram. Then U is an irrelevant update of P iff
TSSOA(P ∪ U) = TSSOA(P ).

We are going to specify criteria for TSSOA(P ∪U) = TSSOA(P ) in terms of assump-
tions and dependencies. First some trivial implications.

Proposition 29 If P 6|=SM U , then TSSOA(P ) 6⊆ TSSOA(P ∪ U)

Proof Sketch: There is S ∈ SM (P ) s.t. S 6|=SM U . Hence, S 6∈ SM (P ∪ U) The rest
follows from Theorem 10. 2

Proposition 30 If TSSOA(P ∪ U) = TSSOA(P ), then P |=SM U

Proof Sketch: Consider S ∈ SM (P ). S− ∈ TSSOA(P ) = TSSOA(P∪U). Therefore,
U is satisfied in S. 2

Proposition 31 If P |=SM U , then TSSOA(P ) ⊆ TSSOA(P ∪ U).

Proof Sketch: Let be S ∈ SM (P ), i.e. S− ∈ TSSOA(P ). It is supposed that U is
satisfied in S. Hence, S = Cn�P

(S−) = Cn�P∪U
(S−). 2

Example 27 shows that TSSOA(P ∪U) ⊆ TSSOA(P ) does not hold in general, if
P |=SM U .

The condition P |=SM U is a necessary, but not sufficient condition for irrelevancy
of an update U of P , see Examples 25 and 27.

2[KM] is a very intuitive postulate for updates (an intuition of updates is also in the
background of dynamic logic programming according to [12]). However, 2[KM] can-
not be accepted literally for updates of NMKB. Defeasible (nonmonotonic) assumptions
are not considered by Katsuno and Mendelzon in [10]. A careful treatment of assump-
tions and dependencies on assumptions is required for an appropriate understanding of
updates of NMKB.

We can define now irrelevant update of a program.



Definition 32 (Irrelevant update) Let 〈P,U〉 be a multiprogram, P be coherent and
P |=SM U .

It is said that U is an irrelevant update of P iff there is no Xs ⊆ Ngt s.t.

– Xs ∈ SSOA(�U ) and Cn�U
(Xs) \Xs 6= ∅,

– Xs is not falsified in�P∪U ,
– Xs is false in each stable model of P ,
– there is Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(�P∪U ) or
• Cn�P

(Xs) ∪ Cn�U
(Xs) is inconsistent,

• there is View ⊆�P∪U and Bs ⊆ Ngt s.t. Xs ⊆ Bs and Bs ∈ TSSOA(View)

A nondeterministic algorithm for computation of TSSOAs is presented in [14].

Theorem 33 If U is an irrelevant update of P then TSSOA(�P∪U ) = TSSOA(�P ).

Proof Sketch: It is needed to prove that TSSOA(P ∪ U)) ⊆ TSSOA(P ), the rest
follows from Proposition 31. Let be X ∈ TSSOA(P ∪ U) If X 6∈ TSSOA(P ), then
some condition of irrelevant updates from Definition 32 is violated. 2

Note that the converse implication does not hold – see Example 25. The following
trivial consequence states that the semantics of an original program P is preserved after
an irrelevant update.

Consequence 34 Let Xs be a TSSOA w.r.t. �P and U be an irrelevant update of P .
Then Xs is a TSSOA w.r.t.�P∪U .

7 Conclusions

A notion of irrelevant updates based on a dependency framework is introduced in the
paper. The dependency framework provides a general base for discussing updates of
NMKBs. The role of nonmonotonic assumptions in updates (and also in hypothetical,
nonmonotonic reasoning) has been emphasized.

It has been shown that irrelevant updates do not generate new TSSOAs (sets of as-
sumptions, which generate stable models, Theorem 33) and that TSSOAs correspond-
ing to the original program generate also all stable models of updated program (Con-
sequence 34). The dependency framework solves also troubles caused by tautological
and cyclic updates, [14].

As regards our research concerning conditions of updates of NMKBs, a relevancy
postulate can be added to postulates from [14].

Attention has been frequently focused on MDyLP in this paper. The reason is that
MDyLP is a well understood idealization of NMKB and also because of importance
of the problem of irrelevant updates in MDyLP. Finally, our approach to irrelevant up-
dates is based on the dependency framework, which provides an alternative semantics
of MDyLP [14]. However, our notion of irrelevant updates can be expressed indepen-
dently on MDyLP and it is among our future goals.

A short comment concerning related work: a modified version of 2[KM], [10],
which reflects the presence of nonmonotonic assumptions, is presented. A more general



view on irrelevant updates is given as in [3]. The notion of falsified assumptions enables
to cover a more broad range of irrelevant updates. The trivial semantics (which satisfies
REP) is not a problem for our approach.
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