
Handbook of Knowledge Representation
Edited by F. van Harmelen, V. Lifschitz and B. Porter
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-6526(07)03016-7

649

Chapter 16

Situation Calculus

Fangzhen Lin

The situation calculus is a logical language for representing changes. It was first intro-
duced by McCarthy in 1963,1 and described in further details by McCarthy and Hayes
[29] in 1969.

The basic concepts in the situation calculus are situations, actions and fluents.
Briefly, actions are what make the dynamic world change from one situation to an-
other when performed by agents. Fluents are situation-dependent functions used to
describe the effects of actions. There are two kinds of them, relational fluents and
functional fluents. The former have only two values: true or false, while the latter can
take a range of values. For instance, one may have a relational fluent called handempty
which is true in a situation if the robot’s hand is not holding anything. We may need
a relation like this in a robot domain. One may also have a functional fluent called
battery-level whose value in a situation is an integer between 0 and 100 denoting the
total battery power remaining on one’s laptop computer.

According to McCarthy and Hayes [29], a situation is “the complete state of the
universe at an instance of time”. But for Reiter [34], a situation is the same as its
history which is the finite sequence of actions that has been performed since the ini-
tial situation S0. We shall discuss Reiter’s foundational axioms that make this precise
later. Whatever the interpretation, the unique feature of the situation calculus is that
situations are first-order objects that can be quantified over. This is what makes the
situation calculus a powerful formalism for representing change, and distinguishes it
from other formalisms such as dynamic logic [11].

To describe a dynamic domain in the situation calculus, one has to decide on the set
of actions available for the agents to perform, and the set of fluents needed to describe
the changes these actions will have on the world. For example, consider the classic
blocks world where some blocks of equal size can be arranged into a set of towers on
a table. The set of actions in this domain depends on what the imaginary agent can
do. If we imagine the agent to be a one-handed robot that can be directed to grasp any
block that is on the top of a tower, and either add it to the top of another tower or put it
down on the table to make a new tower, then we can have the following actions [30]:

1In a Stanford Technical Report that was later published as [25].

650 16. Situation Calculus

• stack(x, y)—put block x on block y, provided the robot is holding x, and y is
clear, i.e. there is no other block on it;

• unstack(x, y)—pick up block x from block y, provided the robot’s hand is
empty, x is on y, and x is clear;

• putdown(x)—put block x down on the table, provided the robot is holding x;

• pickup(x)—pick up block x from the table, provided the robot’s hand is empty,
x is on the table and clear.

To describe the effects of these actions, we can use the following relational fluents:

• handempty—true in a situation if the robot’s hand is empty;

• holding(x)—true in a situation if the robot’s hand is holding block x;

• on(x, y)—true in a situation if block x is on block y;

• ontable(x)—true in a situation if block x is on the table;

• clear(x)—true in a situation if block x is the top block of a tower, i.e. the robot
is not holding it, and there is no other block on it.

So, for example, we can say that for action stack(x, y) to be performed in a situa-
tion, holding(x) and clear(y) must be true, and that after stack(x, y) is performed, in
the resulting new situation, on(x, y) and handempty will be true, and holding(x) and
clear(y) will no longer be true.

If, however, the agent in this world can move a block from a clear position to
another clear position, then we only need the following action:

• move(x, y)—move block x to position y, provided that block x is clear to move,
where a position is either a block or the table.

To describe the effects of this action, it suffices to use two fluents on(x, y) and
clear(x): action move(x, y) can be performed in a situation if x �= table, clear(x),
and clear(y) are true in the situation, and that after move(x, y) is performed, in the
resulting new situation, x is no longer where it was but on y now.

To axiomatize dynamic domains like these in the situation calculus, we will need
to be a bit more precise about the language.

16.1 Axiomatizations

We said that the situation calculus is a logical language for reasoning about change.
More precisely, it is a first-order language, sometime enriched with some second-
order features. It represents situations and actions as first-order objects that can be
quantified over. Thus we can have a first-order sentence saying that among all actions,
putdown(x) is the only one that can make ontable(x) true. We can also have a first-
order sentence saying that in any situation, executing different actions will always
yield different situations. As we mentioned, being able to quantify over situations
makes the situation calculus a very expressive language, and distinguishes it from
other formalisms for representing dynamic systems.

F. Lin 651

As we mentioned, fluents are functions on situations. Of special interest are rela-
tional fluents that are either true or false in a situation. Initially, McCarthy and Hayes
represented relational fluents as predicates whose last argument is a situation term
[29]. For instance, to say that block x is on the table in situation s, one would use
a binary predicate like ontable and write ontable(x, s). This was also the approach
taken by Reiter [33, 34]. Later, McCarthy [26, 28] proposed to reify relational fluents
as first-order objects as well, and introduced a special binary predicate “Holds(p, s)”
to express the truth value of a relational fluent p in situation s. Here we shall fol-
low McCarthy’s later work, and represent relational fluents as first-order objects as
well. This allows us to quantify over fluents. But more importantly, it allows us to talk
about other properties of fluents like causal relationships among them [15]. One could
continue to write formulas like ontable(x, s), which will be taken as a shorthand for
Holds(ontable(x), s).

To summarize, the situation calculus is a first-order language with the following
special sorts: situation, action, and fluent (for relational fluents). There could be other
sorts, some of them domain dependent like block for blocks in the blocks world or loc
for locations in logistics domain, and others domain independent like truth for truth
values. For now we assume the following special domain independent predicates and
functions:

• Holds(p, s)—fluent p is true in situation s;

• do(a, s)—the situation that results from performing action a in situation s;

• Poss(a, s)—action a is executable in situation s.

Other special predicates and functions may be introduced. For instance, to specify
Golog programs [12], one can use a ternary predicate called Do(P, s1, s2), meaning
that s2 is a terminating situation of performing program P in s1. To specify causal re-
lations among fluents, one can use another ternary predicate Caused(p, v, s), meaning
that fluent p is caused to have truth value v in situation s.

Under these conventions, a relational fluent is represented by a function that does
not have a situation argument, and a functional fluent is represented by a function
whose last argument is of sort situation. For instance, clear(x) is a unary relational
fluent. We often write clear(x, s) which as we mentioned earlier, is just a shorthand
for Holds(clear(x), s). On the other hand, color(x, s) is a binary functional fluent, and
we write axioms about it like

color(x, do(paint(x, c), s)) = c.

We can now axiomatize our first blocks world domain with the following first-order
sentences (all free variables are assumed to be universally quantified):

(16.1)Poss(stack(x, y), s) ≡ holding(x, s) ∧ clear(y, s),

(16.2)Poss(unstack(x, y), s) ≡ on(x, y, s) ∧ clear(x, s) ∧ handempty(s),

(16.3)Poss(pickup(x), s) ≡ ontable(x, s) ∧ clear(x, s) ∧ handempty(s),

(16.4)Poss(putdown(x), s) ≡ holding(x, s),

(16.5)holding(u, do(stack(x, y), s)) ≡ holding(u, s) ∧ u �= x,

652 16. Situation Calculus

(16.6)handempty(do(stack(x, y), s)),

(16.7)on(u, v, do(stack(x, y), s)) ≡ (u = x ∧ v = y) ∨ on(u, v, s),

(16.8)clear(u, do(stack(x, y), s)) ≡ u = x ∨ (clear(u, s) ∧ u �= y),

(16.9)ontable(u, do(stack(x, y), s)) ≡ ontable(u, s),

(16.10)holding(u, do(unstack(x, y), s)) ≡ u = x,

(16.11)¬handempty(do(unstack(x, y), s)),

(16.12)on(u, v, do(unstack(x, y), s)) ≡ on(u, v, s) ∧ ¬(x = u ∧ y = v),

(16.13)clear(u, do(unstack(x, y), s)) ≡ u = y ∨ (clear(u, s) ∧ u �= x),

(16.14)ontable(u, do(unstack(x, y), s)) ≡ ontable(u, s),

(16.15)holding(u, do(pickup(x), s)) ≡ u = x,

(16.16)¬handempty(do(pickup(x), s)),

(16.17)on(u, v, do(pickup(x), s)) ≡ on(u, v, s),

(16.18)clear(u, do(pickup(x), s)) ≡ clear(u, s) ∧ u �= x,

(16.19)ontable(u, do(pickup(x), s)) ≡ ontable(u, s) ∧ x �= u,

(16.20)holding(u, do(putdown(x), s)) ≡ holding(u, s) ∧ u �= x,

(16.21)handempty(do(putdown(x), s)),

(16.22)on(u, v, do(putdown(x), s)) ≡ on(u, v, s),

(16.23)clear(u, do(putdown(x), s)) ≡ u = x ∨ clear(u, s),

(16.24)ontable(u, do(putdown(x), s)) ≡ u = x ∨ ontable(u, s).

Similarly, we can write the following axioms for our second version of the blocks
world domain.

(16.25)Poss(move(x, y), s) ≡ x �= table ∧ clear(x, s) ∧ clear(y, s)

clear(u, do(move(x, y), s)) ≡

(16.26)u = table ∨ on(x, u, s) ∨ (clear(u, s) ∧ u �= y),

on(u, v, do(move(x, y), s)) ≡

(16.27)(x = u ∧ y = v) ∨ (on(u, v, s) ∧ u �= x).

16.2 The Frame, the Ramification and the Qualification Problems

The set of axioms (16.1)–(16.24) provides a complete logical characterization of the
effects of actions for our first blocks world domain. For each action, it gives necessary
and sufficient conditions for it to be executable in any situation, and fully specifies
the effects of this action on every fluent. Similarly, the set of axioms (16.25)–(16.27)
completely captures the effects of actions for our second blocks world domain.

However, there is something unsatisfying about these two sets of axioms. When
we informally described the effects of actions, we did not describe it this way. For

F. Lin 653

instance, we said that after stack(x, y) is performed, in the resulting new situation,
on(x, y) and handempty will be true, and holding(x) and clear(y) will no longer be
true. We did not have to say, for instance, that if y is initially on the table, it will still
be on the table. Many researchers believe that when people remember the effects of
an action, they do not explicitly store the facts that are not changed by the action,
rather they just remember the changes that this action will bring about. Consequently,
when we axiomatize an action, we should only need to specify the changes that will be
made by the action. But if we specify in our theory only the changes that an action will
make, there is then a problem of how to derive those that are not changed by the action.
This problem was identified by McCarthy and Hayes [29] in 1969, and they called it
the frame problem. For our blocks world example, we can view the frame problem
as the problem of looking for an appropriate logic that when given, for example the
following so-called “effect axioms” about stack(x, y):

on(x, y, do(stack(x, y), s)),

clear(x, do(stack(x, y), s)),

¬clear(y, do(stack(x, y), s)),

handempty(do(stack(x, y), s)),

¬holding(x, do(stack(x, y), s)),

will derive a complete specification of the effects of action stack(x, y), like what the
set of axioms (16.5)–(16.9) does in first-order logic [21].

The frame problem is one of the most well-known AI problems, if not the most
well-known one, and a lot of work has been done on solving it. It motivated much
of the early work on nonmonotonic logic (see papers in [6] and Chapter 6). While
the problem was identified in the situation calculus, it shows up in other formalisms
like the event calculus (Chapter 17), temporal action logics (Chapter 18), and non-
monotonic causal logic (Chapter 19). In fact, the general consensus is that any formal-
ism for reasoning about change will have to deal with it.

McCarthy [27] initially proposed to solve the frame problem by the following
generic frame axiom:

(16.28)Holds(p, s) ∧ ¬abnormal(p, a, s)Holds(p, do(a, s))

with the abnormality predicate abnormal circumscribed. Unfortunately, Hanks and
McDermott [10] showed that this approach does not work using by now the infamous
Yale Shooting Problem as a counterexample. This is a simple problem with three ac-
tions: wait (do nothing), load (load the gun), and shoot (fire the gun). Their effects can
be axiomatrized by the following axioms:

(16.29)loaded(do(load, s)),

(16.30)loaded(s) ⊃ dead(do(shoot, s)).

Now suppose S0 is a situation such that the following is true:

(16.31)¬loaded(S0) ∧ ¬dead(S0).

654 16. Situation Calculus

Hanks and McDermott showed that the circumscription of abnormal in the theory
{(16.28), (16.29), (16.30), (16.31)} with Holds allowed to vary has two models, one
in which

loaded(do(load, S0)) ∧ loaded(do(wait, do(load, S0))) ∧

dead(do(shoot, do(wait, do(load, S0))))

is true as desired, and the other in which

loaded(do(load, S0)) ∧ ¬loaded(do(wait, do(load, S0))) ∧

¬dead(do(shoot, do(wait, do(load, S0))))

is true, which is counter-intuitive as the action wait, which is supposed to do nothing,
mysteriosly unloaded the gun.

For the next few years, the YSP motivated much of the work on the frame problem,
and the frame problem became the focus of the research on nonmonotonic reasoning.
In response to the problem, Shoham [37] proposed chronological minimization that
prefers changes at later times. Many other proposals were put forward (e.g. [13, 14, 2,
33, 21, 35, 15, 38, 24]).

The thrust of modern solutions to the frame problem is to separate the specification
of the effects of actions from the tasks of reasoning about these actions. For instance,
given the effect axioms (16.29) and (16.30), one can obtain the following complete
specification of the effects of the actions concerned:

loaded(do(load, s)),

dead(do(load, s)) ≡ dead(s),

loaded(do(shoot, s)) ≡ loaded(s),

dead(do(shoot, s)) ≡ loaded(s) ∨ dead(s),

loaded(do(wait, s)) ≡ loaded(s),

dead(do(wait, s)) ≡ dead(s).

Now given the initial state axiom (16.31), one can easily infer that dead(do(shoot,
do(wait, do(load, S0)))) holds.

This separation between the specification of action theories and the tasks of rea-
soning under these theories can be done syntactically by distinguishing general effect
axioms like (16.29) from specific facts like (16.31) about some particular situations,
as in Reiter’s solution [33] that we shall describe next. It can also be done by encoding
general effect axioms in a special language using predicates like Caused, as in Lin’s
causal theories of action [15] for solving the ramification problem.

16.2.1 The Frame Problem—Reiter’s Solution

Based on earlier work by Pednault [31], Haas [9] and Schubert [36], Reiter [33, 34]
proposed a simple syntactic manipulation much in the style of Clark’s predicate com-
pletion [4] (see Chapter 7) that turns a set of effect axioms into a set of successor state
axioms that completely captures the true value of each fluent in any successor situa-
tion. It is best to illustrate Reiter’s method by an example. Consider our first blocks
world domain, and let us write down all the effect axioms:

F. Lin 655

(16.32)on(x, y, do(stack(x, y), s)),

(16.33)clear(x, do(stack(x, y), s)),

(16.34)¬clear(y, do(stack(x, y), s)),

(16.35)handempty(do(stack(x, y), s)),

(16.36)¬holding(x, do(stack(x, y), s)),

(16.37)¬on(x, y, do(unstack(x, y), s)),

(16.38)¬clear(x, do(unstack(x, y), s)),

(16.39)clear(y, do(unstack(x, y), s)),

(16.40)¬handempty(do(unstack(x, y), s)),

(16.41)holding(x, do(unstack(x, y), s)),

(16.42)ontable(x, do(putdown(x), s)),

(16.43)clear(x, do(putdown(x), s)),

(16.44)handempty(do(putdown(x), s)),

(16.45)¬holding(x, do(putdown(x), s)),

(16.46)¬ontable(x, do(pickup(x), s)),

(16.47)¬clear(x, do(pickup(x), s)),

(16.48)¬handempty(do(pickup(x), s)),

(16.49)holding(x, do(pickup(x), s)).

Now for each of these effect axioms, transform it into one of the following two forms:

γ (a, �x, s) ⊃ F(�x, do(a, s)),

γ (a, �x, s) ⊃ ¬F(�x, do(a, s)).

For instance, the effect axiom (16.32) can be transformed equivalently into the follow-
ing axiom:

a = stack(x, y) ⊃ on(x, y, do(a, s)),

and the effect axiom (16.34) can be transformed equivalently into the following axiom:

(∃y)a = stack(y, x) ⊃ ¬clear(x, do(a, s)).

Now for each fluent F , suppose the following is the list of all such axioms so obtained:

γ+
1 (a, �x, s) ⊃ F(�x, do(a, s)),

· · ·

γ+
m (a, �x, s) ⊃ F(�x, do(a, s)),

γ−
1 (a, �x, s) ⊃ ¬F(�x, do(a, s)),

· · ·

γ−
n (a, �x, s) ⊃ ¬F(�x, do(a, s)).

656 16. Situation Calculus

Then under what Reiter called the causal completeness assumption, which says that
the above axioms characterize all the conditions under which action a causes F to
become true or false in the successor situation, we conclude the following successor
state axiom [33] for fluent F :

(16.50)F(�x, do(a, s)) ≡ γ+(a, �x, s) ∨ (F (�x, s) ∧ ¬γ−(a, �x, s)),

where γ+(a, �x, s) is γ+
1 (a, �x, s)∨ · · · ∨ γ+

m (a, �x, s), and γ−(a, �x, s) is γ−
1 (a, �x, s)∨

· · · ∨ γ−
n (a, �x, s).

For instance, for our first blocks world, we can transform the effect axioms about
clear(x) into the following axioms:

(∃y.a = stack(x, y)) ⊃ clear(x, do(a, s)),

(∃y.a = unstack(y, x)) ⊃ clear(x, do(a, s)),

a = putdon(x) ⊃ clear(x, do(a, s)),

(∃y.a = stack(y, x)) ⊃ ¬clear(x, do(a, s)),

(∃y.a = unstack(x, y)) ⊃ ¬clear(x, do(a, s)),

a = pickup(x) ⊃ ¬clear(x, do(a, s)).

Thus we have the following successor state axiom for clear(x):

clear(x, do(a, s)) ≡

∃y.a = stack(x, y) ∨ ∃y.a = unstack(y, x) ∨

a = putdown(x) ∨ clear(x, s) ∧

¬[∃y.a = stack(y, x) ∨ ∃y.a = unstack(x, y) ∨ a = pickup(x)].

Once we have a successor state axiom for each fluent in the domain, we will
then have an action theory that is complete in the same way as the set of axioms
(16.1)–(16.24) is.

This procedure can be given a semantics in nonmonotonic logics, in particular
circumscription [27] (see Chapter 6). This in fact has been done by Lin and Reiter [19].

We should also mention that for this approach to work, when generating the succes-
sor state axiom (16.50) from effect axioms, one should also assume what Reiter called
the consistency assumption: the background theory should entail that ¬(γ+ ∧ γ−).
Once we have a set of successor state axioms, to reason with them we need the unique
names assumption about actions: for each n-ary action A:

A(x1, . . . , xn) = A(y1, . . . , yn) ⊃ x1 = y1 ∧ · · · ∧ xn = yn,

and for each distinct actions A and A�,

A(x1, . . . , xn) �= A�(y1, . . . , ym).

For more details, see [33, 34].

F. Lin 657

16.2.2 The Ramification Problem and Lin’s Solution

Recall that the frame problem is about how one can obtain a complete axiomatization
of the effects of actions from a set of effect axioms that specifies the changes that
the actions have on the world. Thus Reiter’s solution to the frame problem makes the
assumption that the given effect axioms characterize completely the conditions under
which an action can cause a fluent to be true or false. However, in some action do-
mains, providing such a complete list of effect axioms may not be feasible. This is
because in these action domains, there are rich domain constraints that can entail new
effect axioms. To see how domain constraints can entail new effect axioms, consider
again the blocks world. We know that each block can be at only one location: either
being held by the robot’s hand, on another block, or on the table. Thus when action
stack(x, y) causes x to be on y, it also makes holding(x) false. The ramification prob-
lem, first discussed by Finger [5] in 1986, is about how to encode constraints like this
in an action domain, and how these constraints can be used to derive the effects of the
actions in the domain.

In the situation calculus, for a long time the only way to represent domain con-
straints was by universal sentences of the form ∀s.C(s). For example, the aforemen-
tioned constraint that a block can be (and must be) at only one location in the blocks
world can be represented by the following sentences:

holding(x, s) ∨ ontable(x, s) ∨ ∃y.on(x, y),

holding(x, s) ⊃ ¬(ontable(x, s) ∨ ∃y.on(x, y)),

ontable(x, s) ⊃ ¬(holding(x, s) ∨ ∃y.on(x, y)),

(∃y.on(x, y)) ⊃ ¬(holding(x, s) ∨ ontable(x, s)).

So, for example, these axioms and the following effect axiom about putdown(x),

ontable(x, do(putdown(x), s))

will entail in first-order logic the following effect axiom:

¬holding(x, do(putdown(x), s)).

However, domain constraints represented this way may not be strong enough for
determining the effects of actions. Consider the suitcase problem from [15]. Imagine
a suitcase with two locks and a spring loaded mechanism which will open the suitcase
when both of the locks are in the up position. Apparently, because of the spring loaded
mechanism, if an action changes the status of the locks, then this action may also
cause, as an indirect effect, the suitcase to open.

As with the blocks world, we can represent the constraint that this spring loaded
mechanism gives rise to as the following sentence:

(16.51)up(L1, s) ∧ up(L2, s) ⊃ open(s).

Although summarizing concisely the relationship among the truth values of the three
relevant propositions at any particular instance of time, this constraint is too weak to
describe the indirect effects of actions. For instance, suppose that initially the suitcase
is closed, the first lock in the down position, and the second lock in the up position.

658 16. Situation Calculus

Suppose an action is then performed to turn up the first lock. Then this constraint
is ambiguous about what will happen next. According to it, either the suitcase may
spring open or the second lock may get turned down. Although we have the intuition
that the former is what will happen, this constraint is not strong enough to enforce that
because there is a different mechanism that will yield a logically equivalent constraint.
For instance, a mechanism that turns down the second lock when the suitcase is closed
and the first lock is up will yield the following logically equivalent one:

up(L1, s) ∧ ¬open(s) ⊃ ¬up(L2, s).

So to faithfully represent the ramification of the spring loaded mechanism on
the effects of actions, something stronger than the constraint (16.51) is needed. The
proposed solution by Lin [15] is to represent this constraint as a causal constraint:
(through the spring loaded mechanism) the fact that both of the locks are in the up
position causes the suitcase to open. To axiomatize this, Lin introduced a ternary
predicate Caused(p, v, s), meaning that fluent p is caused to have truth value v in
situation s. The following are some basic properties of Caused [15]:

(16.52)Caused(p, true, s) ⊃ Holds(p, s),

(16.53)Caused(p, false, s) ⊃ ¬Holds(p, s),

(16.54)true �= false ∧ (∀v)(v = true ∨ v = false),

where v is a variable ranging over a new sort truthValues.
Let us illustrate how this approach works using the suitcase example. Suppose that

flip(x) is an action that flips the status of the lock x. Its direct effect can be described
by the following axioms:

(16.55)up(x, s) ⊃ Caused(up(x), false, do(flip(x), s)),

(16.56)¬up(x, s) ⊃ Caused(up(x), true, do(flip(x), s)).

Assume thatL1 andL2 are the two locks on the suitcase, the spring loaded mechanism
is now represented by the following causal rule:

(16.57)up(L1, s) ∧ up(L2, s) ⊃ Caused(open, true, s).

Notice that this causal rule, together with the basic axiom (16.52) about causality,
entails the state constraint (16.51). Notice also that the physical, spring loaded mech-
anism behind the causal rule has been abstracted away. For all we care, it may just as
well be that the device is not made of spring, but of bombs that will blow open the
suitcase each time the two locks are in the up position. It then seems natural to say
that the fluent open is caused to be true by the fact that the two locks are both in the up
position. This is an instance of what has been called static causal rules as it mentions
only one situation. In comparison, causal statements like the effect axioms (16.55) and
(16.56) are dynamic as they mention more than one situations.

The above axioms constitute the starting theory for the domain. To describe fully
the effects of the actions, suitable frame axioms need to be added. Using predicate
Caused, a generic frame axiom can be stated as follows [15]: Unless caused otherwise,
a fluent’s truth value will persist:

(16.58)¬(∃v)Caused(p, v, do(a, s)) ⊃ [Holds(p, do(a, s)) ≡ Holds(p, s)].

F. Lin 659

For this frame axiom to make sense, one needs to minimize the predicate Caused.
Technically this is done by circumscribing Caused in the above set of axioms with
all other predicates (Poss and Holds) fixed. However, given the form of the axioms,
this circumscription coincides with Clark’s completion of Caused, and it yields the
following causation axioms:

Caused(open, v, s) ≡

(16.59)v = true ∧ up(L1, s) ∧ up(L2, s),

Caused(up(x), v, s) ≡

v = true ∧ (∃s �)[s = do(flip(x), s�) ∧ ¬up(x, s�)] ∨

(16.60)v = false ∧ (∃s�)[s = do(flip(x), s�) ∧ up(x, s�)].

Notice that these axioms entail the two direct effect axioms (16.55), (16.56) and the
causal rule (16.57).

Having computed the causal relation, the next step is to use the frame axiom
(16.58) to compute the effects of actions. It is easy to see that from the frame ax-
iom (16.58) and the two basic axioms (16.52), (16.53) about causality, one can infer
the following pseudo successor state axiom:

Holds(p, do(a, s)) ≡

Caused(p, true, do(a, s)) ∨

(16.61)Holds(p, s) ∧ ¬Caused(p, false, do(a, s)).

From this axiom and the causation axiom (16.60) for the fluent up, one then obtains
the following real successor state axiom for the fluent up:

up(x, do(a, s)) ≡

(a = flip(x) ∧ ¬up(x, s)) ∨ (up(x, s) ∧ a �= flip(x)).

Similarly for the fluent open, we have

open(do(a, s)) ≡

[up(L1, do(a, s)) ∧ up(L2, do(a, s))] ∨ open(s).

Now from this axiom, first eliminating up(L1, do(a, s)) and up(L2, do(a, s)) using
the successor state axiom for up, then using the unique names axioms for actions, and
the constraint (16.51) which, as we pointed out earlier, is a consequence of our axioms,
we can deduce the following successor state axiom for the fluent open:

open(do(a, s)) ≡ a = flip(L1) ∧ ¬up(L1, s) ∧ up(L2, s) ∨

a = flip(L2) ∧ ¬up(L2, s) ∧ up(L1, s) ∨

open(s).

Obtaining these successor state axioms solves the frame and the ramification problems
for the suitcase example.

Lin [15] showed that this procedure can be applied to a general class of action
theories, and Lin [18] described an implemented system that can compile these causal

660 16. Situation Calculus

action theories into Reiter’s successor state axioms and STRIPS-like systems, and
demonstrated the effectiveness of the system by applying it to many benchmark AI
planning domains.

16.2.3 The Qualification Problem

Finally, we notice that so far we have given the condition for an action a to be exe-
cutable in a situation s, Poss(a, s), directly. It can be argued that this is not a reasonable
thing to do. In general, the executability of an action may depend on the circum-
stances where it is performed. For instance, we have defined Poss(putdown(x), s) ≡
holding(x, s). But if the action is to be performed in a crowd, then we may want to
add that for the action to be executable, the robot’s hand must not be blocked by some-
one; and if the robot is running low on battery, then we may want to ensure that the
robot is not running out of battery; etc. It is clear that no one can anticipate all these
possible circumstances, thus no one can list all possible conditions for an action to be
executable ahead of time. This problem of how best to specify the precondition of an
action is called the qualification problem [26].

One possible solution to this problem is to assume that an action is always exe-
cutable unless explicitly ruled out by the theory. This can be achieved by maximizing
the predicate Poss, or in terms of circumscription, circumscribing¬Poss. If the axioms
about Poss all have the form

Poss(A, s) ⊃ ϕ(s),

that is, the user always provides explicit qualifications to an action, then one can com-
pute Poss by a procedure like Clark’s predicate completion by rewriting the above
axiom as:

¬ϕ(s) ⊃ ¬Poss(A, s).

The problem becomes more complex when some domain constraints-like axioms can
influence Poss. This problem was first recognized by Ginsberg and Smith [7], and
discussed in more detailed by Lin and Reiter [19]. For instance, we may want to add
into the blocks world a constraint that says “only yellow blocks can be directly on
the table”. Now if the robot is holding a red block, should she put it down on the
table? Probably she should not. This means that this constraint has two roles: it rules
out initial states that do not satisfy it, and it forbids agents to perform any action that
will result in a successor situation that violates it. What this constraint should not do
is to cause additional effects of actions. For instance, it should not be the case that
putdown(x) would cause x to become yellow just to maintain this constraint in the
successor situation.

Lin and Reiter [19] called those constraints that yield indirect effects of actions
ramification constraints, and those that yield additional qualifications of actions qual-
ification constraints. They are both represented as sentences of the form ∀s.C(s), and
it is up to the user to classify which category they belong to.

A uniform way of handling these two kinds of constraints is to use Lin’s causal
theories of actions as described above. Under this framework, only constraints repre-
sented as causal rules using Caused can derive new effects of actions, and ordinary
situation calculus sentences of the form ∀s.C(s) can only derive new qualifications on

F. Lin 661

actions. However, for this to work, action effect axioms like (16.55) need to have Poss
as a precondition:

Poss(flip(x), s) ⊃ [up(x, s) ⊃ Caused(up(x), false, do(flip(x), s))],

and the generic frame axiom (16.58) need to be modified similarly:

Poss(a, s) ⊃ {¬(∃v)Caused(p, v, do(a, s)) ⊃

[Holds(p, do(a, s)) ≡ Holds(p, s)]}.

In fact, this was how action effect axioms and frame axioms are represented in [15].
An interesting observation made in [15] was that some causal rules may give rise to
both new action effects and action qualifications. Our presentation of Lin’s causal the-
ories in the previous subsection has dropped Poss so that, in line with the presentation
in [34], the final successor state axioms do not have Poss as a precondition.

16.3 Reiter’s Foundational Axioms and Basic Action Theories

We have defined the situation calculus as a first-order language with special sorts for
situations, actions, and fluents. There are no axioms to constrain these sorts, and all
axioms are domain specific given by the user for axiomatizing a particular dynamic
system. We have used a binary function do(a, s) to denote the situation resulted from
performing a in s, thus for a specific finite sequence of actions a1, . . . , ak , we have
a term denoting the situation resulted from performing the sequence of actions in s:
do(ak, do(ak−1, . . . , do(a1, s) . . .)). However, there is no way for us to say that one
situation is the result of performing some finite sequence of actions in another situa-
tion. This is needed for many applications, such as planning where the achievability
of a goal is defined to be the existence of an executable finite sequence of actions that
will make the goal true once executed. We now introduce Reiter’s foundational axioms
that make this possible.

Briefly, under Reiter’s foundational axioms, there is a unique initial situation, and
all situations are the result of performing some finite sequences of actions in this initial
situation. This initial situation will be denoted by S0, which formally is a constant of
sort situation.

It is worth mentioning here that while the constant S0 has been used before to in-
formally stand for a starting situation, it was not assumed to be the starting situation
as under Reiter’s situation calculus. It can be said that the difference between Re-
iter’s version of the situation calculus and McCarthy’s original version is that Reiter
assumed the following foundational axioms that postulate the space of situations as a
tree with S0 as the root:

(16.62)do(a, s) = do(a�, s�) ⊃ a = a� ∧ s = s�,

(16.63)∀P.[P(S0) ∧ ∀a, s.P (s) ⊃ P(do(a, s))] ⊃ ∀sP (s).

Axiom (16.63) is a second-order induction axiom that says that for any property P , to
prove that ∀s.P (s), it is sufficient to show that P(S0), and inductively, for any situa-
tion s, if P(s) then for any action a, P(do(a, s)). In particular, we can conclude that

• S0 is a situation;

662 16. Situation Calculus

• if s is a situation, and a an action, then do(a, s) is a situation;

• nothing else is a situation.

Together with the unique names axiom (16.62), this means that we can view the do-
main of situations as a tree whose root is S0, and for each action a, do(a, s) is a
child of s. Thus for each situation s there is a unique finite sequence α of actions
such that s = do(α, S0), where for any finite sequence α

� of actions, and any sit-
uation s�, do(α�, s�) is defined inductively as do([], s�) = s�, and do([a|α�], s�) =
do(a, do(α�, s�)), here we have written a sequence in Prolog notation. Thus there is
a one-to-one correspondence between situations and finite sequences of actions un-
der Reiter’s foundational axioms, and because of this, Reiter identified situations with
finite sequences of actions.

As we mentioned, there is a need to express assertions like “situation s1 is the
result of performing a sequence of actions in s2”. This is achieved by using a partial
order relation � on situations: informally s � s� if s� is the result of performing a
finite nonempty sequence of actions in s. Formally, it is defined by the following two
axioms:

(16.64)¬s � S0,

(16.65)s � do(a, s�) ≡ s � s�,

where s � s� is a shorthand for s � s� ∨ s = s�.
Notice that under the correspondence between situations and finite sequence of

actions, the partial order � is really the sub-sequence relation: s � s� iff the action
sequence of s is a sub-sequence of that of s�. Thus to say that a goal g is achievable in
situation s, we write

∃s�.s � s� ∧ Holds(g, s�) ∧ Executable(s, s�),

where Executable(s, s�) means that the sequence of actions that takes s to s� is exe-
cutable in s, and is defined inductively as:

Executable(s, s),

Executable(s, do(a, s�)) ≡ Poss(a, s�) ∧ Executable(s, s�).

Reiter’s foundational axioms (16.62)–(16.65) make it possible to formally prove
many interesting properties such as the achievability of a goal. They also lay the foun-
dation for using the situation calculus to formalize strategic and control information
(see, e.g., [16, 17]). They are particularly useful in conjunction with Reiter’s successor
state axioms, and are part of what Reiter called the basic action theories as we proceed
to describe now.

To define Reiter’s basic action theories, we first need to define the notion of uniform
formulas. Intuitively, if σ is a situation term, then a formula is uniform in σ if the truth
value of the formula depends only on σ . Formally, a situation calculus formula is
uniform in σ if it satisfies the following conditions:

• it does not contain any quantification over situation;

• it does not mention any variables for relational fluents;

F. Lin 663

• it does not mention any situation term other than σ ;

• it does not mention any predicate that has a situation argument other than Holds;
and

• it does not mention any function that has a situation argument unless the function
is a functional fluent.

Thus clear(x, s) is uniform in s (recall that this is a shorthand for Holds(clear(x), s)),
but ∀s.clear(x, s) is not as it quantifies over situations. The formula ∀p.Holds(p, s)
is not uniform in s either as it contains p which is a variable for relational fluents. No-
tice that a uniform formula cannot mention domain-independent situation-dependent
predicates like Poss, �, and Caused. It cannot even contain equalities between situa-
tions such as s = s, but it can contain equalities between actions and between domain
objects such as x �= y, where x and y are variables of sort block in the blocks world.

Another way to view uniform formulas is by using a first-order language with-
out the special situation sort. The predicates of this language are relational fluents
and other situation independent predicates. The functions are functional fluents, ac-
tions, and other situation independent functions. A situation calculus formula Φ is
uniform in σ iff there is a formula ϕ in this language such that Φ is the result of re-
placing every relational fluent atom F(t1, . . . , tk) in ϕ by Holds(F (t1, . . . , tk), σ) (or
F(t1, . . . , tk, σ)) and every functional fluent term f (t1, . . . , tk) by f (t1, . . . , tk, σ). In
the following, and in Chapter 24 on Cognitive Robotics, this formula Φ is written as
ϕ[σ].

Uniform formulas are used in Reiter’s action precondition axioms and successor
state axioms. In Reiter’s basic action theories, an action precondition axiom for an
action A(x1, . . . , xn) is a sentence of the form:

Poss(A(x1, . . . , xn), s) ≡ Π(x1, . . . , xn, s),

whereΠ(x1, . . . , xn, s) is a formula uniform in s and whose free variables are among
x1, . . . , xn, s. Thus whether A(x1, . . . , xn) can be performed in a situation s depends
entirely on s.

We have seen successor state axioms for relational fluents (16.50). In general, in
Reiter’s basic action theories, a successor state axiom for an n-ary relational fluent F
is a sentence of the form

(16.66)F(x1, . . . , xn, do(a, s)) ≡ ΦF (x1, . . . , xn, a, s),

where ΦF is a formula uniform in s, and whose free variables are among
x1, . . . , xn, a, s.

Similarly, if f is an (n + 1)-ary functional fluent, then a successor state axiom for
it is a sentence of the form

(16.67)f (x1, . . . , xn, do(a, s)) = v ≡ ϕ(x1, . . . , xn, v, a, s),

where ϕ is a formula uniform in s, and whose free variables are among
x1, . . . , xn, v, a, s.

Notice that requiring the formulas ΦF and ϕ in successor state axioms to be uni-
form amounts to making Markov assumption in systems and control theory: the effect
of an action depends only on the current situation.

664 16. Situation Calculus

We can now define Reiter’s basic action theories [34]. A basic action theory D is a
set of axioms of the following form:

Σ ∪Dss ∪Dap ∪Duna ∪DS0 ,

where

• Σ is the set of the four foundational axioms (16.62)–(16.65).

• Dss is a set of successor state axioms. It must satisfy the following functional
fluent consistency property: if (16.67) is in Dss, then

Duna ∪DS0 |= ∀�x.∃vϕ(�x, v, a, s) ∧

[∀v, v�.ϕ(�x, v, a, s) ∧ ϕ(�x, v�, a, s) ⊃ v = v�].

• Dap is a set of action precondition axioms.

• Duna is the set of unique names axioms about actions.

• DS0 is a set of sentences that are uniform in S0. This is the knowledge base for
the initial situation S0.

The following theorem is proved by Pirri and Reiter [32].

Theorem 16.1 (Relative satisfiability). A basic action theory D is satisfiable iff
Duna ∪DS0 is.

As we mentioned above, the basic action theories are the starting point to solve
various problems in dynamic systems. Many of these problems can be solved using
basic action theories by first-order deduction. But some of them require induction.
Those that require induction are typically about proving general assertions of the form
∀s.C(s), such as proving that a certain goal is not achievable. For instance, consider the
basic action theory D where Dap = ∅, Dss = {∀a, s.loaded(do(a, s)) ≡ loaded(s)},
and DS0 = {loaded(S0)}. It is certainly true that D |= ∀s.loaded(s). But proving this
formally requires induction.

The ones that can be done in first-order logic include checking whether a sequence
of ground actions is executable in S0 and the temporal projection problem, which asks
whether a formula holds after a sequence of actions is performed in S0. One very
effective tool for solving these problems is regression,2 which transforms a formula

ϕ(do([α1, . . . , αn], S0))

that is uniform in do([α1, . . . , αn], S0) to a formula ϕ
�(S0) that is uniform in S0 such

that

D |= ϕ(do([α1, . . . , αn], S0)) iff Duna ∪DS0 |= ϕ�(S0).

If ϕ(do([α1, . . . , αn], S0)) does not have functional fluents, then the regression can
be defined inductively as follows: the regression of ϕ(S0) is ϕ(S0), and inductively, if

2Reiter [34] defined regression for a more general class of formulas that can contain Poss atoms.

F. Lin 665

α is an action term, and σ a situation term, then the regression of ϕ(do(α, σ)) is the
regression of the formula obtained by replacing in ϕ(do(α, σ)) each relational fluent
atom F(�t , do(α, σ)) by ΦF (�t , α, σ), where ΦF is the formula in the right side of the
successor state axiom (16.66) for F . When ϕ contains functional fluents, the definition
of regression is more involved, see [34].

For instance, given the following successor state axioms:

F(do(a, s)) ≡ a = A ∨ F(s),

G(do(a, s)) ≡ (a = B ∧ F(s)) ∨ G(s),

the regression of G(do(B, do(A, S0))) is the regression of

(B = B ∧ F(do(A, S0))) ∨ G(do(A, S0)),

which is the following sentence about S0:

(B = B ∧ (A = A ∨ F(S0))) ∨ (A = B ∧ F(S0)) ∨ G(S0),

which is equivalent to true.
Using regression, we can check the executability of a sequence of actions in S0,

say [stack(A,B), pickup(C), putdown(C)], as follows:

1. This sequence of actions is executable in S0 iff the following formulas are en-
tailed by D:

Poss(stack(A,B), S0),

Poss(pickup(C), do(stack(A,B), S0)),

Poss(putdown(C), do(pickup(C), do(stack(A,B), S0))).

2. Use action precondition axioms to rewrite the above sentences into uniform sen-
tences. For instance, the first two sentences can be rewritten into the following
sentences:

clear(B, S0) ∧ holding(A, S0),

handempty(do(stack(A,B), S0)) ∧ ontable(C, (do(stack(A,B), S0))) ∧

clear(C, (do(stack(A,B), S0))).

3. Regress the uniform sentences obtained in step 2, and check whether the re-
gressed formulas are entailed by Duna ∪DS0 .

16.4 Applications

The situation calculus provides a rich framework for solving problems in dynamic
systems. Indeed, Reiter [34] showed that many such problems can be formulated in
the situation calculus and solved using a formal situation calculus specification. He
even had the slogan “No implementation without a SitCalc specification”.

The first application of the situation calculus is in planning where an agent needs
to figure out a course of actions that will achieve a given goal. Green [8] formulated

666 16. Situation Calculus

this problem as a theorem proving task in the situation calculus:

T |= ∃s.G(s),

where T is the situation calculus theory for the planning problem, and G the goal.
Green’s idea was that if one can find a proof of the above theorem constructively,
then a plan can be read off from the witness situation term in the proof. He actually
implemented a planning system based on this idea using a first-order theorem prover.
For various reasons, the system could solve only extremely simple problems. Some
researchers believe that Green’s idea is correct. What one needs is a good way to
encode domain specific control knowledge as the situation calculus sentences to direct
the theorem prover intelligently.

One reason that Green’s system performed poorly was that the theory T that en-
codes the planning problem is not very effective. Assuming that the planning problem
is specified by a basic action theory, Reiter implemented a planner in Prolog that can
efficiently make use of domain-specific control information like that in [1]. It can even
do open-world planning where the initial situation is not completely specified. For
more details see [34].

The situation calculus has also been used to formalize and reason about computer
programs. Burstall used it to formalize Algol-like programs [3]. Manna andWaldinger
used it to formalize general assignments in Algol 68 [22], and later Lisp imperative
programs [23].

More recently, Lin and Reiter used it to axiomatize logic programs with negation-
as-failure [20]. The basic idea is as follows. A rule (clause) P ← G means that
whenever G is proved, we can use this rule to prove P . Thus we can name this rule
by an action so that the consequence of the rule becomes the effect of the action, and
the body of the rule becomes the context under which the action will have the effect.3

Formally, for each rule

F(t1, . . . , tn) ← Q1, . . . ,Qk, notQk+1, . . . , notQm

Lin and Reiter introduced a corresponding n-ary action A, and axiomatized it with the
following axioms:

Poss(A(�x), s),

[∃ �y1Holds(Q1, s) ∧ · · · ∧ ∃ �ykHolds(Qk, s) ∧

¬(∃ �yk+1, s)Holds(Qk+1, s) ∧ · · · ∧

¬(∃ �ym, s)Holds(Qm, s)] ⊃ F(t1, . . . , tn, do(A(�x), s)),

where �yi is the tuple of variables inQi but not in F(t1, . . . , tn).
Notice that ¬(∃ �yi, s)Holds(Qi, s) means that the goalQi is not achievable (prov-

able) no matter how one instantiate the variables that are in Qi but not in the head
of the rule. This is meant to capture the “negation-as-failure” feature of the operator
“not” in logic programming.

Now for a logic program Π , which is a finite set of rules, one can apply Reiter’s
solution to the effect axioms obtained this way for all rules in Π , and obtain a set of

3Alternatively, one could also view the body of a rule as the precondition of the corresponding action.

F. Lin 667

successor state axioms, one for each predicate occurring in the program.4 Thus for
each program Π , we have a corresponding basic action theory5 D for it with

DS0 = {F(�x, S0) ≡ false | F is a predicate in Π}.

In other words, in the initial situation, all fluents are false. Now query answering in a
logic program becomes planning under the corresponding basic action theory.

As it turned out, this formalization of logic programs in the situation calculus yields
a semantics that is equivalent to Gelfond and Lifschitz’s stable model semantics. This
situation calculus semantics can be used to formally study some interesting properties
of logic programs. For instance, it can be proved that program unfolding preserves this
semantics. More interestingly, under this semantics and Reiter’s foundational axioms,
derivations under a program are isomorphic to situations. Thus those operators that
constrain derivations in logic programming can be axiomatized in the situations calcu-
lus by their corresponding constraints on situations. Based on this idea, Lin proposed
a situation calculus semantics for the “cut” operator in logic programming [16].

The most significant application so far is the use of the situation calculus as a
working language for Cognitive Robotics. For details about this application, the reader
is referred to the chapter on Cognitive Robotics in this Handbook.

16.5 Concluding Remarks

What we have described so far is just the elemental of the situation calculus. The
only thing that we care about an action so far is its logical effects on the physical
environment. We have ignored many other aspects of actions, such as their durations
and their effects on the agent’s mental state. We have also assumed that actions are
performed sequentially one at a time and that they are the only force that may change
the state of the world. These and other issues in reasoning about action have been
addressed in the situation calculus, primarily as a result of using the situation calculus
as the working language for Cognitive Robotics. We refer the interested readers to
Chapter 24 and [34].

Acknowledgements

I would like to thank Gerhard Lakemeyer, Hector Levesque, and Abhaya Nayak for
their very useful comments on an earlier version of this article.

Bibliography

[1] F. Bacchus and F. Kabanza. Using temporal logics to express search control
knowledge for planning. Artificial Intelligence, 16:123–191, 2000.

4If a predicate does not occur as the head of a rule, then add an axiom to say that this relation does not
hold for any situation.

5Strictly speaking, it is not a basic action theory as the right side of a successor state axiom may contain
∃s.Q(s) when there is a negation in front ofQ in a rule, thus is not a uniform formula.

668 16. Situation Calculus

[2] A.B. Baker. Nonmonotonic reasoning in the framework of the situation calculus.
Artificial Intelligence, 49:5–23, 1991.

[3] R.M. Burstall. Formal description of program structure and semantics in first-
order logic. In B. Meltzer and D. Michie, editors. Machine Intelligence, vol. 5,
pages 79–98. Edinburgh University Press, Edinburgh, 1969.

[4] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors. Logics and
Databases, pages 293–322. Plenum Press, New York, 1978.

[5] J. Finger. Exploiting constraints in design synthesis. PhD thesis, Department of
Computer Science, Stanford University Stanford, CA, 1986.

[6] M.L. Ginsberg. Readings in Nonmonotonic Reasoning. Morgan Kaufmann, San
Mateo, CA, 1987.

[7] M.L. Ginsberg and D.E. Smith. Reasoning about action II: The qualification prob-
lem. Artificial Intelligence, 35:311–342, 1988.

[8] C.C. Green. Application of theorem proving to problem solving. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI-69), pages
219–239, 1969.

[9] A.R. Haas. The case for domain-specific frame axioms. In F.M. Brown, editor,
The Frame Problem in Artificial Intelligence. Proceedings of the 1987 Workshop
on Reasoning about Action, pages 343–348. Morgan Kaufmann Publishers, Inc,
San Jose, CA, 1987.

[10] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Arti-
ficial Intelligence, 33:379–412, 1987.

[11] D. Harel. First-Order Dynamic Logic. Lecture Notes in Computer Science,
vol. 68. Springer-Verlag, New York, 1979.

[12] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. Scherl. GOLOG: A logic
programming language for dynamic domains. Journal of Logic Programming,
31:59–84, 1997 (Special issue on Reasoning about Action and Change).

[13] V. Lifschitz. Pointwise circumscription. In Proceedings of the Fifth National Con-
ference on Artificial Intelligence (AAAI-86), pages 406–410. Philadelphia, PA,
1986.

[14] V. Lifschitz. Formal theories of action. In Proceedings of the Tenth International
Joint Conference on Artificial Intelligence (IJCAI-87), pages 966–972, 1987.

[15] F. Lin. Embracing causality in specifying the indirect effects of actions. In Pro-
ceedings of the Fourteenth International Joint Conference on Artificial Intelli-
gence (IJCAI-95), pages 1985–1993. IJCAI Inc., Morgan Kaufmann, San Mateo,
CA, 1995.

[16] F. Lin. Applications of the situation calculus to formalizing control and strategic
information: The Prolog cut operator. Artificial Intelligence, 103:273–294, 1998.

[17] F. Lin. Search algorithms in the situation calculus. In H. Levesque and F. Pirri,
editors. Logical Foundations for Cognitive Agents: Contributions in Honor of
Ray Reiter, pages 213–233. Springer, Berlin, 1999.

[18] F. Lin. Compiling causal theories to successor state axioms and STRIPS-like sys-
tems. Journal of Artificial Intelligence Research, 19:279–314, 2003.

[19] F. Lin and R. Reiter. State constraints revisited. Journal of Logic and Computa-
tion, 4(5):655–678, 1994 (Special Issue on Actions and Processes).

[20] F. Lin and R. Reiter. Rules as actions: A situation calculus semantics for logic
programs. J. of Logic Programming, 31(1–3):299–330, 1997.

F. Lin 669

[21] F. Lin and Y. Shoham. Provably correct theories of action. Journal of the ACM,
42(2):293–320, 1995.

[22] Z. Manna and R. Waldinger. Problematic features of programming languages:
A situational-calculus approach. Acta Informatica, 16:371–426, 1981.

[23] Z. Manna and R. Waldinger. The deductive synthesis of imperative LISP pro-
grams. In Proceedings of the Sixth National Conference on Artificial Intelligence
(AAAI-87), pages 155–160, Seattle, WA, 1987.

[24] N. McCain and H. Turner. Causal theories of action and change. In Proceedings
of the 14th National Conference on Artificial Intelligence (AAAI-97), pages 460–
465. Menlo Park, CA, 1997, AAAI Press.

[25] J. McCarthy. Situations, actions and causal laws. In M. Minsky, editor. Semantic
Information Processing, pages 410–417. MIT Press, Cambridge, MA, 1968.

[26] J. McCarthy. Epistemological problems of Artificial Intelligence. In IJCAI-77,
pages 1038–1044, Cambridge, MA, 1977.

[27] J. McCarthy. Applications of circumscription to formalizing commonsense
knowledge. Artificial Intelligence, 28:89–118, 1986.

[28] J. McCarthy. Actions and other events in situation calculus. In Proceedings of the
Eighth International Conference on Principles of Knowledge Representation and
Reasoning (KR2002), pages 615–628, 2002.

[29] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In B. Meltzer and D. Michie, editors. Machine Intelligence,
vol. 4, pages 463–502. Edinburgh University Press, Edinburgh, 1969.

[30] N.J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann, Los Altos,
CA, 1980.

[31] E.P. Pednault. ADL: Exploring the middle ground between STRIPS and the situ-
ation calculus. In Proceedings of the First International Conference on Principles
of Knowledge Representation and Reasoning (KR’89), pages 324–332. Morgan
Kaufmann Publishers, Inc, 1989.

[32] F. Pirri and R. Reiter. Some contributions to the metatheory of the situation cal-
culus. J. ACM, 46(3):325–361, 1999.

[33] R. Reiter. The frame problem in the situation calculus: a simple solution (some-
times) and a completeness result for goal regression. In V. Lifschitz, editor. Arti-
ficial Intelligence and Mathematical Theory of Computation: Papers in Honor of
John McCarthy, pages 418–420. Academic Press, San Diego, CA, 1991.

[34] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. The MIT Press, 2001.

[35] E. Sandewall. Features and Fluents. A Systematic Approach to the Representation
of Knowledge about Dynamical Systems, vol. I. Oxford University Press, 1994.

[36] L.K. Schubert. Monotonic solution to the frame problem in the situation calculus:
an efficient method for worlds with fully specified actions. In H. Kyberg, R. Loui,
and G. Carlson, editors. Knowledge Representation and Defeasible Reasoning,
pages 23–67. Kluwer Academic Press, Boston, MA, 1990.

[37] Y. Shoham. Chronological ignorance: experiments in nonmonotonic temporal
reasoning. Artificial Intelligence, 36:279–331, 1988.

[38] M. Thielscher. Ramification and causality. Artificial Intelligence, 89:317–364,
1997.

This page intentionally left blank

