
Handbook of Knowledge Representation
Edited by F. van Harmelen, V. Lifschitz and B. Porter
© 2008 Elsevier B.V. All rights reserved
DOI: 10.1016/S1574-6526(07)03010-6

395

Chapter 10

Model-based Problem Solving

Peter Struss

10.1 Introduction

The development of the concept of model-based systems was an answer to the limita-
tions of rule-based “expert systems”, which base problem solving (e.g., diagnosis) on
a representation of experiential knowledge in a domain. These limitations are not due
to the syntactic form of representing knowledge (rules), but result from the nature of
the represented knowledge: termed “empirical associations” in the pioneering paper
[11] or “shallow knowledge” in others. This has to be contrasted with “1st principles”
knowledge (or “deep knowledge”), such as the representation of the understanding of
the physical behavior of the components of a system.

To illustrate this distinction and its implications by an example, consider the sim-
plified electrical subsystem of a vehicle comprising the starter, the rear lights, and the
head lights with their power supply (Fig. 10.1(a)). Some simple diagnostic rules for
such a system, gained from experience or some analysis of the system, might be

IF Engine_Does_Not_Start
THEN Possible_Cause_Battery_Flat

IF Engine_Does_Not_Start
THEN Possible_Cause_Starter_Defect

. . .

IF Rlights_On OR Hlights_On
THEN NOT(Possible_Cause_Battery_Flat)

which would allow to suspect the starter, but not the battery, if the engine does not
start and the lights are on. However, they lead to wrong consequences, when we face
a system with two batteries, as indicated in Fig. 10.1(b).

Experience is obtained in a specific context. In our example, the specific structure
of the system is compiled into the rules, it is implicit, and this is why the applicability
of the last rule is limited to systems sharing the same structure or, rather, the same
structural properties that underlie the rule. A rule may be reusable for the modified
system (such as the first one), but the conditions for its reuse remain hidden. Fur-
thermore, there is the question whether the empirical basis has the required coverage.



396 10. Model-based Problem Solving

Figure 10.1: Two variants of electrical systems in a vehicle.

Even for moderately complex systems, we cannot expect that all possible faults have
already been encountered in practice, let alone all combinations of independent faults.

More fundamentally, there may be no empirical data at all available for a particular
kind of system. If we buy the latest model of a car, we would not accept the recom-
mendation of a workshop mechanic that we should return with our problem next year
to give them some time to gain experience. For certain systems and failures, we would
not want to collect the empirical associations—think of airplanes or nuclear power
plants.

It is a constitutive feature of human intelligence to extract principled knowledge
from experience that can be used in a different context and for other purposes, and
reproducing this capability is a major challenge to AI.

Taking a second look at the example, we notice that the rules do not only have
a particular context in terms of the system structure compiled into them, they also
represent the application of some principled knowledge to a specific task, namely
diagnosis. However, the same fragment of knowledge, such as “A flat battery does
not provide voltage and, hence, may cause the starter not to work”, can also be used to
solve a different task, such as failure-modes-and-effects analysis (FMEA), which aims
at predicting the effect component failures have on the system function, the generation
of a test that can reveal the presence of this fault, etc. In reflection of these challenges,
model-based systems aim at

• representing the knowledge about a class of real-world systems as a library of
models with a maximum of versatility and re-use to different system instances
and for different tasks,

• providing model-based problem solving engines that support or automate the
exploitation of such models to solve certain tasks.

These objectives meet urgent needs in industry, where complexity and variability of
products demand computer support to capturing and applying the corporate knowl-
edge. Also society benefits from powerful model-based systems, e.g., in improving
the understanding, monitoring, and influencing of ecological, environmental, and cli-
mate systems.



P. Struss 397

These objectives strongly suggest the architectural principle of knowledge-based
systems, namely a clear separation and independence of

• the domain-specific knowledge as a model-library, a declarative, decomposi-
tional representation of the behavior of elementary constituents of systems in
the domain,

• the task-specific knowledge, in terms of problem solving engines that perform
inferences based on a model library.

Independence of these two constituents of model-based systems is not to be under-
stood at a low technical level (data structures), but at a conceptual level: the models
should be stated in a way that is not committed to one particular task; and the problem
solving engine should avoid encoding specificities of a particular domain and, hence,
be able to operate on different model libraries. This is the basis for high reusability of
both types of modules.

Of course, in practice (in research as well as in application-oriented work) the
space of answers to the challenge has many dimensions. Perhaps more than in other
areas of knowledge representation, the diversity of real-world problems induces a
tremendous diversity in the proposed solutions. In this field, we are (or should be)
facing systems in the real world, and there are many different kinds: electrical circuits,
thermodynamic systems, water treatment plants, interacting species of flora and fauna,
software, . . .Wewould like to solve tasks like system design, diagnosis, testing, repair,
automated recovery, . . .

The Cartesian product systems × tasks is further expanded when researchers and
developers choose formalisms (ordinary differential equations, finite state machines,
predicate calculus, Bond graphs, Petri-nets, . . .) and apply their favorite inference
scheme (qualitative simulation, finite constraint satisfaction, theorem proving, opti-
mization, model checking, PROLOG, . . .). Although some modeling approaches seem
to be more appropriate for certain classes of systems than others, the mapping sys-
tems ↔ models is m : n, and so is the mapping tasks ↔ inference engines.

As a result, any attempt of a comprehensive survey is prohibitive, even when con-
fined to the solution ideas, let alone implementation. However, we will try to show
that, at a certain level of abstraction, several tasks can be formalized using a small
set of inferences (which can be realized in different ways). This will be done in the
following section.

And we will choose a very general notion of “model” (which can be represented in
many specific ways) and discuss required or advantageous properties (Section 10.3).

The remainder of the chapter will then be structured along different tasks. Diag-
nostic theories and systems (Section 10.4) will take the largest share for two reasons:
diagnosis is the task with the most advanced theories and applications. On the other
hand, some of the theories and implementation principles carry over to other prob-
lems as motivated in Section 10.2. We first present the foundations for a large class of
diagnostic systems, consistency-based diagnosis based on component-oriented mod-
els, but will also identify its underlying assumptions and limitations and characterize
alternative approaches.

Then we discuss test generation and diagnosability analysis (Section 10.5), gener-
ation of remedies (Section 10.6), and some other tasks (Section 10.7), and, finally, try
to identify some major challenges in the field.



398 10. Model-based Problem Solving

As stated before, due to the diversity of the solutions and the purpose and restric-
tion of this chapter, our goal cannot be a comprehensive presentation of all proposed
approaches and systems (and not even a comprehensive list of references), but, rather,
conveying the key ideas of selected solutions with some formalization and, perhaps,
some hints on a possible implementation. In the selection, we give preference to solu-
tions that address the important requirements of the application context in a principled
and general way over approaches that are heavily influenced by specific features of
a particular application domain or that fail to reflect essential conditions of the real-
world task.

10.2 Tasks

In this section, we characterize the essence of different tasks we would like to address
based on some model. For this purpose, we are not very specific about the content of
the model and the special form it is represented in. Requirements on the model, part of
which follow from this analysis, will be discussed in the next section. Here, a model is
a description of the possible ways a certain system can behave. This can be a real phys-
ical system or a hypothetical one (e.g., in design), a system that is in order or faulted
(e.g., in diagnosis). In this section, we assume for the sake of a formal presentation
that such a model, whatever the chosen representation is, can be equivalently stated as
a set of logical formulas. Of course, in practice, representations will be chosen that are
more suited for the description of physical systems. In this case, it has to be analyzed
how the logical concepts and inferences carry over to the different formalism.

As it turns out, all we expect from a model is that it can be decided whether or not
a certain behavior description contradicts the model (i.e. the notion of consistency)
and whether it follows from the model (entailment).

10.2.1 Situation Assessment/Diagnosis

Diagnosis is about finding out that and why something does not behave the way it
should. We have a model MODELOK of the correctly working system, a set OBS of
observations of the actual behavior of the system, and a set GOALS specifying its
intended behavior. Then, fault detection, the first step in diagnosis, means to check
whether the joined theory is consistent

MODELOK ∪ OBS ∪ GOALS � ⊥

or, stronger, to ask whether the GOALS are entailed:

MODELOK ∪ OBS � GOALS

We may assume that the system is well-designed, i.e., if nothing is broken, the speci-
fied behavior is guaranteed to be achieved,

MODELOK � GOALS

In this case, the check is reduced to

MODELOK ∪ OBS � ⊥



P. Struss 399

If this check reveals an inconsistency, we can conclude that MODELOK does not de-
scribe the system under its current physical conditions; there must be a fault. In order
to fix the problem, we need to know where the fault lies (fault localization) and/or
what kind of fault is present (fault identification). In model-based diagnosis, this can
be stated as the task of deriving a model MODELF (or several alternative ones) that
is, at least, consistent with the observations (consistency-based diagnosis)

MODELF ∪ OBS � ⊥

or even entails them (abductive diagnosis, see Section 10.4.3).
In diagnosis, the space of models that are candidates forMODELF , is not arbitrary.

Usually, the system performed well before and is now suffering from some particular
malfunctions or disturbances. For instance, unless a major accident has happened,
there will usually be one or two broken components in our car. This is why we can
expect some restricted space of models that contains the solutions we are looking for,
although it will often be too large to allow for an exhaustive consistency check of all
candidates, and, hence, require search. In this search, we can exploit an ordering on
the candidate models that is induced by the degree of deviations from MODELOK ,
e.g., indicated by the number of faulty components. This provides the basis for a
hypothesize-and-test cycle where the new hypotheses are obtained by some elemen-
tary revision of the failing candidates, e.g., by assuming a different fault, an additional
faulty component, etc. What we need in order to realize such a search-based approach
is a module that checks the consistency of the model with the given observations and a
component that produces newmodel hypotheses by revision of inconsistent ones based
on some description of the possible disturbances in the model library (Fig. 10.2(a)). In
Section 10.4, we present more details about such solutions.

10.2.2 Test Generation, Measurement Proposal, Diagnosability
Analysis

If diagnosis does not provide a sufficiently focused answer, more observations are
required to help discriminating between the remaining fault hypotheses. This means,
we are looking for some stimulus INP to the system such that its observed response
reveals the differences between the various hypotheses. In our model-based context,
this means: given two behavior modelsMODEL1 andMODEL2, the target situation is

INP ∪ MODEL1 � OBS1

INP ∪ MODEL2 � OBS2

OBS1 ∪ OBS2 � ⊥

Test generation is the task of determining inputs INP with this property and the ap-
propriate observables, in case they can vary. In testing for diagnosis, this needs to be
done for all pairs of models that represent relevant diagnoses. In end-of-line testing,
MODELOK needs to be discriminated from the models of relevant faults. Measure-
ment proposal can be seen as a special case, where INP is fixed by the current
situation, and the task is focused on determining where to probe for discrimination.

Also in the design phase of a system, this analysis can be relevant. Detectability
analysis has to determine whether, under a given set of observables (e.g., by the sen-



400 10. Model-based Problem Solving

Figure 10.2: Consistency check and model revision in searching for diagnostic hypotheses (a), design
solutions (b), and remedies (c).

sors built in), they reveal the distinction between a fault and the normal behavior, and,
perhaps, under which conditions (represented by INP) this is the case, while discrim-
inability analysis asks for distinguishing between two faults, which can be important
to trigger some appropriate automatic response to the fault (e.g., in on-board recov-
ery actions on vehicles). This analysis is relevant to sensor placement and also part of
failure-modes-and effects analysis.



P. Struss 401

10.2.3 Design and Failure-Modes-and-Effects Analysis

The design of a system that has to generate a specified behavior demands strongly for
a model-based approach, if a trial-and-error process by building physical prototypes
should be avoided or limited. Unfortunately, in the general case, it is more challenging
than diagnosis. If GOALS represents the behavior specification, then the design task
can be solved by finding a model that entails this behavior:

MODEL � GOALS

A necessary precondition for such a solution is that it is consistent with the specified
behavior, which may be exploited at least in a first step to reduce the space of candidate
models:

MODEL ∪ GOALS � ⊥

We would usually not be satisfied by a product design thatmay, but is not guaranteed
to, serve its purpose. However, the consistency check may be the only possible one
in early phases of the design process, which may leave open the choice of specific
components or parameters or even some structural properties, and it is helpful because
it can refute certain design alternatives. Furthermore, the design process is rarely a
single jump to a solution, but approaching one by modifying previously refuted design
hypotheses in a way that inconsistencies with the specification are removed. Again,
we can organize this process as a search in a space of candidate models (Fig. 10.2(b)).
They need to be checked for consistency with the goals and, in case of inconsistency
with the goals, revised by changing design decisions. What makes the task harder is,
first of all, the nature and size of the space of possible alternatives. Usually, this space
is much less restricted than, say, in diagnosis, where the structure of the system may
be fixed and the possible component failures limited. In design, the structure may be
what needs to be developed and modified.

Obviously, the revision-based search can only work if there is an initial hypothesis
that can lead to a solution after a limited number of modifications. In fact, the vast
majority in industrial design is not completely innovative, but emerges from a modifi-
cation of a predecessor product. And often, the structure is more or less fixed, which
turns design into the more tractable task of selecting appropriate components from a
given set (configuration) or only determining parameters of fixed component classes
(parametric design).

As a special task during design, failure-modes-and-effects analysis, has gained
importance (and is mandatory, for instance, in the aeronautics and automotive indus-
tries). It is concerned with the task of making sure that, for a given design, even under
the occurrence of a fault (usually a single fault) the resulting behavior of the system
would not be critical or even catastrophic. The analysis has to find out for a set of
given scenarios (e.g., the landing phase of an aircraft) and a set of relevant component
failures whether one of the specified effects, i.e. violations of the functionality (e.g.,
“landing gear not extended”), can occur. The result of this analysis may be requested
changes of the design.

Given a model of the system behavior under the presence of a possible failure,
MODELF , it has to be determined whether it entails some EFFECT in a scenario
specified by INP:



402 10. Model-based Problem Solving

INP ∪ MODELF � EFFECT

or does not exclude (is consistent with) the effect:

INP ∪ MODELF ∪ EFFECT � ⊥

10.2.4 Proposal of Remedial Actions (Repair, Reconfiguration,
Recovery, Therapy)

Diagnosis is only a step towards the real goal, which is restoring the functionality of
a disturbed system, as far as it is possible. This is a trivial step, at least at the level of
inferences, if it amounts to the replacement of broken components, in which case fault
localization provides the direct answer. In other cases, built-in structural redundancy
can be exploited for reconfiguration of a system in a way that (a part of) the objectives
can be achieved despite a fault. For instance, breakers in a power network are opened
and closed to provide continued power supply before the actual cause of a disturbance
has been removed. This means to determine a target state, STATE, such that

STATE ∪ MODELF � GOALS

or, in the consistency-based form,

STATE ∪ MODELF ∪ GOALS � ⊥

Reconfiguration leaves the designed structure of the system unchanged and has a well-
specified, though potentially large, search space: the space of states of the switching
elements. The search can be guided by the number or cost of the required state changes
with respect to the actual states.

In the more general case, which wemay call therapy, remedial actions may have to
modify the real system in order to bring it back to a healthy state. This often holds, for
instance, for natural systems or plants that involve chemical or biological processes.
Adding substances may trigger new processes and, hence, lead to a new system model:

ACTIONS ∪ MODELF � GOALS �

or, in the consistency-based form,

ACTIONS ∪ MODELF ∪ GOALS �
� ⊥

GOALS � will usually be some intermediate goals, which represent the direction to-
wards the ultimate GOALS. Increased irrigation of the almost destroyed Everglades
will only after some time lead to a healthy state of the flora and fauna, if at all.

We derive the same pattern again (Fig. 10.2(c)), and the feasibility will heavily de-
pend on the size and structure of the space of revisions, which in this case correspond
to the available remedial actions.

10.2.5 Ingredients of Model-based Problem Solving

This attempt to analyze and formalize the core of various real-world tasks and the ex-
ploitation of behavior models at a very abstract level reveals some of the fundamental
technical tasks that have to be addressed by any model-based solution that aims at au-
tomating the respective problem solving. It also shows that they are shared across the



P. Struss 403

various tasks, which opens the chance to reuse even algorithms, although the specific
nature of the models and the structure of the model space will influence the details and
appropriate heuristics.

This analysis, despite its abstract nature, also leads to some fairly important re-
quirements on the modeling formalism which will be discussed in the next section.

10.3 Requirements on Modeling

In the previous section, we formalized the considered tasks using notions of consis-
tency and entailment. This has sometimes led to the misconception that the system
model has to be formulated as a logical theory (and has turned away some researchers,
engineers, and users from this approach). While logic is one formalism with a precise
semantics of entailment and consistency, it is not the only one, and, in fact, it is not an
appropriate modeling language for most applications of model-based reasoning. Many
applications lie in the engineering domain, others in social, ecological, biological, etc.
domains and are difficult or impossible to model in first-order logic. Fortunately, this is
not necessary. Although some widely used modeling formalisms can be translated into
first-order logic, such as component-oriented modeling with finite domain constraints,
even this is not a prerequisite for applying the problem solving engines we will dis-
cuss in the subsequent sections. This is possible thanks to the architectural principle of
model-based systems, namely the separation of the model from the problem solving
reasoning. The latter is often described in terms of logical inferences (although some
of the most important and successful systems are not) which allows to analyze and
prove properties of algorithms used in solutions, whereas the model is almost never
stated in logic.

Of course, the modeling formalism has to fulfill certain theoretical and techni-
cal requirements in order to support the kind of problem solving described in the
previous section, and we will now discuss these general requirements, rather than
listing and describing candidates for modeling formalisms (algebraic and differential
equations, qualitative differential equations, constraints, difference equations, causal
graphs, rules, logic, finite state machines, Petri nets, discrete event models, Bond
graphs, . . .). This may seem to be a drawback, but it should be considered as an ad-
vantage, because this perspective allows for the exploitation of ideas, methods, and
algorithms in combination with different types of models and for the choice of the
models best suited for a particular domain and problem.

There are some fundamental requirements that originate from the application con-
text and imply some of the technical ones.

• Domain-oriented models: this includes the expressiveness of models and the
efficiency of model-based inferences, and, often, a trade-off between these two
aspects. In contrast to a resistive circuit, a copier needs some representation
of duration (of processing and transportation). A diagnosis system on-board
a vehicle needs real-time performance. Model-based failure-modes-and effects
analysis demands for qualitative models, since it aims at determining effects of
classes of faults with unspecified parameters.
In most areas, model-based reasoning meets a set of developed and estab-

lished modeling formalisms and tools used in current practice. On the one hand,
they promise to capture some of the essential features and, hence, cannot and



404 10. Model-based Problem Solving

should not be ignored by model-based systems. On the other hand, they often
fail to provide some of the required capabilities that can be provided by AI tech-
niques. Integration is often difficult, but important in order to obtain acceptance
of the domain experts and users. If AI researcher ignore these aspects, this ren-
ders their work ineffective.

• Libraries of reusable models: model-based reasoning techniques rarely refer
to a task that is not already performed by humans, and, often, performed quite
well without an explicit representation of models. Model-based systems are only
interesting if they offer some improvement in this performance, in terms of the
quality of the result, or in terms of the cost needed to obtain the result. In any
case, if the construction of the required model consumes more time than the tra-
ditional way of solving the problem, a model-based solution is not a solution.
The fact that model-based reasoning aims at capturing the basic domain knowl-
edge, which can be applied to different tasks and/or systems sets the challenge
to represent this knowledge as a set of re-usable model fragments. This forms
the basis for producing system models by composition of such model fragments,
thus reducing the modeling efforts and time. Again, approaches that ignore this
requirement, in treating a system model as a hand manufactured unstructured
system model, fail to provide a suitable basis for solutions.

Together with these requirements, the formalized tasks presented in Section 10.2 trans-
late into a set of relevant theoretical and technical properties and requirements of
modeling.

10.3.1 Behavior Prediction and Consistency Check

Whatever the preferred modeling formalism is, in order to be useful for consistency-
based problem solving, it has to have at least some sort of concept of consistency and,
for abductive solutions, of entailment. Given some (fraction of) a model of a system’s
behavior, it must be possible to tell whether or not it contradicts given observations,
goals etc. (and to draw conclusions about unobserved features, e.g., related to goals).
This is a basic requirement and one that should be met by most modeling formalisms,
because they are designed for prediction, and one can compare the predicted behav-
ior to the observed or intended features. Nevertheless, in designing a model-based
reasoner, it is important to precisely define the notion of inconsistency specific to a
particular model-based predictor. If it can decide that a model is inconsistent (and,
perhaps, which part of the model caused the inconsistency), this suffices to enable the
problem solver to perform its task.

There may be cases where there is a continuum of compliance and contradiction,
rather than a binary decision (e.g., when predictions underlie some probability distrib-
ution). But, usually, there are natural thresholds that express tolerable deviations (from
normal behavior, the design specification, etc.).

To be effective in the framework of consistency-based problem solving, complete-
ness matters, i.e. its ability to detect all existing (or relevant) inconsistencies. Besides
the fact that this can be expensive, model-based predictors can be inherently incom-
plete. A numerical simulation model (say, in Matlab) may appear as an appropriate
solution in some cases (and even be readily available from engineering practice), but
its fixed computational directionality may prevent the detection of all inconsistencies.



P. Struss 405

10.3.2 Validity of Behavior Modeling

The condition discussed above ensures that an inconsistency between themodel and a
description of some (real or hypothetical) situation is detectable. However, in order to
draw safe conclusions about the actual system, the model has to represent its behavior
in a valid way. While this seems pretty obvious, we can, and need to be, more specific.
For consistency-based problem solving, it is essential that an inconsistency between
a model and some criterion really indicates that the modeled system contradicts the
criterion. In order to avoid spurious inconsistencies, we must postulate that a model
is guaranteed to be consistent with all situations the modeled real system can ex-
perience in reality. As a consequence of this requirement, appropriate models tend to
be conservative, for instance, by using the most generous tolerances of parameters. Of
course, it can never be satisfied in an ideal way. The application context determines the
scope of such really occurring situations, and, e.g., in circuit diagnosis, there is usually
no need to include super conductivity at low temperatures in the model. However, the
model must cover situations beyond the intended use of the component, e.g., a higher
voltage caused by some defective transformer.

Again, this may appear obvious, but is sometimes hard to achieve and actually not
fulfilled by many models in engineering, which are developed to work in a particular
context and under certain environmental conditions.

10.3.3 Conceptual Modeling

Behavior prediction and consistency check refers to the behavior description,
i.e. some mathematical, logical or other formalism that characterizes the state of
the system. However, problem solvers refer to concepts of the real systems: com-
ponents and their faults, design decisions, unwanted effects, unexpected substances
and processes, etc. The solution space of models is spanned by these concepts, rather
than by the mathematical, etc. expressions constraining the respective behavior, and
the search and reasoning of the problem solver is performed in this space. Hence, these
concepts and their relations have to be explicitly represented in model-based reason-
ing systems. Actually, this is lacking in most formalisms used in mathematical and
engineering modeling, and this is where AI can make an essential contribution. This
distinguishes, for instance, model-based diagnosis in AI from diagnosis systems in
control engineering that perform a search in a space of mathematical models in order
to find one that matches the observations (e.g., by means of parameter identification)
without any representation of the physical structure of the device, its component faults,
etc.

The decomposition of a real system into its entities (components, objects, relevant
processes, . . .) has to be made explicit and induces a structure of the behavior model.
If this link between the relevant entities of the system and the behavior model is weak,
then the conclusions that a model-based problem solver can draw at the conceptual
level from a behavioral inconsistency are limited. If an equation solver only delivers
the information that the entire system model is over-determined without any reference
to a subset of component models that cause this, there is not much to be gained for
localizing the fault.

It is clear that this feature is important for the efficient construction and mainte-
nance of a model library.



406 10. Model-based Problem Solving

10.3.4 (Automated) Model Composition

Having argued for the decomposition of a system model into fragments that cor-
respond to the relevant constituents, we also need the opposite: the composition of
model fragments in order to obtain a model of the overall system or subsystems. More
precisely, what we need are algorithms for automatically composing system mod-
els. This is mandatory if the problem solver follows a generate-and-test strategy. If it
generates a new hypothesis to be checked for consistency (say, a new combination of
faults) then the generation of the respective model based on the model library must
not involve the agent that usually composes models: a human modeler. Although the
principle of modular and compositional modeling is not an invention of model-based
reasoning, it is not straightforward and not supported in many modeling environments
used in practice. For instance, although Matlab/Simulink provides means to organize
a system model in a hierarchical manner as interlinked subsystem models, the lower
level models cannot be arbitrarily combined because of the fixed computational direc-
tionality. Even if we model the same system, but start the computation from a different
set of observed variables, the models of the subsystems are different and cannot be
reused. In contrast, constraint systems ([13, 63] and Modelica [76]) are undirected
and support compositionality.

10.3.5 Genericity

Compositionality of models is not only a matter of computational or structural aspects,
such as directionality and compatible variable domains. The behavior models of the
system constituents have to be stated in a context-independent manner in order to be
usable in different contexts. Otherwise, the composed model will not cover the entire
system behavior and violate validity as discussed in Section 10.3.2. For instance, if the
scope of a task includes the occurrence of fault situations (as in diagnosis or FMEA),
then a component model has to cover the response of the component to this faulty
environment, which is one reason why many models developed for control purposes
are not suited for model-based diagnosis. For instance, if a pipe is connected to a check
valve, its model must nevertheless also cover a reversed flow in order to avoid wrong
predictions and inconsistencies in case the check valve is broken. This principle has
been termed “no function in structure” in [17]. For systems and variable-based models
that treat some variables as exogenous, the requirement implies that the model must
consider the entire Cartesian product of the respective variable domains. If it would
not include the response of the component to some input, it would generate a spurious
inconsistency if the respective situation appears.

Such sets of exogenous variables need not be unique for a single component. In
a valve model, we can treat pressure at both sides as such a set and determine the
flow from it. However, if the flow on one side is restricted to zero by a neighboring
component (say, a clogged pipe), then it becomes an exogenous variable. Often, ap-
proaches to using causal models (e.g., causal graphs or Bayes’ nets) suffer from a
similar deficiency, because the overall structure, the behavior of neighboring compo-
nents, or certain assumptions are compiled into them. Also, the causal structure may
change, even under normal behavior: the electric motor of a tram way can intention-
ally be turned into a generator and, hence, function as a brake. Even more frequently,
faults modify the causal structure. Even if it is possible to capture all these variations



P. Struss 407

in a causal graph, the model will hardly be compositional, and the effort of building
complete causal models of large systems is prohibitive. Only ontologies that are based
on local, independent causal interactions, such as qualitative process theory [34, 35]
promise to provide a basis for model-based problem solving along these lines.

Limited genericity of the model fragments results in limited reusability and, as
discussed earlier, reduces the application benefit.

10.3.6 Appropriate Granularity

Granularity refers to the degree of “resolution” of both the structure and the be-
havior. The structural granularity has to allow the reference to the concepts required
by the task, e.g., the fault modes of the relevant components. For a compositional
model, it is determined by the granularity of model fragments in the library, which
may be more fine-grained than required. For instance, in on-board diagnosis, the set
of observables is usually fixed, and all that matters for computation of diagnostics is
the relation between these observables and the fault modes, while the model includes
many unobservable internal and intermediate variables. In order to achieve a compact
representation and efficient computation, as required by on-board diagnosis, it can
make sense to transform the composite model appropriately [26].

The granularity of behavior descriptions, expressed, e.g., by the domains of vari-
ables, is determined by the purpose, namely to detect inconsistencies. For instance, if
all values of a certain observable in one interval are consistent with the same set of
models, it is not necessary to distinguish between them in the model. Because a fault
can be characterized by causing a significant deviation from some intended behavior,
tasks related to diagnosis and fault analysis even of continuous systems can often be
based on qualitative models [81, 35, 4]. Since the required distinctions may depend
on the task and the structure and intended function of the system and, hence, cannot
be anticipated by the model fragments in the library, a composite model may have
inappropriate domains. If they are too fine-grained, it may pay off to transform the
composed model to a more abstract level [67].

There is a tension between the requirement of having compositional, generic, and
reusable model fragments in a library and the necessity to achieve a compact represen-
tation of a model that is yet powerful enough for consistency checking and efficient
computation. Violating one of them may eliminate the feasibility or at least the benefit
of model-based systems in industrial applications. This is why research on multiple
modeling and automated model transformation and compilation [69, 52, 21, 10] can
make an important contribution.

10.4 Diagnosis

There is a huge variety of diagnostic tasks, and they may impose quite different re-
quirements on modeling, model-based prediction and consistency check, the search
algorithm, etc. The type of system and the practical context may emphasize different
problems. On-board diagnosis on a vehicle has to be based on a fixed, and usually
small, set of sensor values, while a fault in a power network generates an overwhelm-
ing burst of messages. Also, on-board diagnosis has to discriminate between different
classes of faults according to their safety relevance and the resulting recovery actions,



408 10. Model-based Problem Solving

while diagnosis in the workshop only needs to identify the broken part in order to re-
place it. The latter case usually involves a number of testing activities, while a huge
gas turbine in a plant does not allow interruptions for carrying out experiments. Most
of the time, we are confronted with “post-mortem” diagnosis, but often, it is desir-
able to perform prognostic diagnosis in order to schedule maintenance before a failure
occurs. And so forth.

Rather than outlining all specific answers to such specific requirements, we fo-
cus on the presentation of some principled and sufficiently general and influential
approaches. We will identify the underlying assumptions that confine the scope of
applicability. Even for some fundamental work, they were often left implicit, and
sometimes, the authors even seem to be unaware of them.

We first describe consistency-based diagnosis with component-oriented models,
whose idea has been the basis for the analysis in Section 10.2 and contains important
principles and techniques, which partly carry over to other tasks. It represents probably
the largest class of implemented systems and provides a systematic framework to the
community for discussing variants and alternatives of the techniques.

Section 10.4.2 discusses the problem of performing diagnosis over time. We then
outline an alternative concept, abductive diagnosis (Section 10.4.3) and consistency-
based diagnosis using an alternative type of models, process-oriented diagnosis (Sec-
tion 10.4.4).

10.4.1 Consistency-based Diagnosis with Component-oriented Models

The classical theory [62, 19] and realization of consistency-based diagnosis [20, 22,
24, 64] consider systems that contain a fixed set of components, COMPS, that interact
in a fixed structure. Furthermore, it is assumed that a disturbance of the entire system
is caused by amalfunctioning of one or more of these components. This includes the
assumption that the entire system performs as intended if all components perform
properly, i.e. the well-designed system assumption.

Diagnosis is then seen as the task to decide whether there are components that
are not exhibiting their intended behavior (fault detection) and to determine which
components work in a fault mode (fault localization) and in which fault mode they
operate (fault identification).

Hence, each component Ci has a set of possible associated behavior modes
modes(Ci) (usually determined by the component type), and assigning one mode to
each component provides an answer to a diagnosis problem.

Definition 10.1 (Mode assignment). Let COMPS � ⊆ COMPS.
�

Ci∈COMPS �

mji (Ci), where mji ∈ modes(Ci)

is a mode assignment. It is called complete if COMPS � = COMPS.

ok(Ci) always has to be an element of modes(Ci) and characterizes uniquely the
intended, normal behavior of the component. Modes are mutually exclusive,

mji(Ci) ∧mki(Ci) ⇒ j = k



P. Struss 409

which also means that all modes different from ok(Ci) represent some sort of faulty
behavior:

∀mji(Ci) ∈ modes(Ci) \ {ok(Ci)}, mji(Ci) ⇒ ¬ok(Ci).

The model library LIB associates a behavior model with each mode:

mji(Ci) ⇒ modelji(Ci).

If the models are stated in terms of variables, then LIB must also contain domain
axioms for the variables, i.e., the (exclusive) disjunction of their possible values.

Then each mode assignment

MA =
�

Ci∈COMPS

mji (Ci)

together with the structural description STRUCTURE, which specifies the connections
between components in terms of variables shared by the components, and the library
LIB implies a behavior modelMODEL(MA) of the entire system for the mode assign-
mentMA:

LIB ∪ STRUCTURE ∪ {MA} ⇒ MODEL(MA)

Some papers use the term system description (SD) to refer to knowledge about the
system without further specification. If we assume that there are no general restrictions
on the possible mode assignments, we consider

SD = LIB ∪ STRUCTURE

which has the disadvantage of obscuring the different nature of these elements: LIB
usually contains domain-specific knowledge about the behavior of components, while
STRUCTURE is system-specific.

In the following, we will always assume that modeling has led to a proper result,
i.e., SD is consistent. If the modes of the components are assumed to be independent
of each other, then also MODEL(MA) is consistent for every mode assignment MA.
This requires valid models, as discussed in Section 10.3.2.

In this approach, model-based diagnosis is regarded as generation of system mod-
els that are consistent with the observations and amounts to generating hypotheses
about the actually present behavior modes of the components. Therefore, we define

Definition 10.2 (Consistency-based diagnosis). A complete mode assignment MA is
a consistency-based diagnosis for a system description SD and a set of observations
OBS if

SD ∪ {MA} ∪ OBS � ⊥.

Fault detection

In particular, the assignment of ok to all components

MAOK =
�

C∈COMPS

ok(C)



410 10. Model-based Problem Solving

specifies the normal behavior of the overall system:

LIB ∪ STRUCTURE ∪ {MAOK} ⇒ MODELOK .

The well-designed-system assumption,

MODELOK ⇒ GOALS

turns the question whether the system behaves as intended into checking whether

SD ∪ {MAOK} ∪ OBS � ⊥

which is realized by checking whether the resulting model is consistent with the ob-
servations:

MODELOK ∪ OBS � ⊥.

Fault localization

If diagnosis is seen as fault localization, as, for instance, in [62, 20, 19], then this is
related to another hidden assumption, namely that this information suffices to repair
the broken system, which is true if replacement of components is the means for re-
establishing the functionality of the system. (Sometimes, fault localization may be
performed not in order to repair the system, but to identify flaws in manufacturing
process.)

Fault localization is only interested in differentiating the broken components from
the correctly working ones and, hence, aims at the special case of

modes(C) =
�
ok(C),¬ok(C)

�
.

As stated above, if there are more specific fault modes, then they imply ¬ok(C).
A fault localization has to hypothesize the set of broken components consistently with
the observations:

Definition 10.3 (Fault localization). FAULTY ⊂ COMPS is a fault localization for
SD and OBS, if the mode assignment MAFAULTY

�

C∈FAULTY

¬ok(C) ∧
�

C∈OK

ok(C)

with OK = COMPS \ FAULTY is a diagnosis for SD and OBS. It is called minimal, if
no proper subset of FAULTY is also a fault localization.

This corresponds to the definitions in [20, 62, 19] (where fault localizations are
called diagnoses and also candidates, because they might be refuted when additional
observations are available) and is the basis for the General Diagnosis Engine (GDE)
[20]. Minimal fault localizations are of practical interest because if a certain set of
defective components suffices to explain the symptoms, why would we assume addi-
tional components also to be broken?

Computing (minimal) fault localization requires checking the consistency of the
respective system models with the observations. If only the correct behavior is mod-
eled, ¬ok(C) has no model associated (which is equivalent to associating a model



P. Struss 411

that does not impose any restrictions on the values of local variables). In this case,
a search could be performed by eliminating the OK models of components from the
entire model and checking the consistency of the remaining models. This approach
which in practice might work in an exhaustive manner only for single or small sets of
faults has actually been proposed in [12] as constraint suspension. However, there is a
possibility for a more focused generation of fault localizations which has an intuitive
basis: if the windshield wipers in our car do not work, we will focus our analysis on
s small subset of components, such as their motor, the connecting cables, etc., but not
consider, say, parts of the engine or of the braking system, because they do not in-
fluence the observed behavior of the car. Carried over to model-based diagnosis, this
means that the observations may not simply be inconsistent with the complete system
model, but with a model obtained from some partial mode assignment, which we call
a conflict.

Definition 10.4 (Conflict). Let COMPS � ⊂ COMPS and

MA =
�

Ci∈COMPS �

mji (Ci)

be a mode assignment such that

SD ∪ {MA} ∪ OBS � ⊥.

The negation of MA,
�

Ci∈COMPS �

¬mji (Ci)

is called a conflict. It is called minimal, if it is not implied by a different conflict. It is
called basic if

∀Ci ∈ COMPS �, mji (Ci) = ok(Ci) ∨mji (Ci) = ¬ok(Ci)

and positive, if

∀Ci ∈ COMPS �, mji (Ci) = ok(Ci).

Since [19] considers only the two basic modes, a basic conflict corresponds to
their definition of a conflict. Minimal conflicts are the most focused restrictions on the
possible combinations of modes, and non-minimal conflicts do not provide additional
information. Obviously, positive conflicts are important to fault localization, because
they state that at least one of the mentioned components is broken. Even stronger, the
following theorems [19] states that conflicts capture exactly the available information
for fault localization, can replace SD ∪ OBS and be used to logically characterize the
solutions.

Theorem 10.1. Let MB-CONFLICTS be the set of all minimal basic conflicts for SD∪

OBS. FAULTY ⊂ COMPS is a fault localization for SD ∪OBS iff the respective mode
assignment is consistent with the minimal basic conflicts:

MB-CONFLICTS ∪ {MAFAULTY} � ⊥.



412 10. Model-based Problem Solving

Figure 10.3: A simple diagnostic problem: the head lights are lit, while the rear lights are not, and the
starter does not work.

Theorem 10.2. FAULTY ⊂ COMPS is a minimal fault localization iff the mode as-
signment

�

C∈FAULTY

¬ok(C)

is a prime implicant of the positive minimal conflicts.

A prime implicant of a set of formulas is a minimal conjunctive clause of literals
(in our case representing ok(C),¬ok(C)) that entails each formula in the set. This
captures the intuition that (minimal) fault localizations have to satisfy exactly each
(minimal) disjunction of suspect components. One way to obtain them is to compute
minimal hitting sets of the components contained in the minimal positive conflicts [62,
38]. A hitting set of a set of sets {Ai} is defined by having a nonempty intersection with
each Ai . As an illustrative example, we reconsider a slightly modified example from
[64]: the starter of a car and its rear lights and front lights supplied by a battery in
parallel (Fig. 10.3). However, we observe that the rear lights are dark and the starter
does not work, while the head lights are lit. We assume that the library contains (only)
models of the correct behavior of the involved components: a battery supplies voltage,
wires act as electrical connectors, and, if supplied with a voltage drop, light bulbs are
lit and the starter acts. Such models for the battery, the starter and Wire1, Wire2 will
predict all together that the starter is active, contradictory to the observation:

ok(Battery) ∧ ok(Wire1) ∧ ok(Wire2) ∧ ok(Starter) ⇒ active(Starter),

OBS ⇒ ¬active(Starter).

This yields a conflict

Conflict1 ≡ ¬ok(Battery) ∨ ¬ok(Wire1) ∨ ¬ok(Wire2) ∨ ¬ok(Starter)

which is positive and minimal. Similarly we obtain

Conflict2 ≡ ¬ok(Battery) ∨ ¬ok(Wire1)

∨ ¬ok(Wire2) ∨ ¬ok(Wire3) ∨ ¬ok(Wire4) ∨ ¬ok(RLight).



P. Struss 413

Furthermore, the lit head lights imply the existence of a voltage drop which should
also cause the rear lights to be lit, leading to

Conflict3 ≡ ¬ok(HLight) ∨ ¬ok(Wire5) ∨ ¬ok(Wire6) ∨ ¬ok(RLight).

Analogously, we find

Conflict4 ≡ ¬ok(HLight) ∨ ¬ok(Wire5) ∨ ¬ok(Wire6)

∨ ¬ok(Wire3) ∨ ¬ok(Wire4) ∨ ¬ok(Starter).

In fact, these are all minimal and positive conflicts. As a side-remark, the last two
conflicts are only derived if the predictor is complete enough to reason not only in the
causal direction, but also draw conclusions from the effect, namely the lit head lights.
The mode assignment

¬ok(RLight) ∧ ¬ok(Starter)

implies all conflicts and is minimal, hence a prime implicant of all positive minimal
conflicts. Thus,

{RLight,Starter}

is a fault localization, in accordance with our expectation.
At this point, we emphasize, that the described approach allows for

• fault localization with models of correct component behavior only, i.e. without
any restriction on the possible faulty behaviors,

• localizing multiple faults.

This is an advantage over systems based on empirical symptom-fault associations,
which require explicitly known faults and face natural limitations on known symptoms
of multiple faults.

If the library does not contain fault models, there is no way to refute ¬ok(Ci),
all basic conflicts are positive ones, and extending a fault localization by additional
components also yields a fault localization. In general, we have [19]:

Theorem 10.3. For each fault localization FAULTY ∈ COMPS every superset
FAULTY � ⊃ FAULTY is also a fault localization iff all basic conflicts of SD ∪ OBS
are positive.

In this case, the minimal fault localizations are a compact representation of all fault
localizations, namely as a lower bound in the subset lattice of COMPS.

Fault localization with fault models

When taking a second look at the example, we notice that, while we are satisfied with
the fault localization {RLight,Starter}, we would not consider, for instance, its super-
set {RLight,Starter,Battery} as a reasonable fault localization, despite Theorem 10.3.
Furthermore, we notice that there are many more prime implicants of the four con-
flicts, namely 21, and among them are, for instance,

¬ok(Wire1) ∧ ¬ok(Wire5)



414 10. Model-based Problem Solving

and

¬ok(Battery) ∧ ¬ok(HLight)

which we may not want to accept as a plausible fault localization! The reason why
we find them implausible lies in the fact that the observations contradict the expected
faulty behavior of the suspected components: the head lights would not be lit if they
were broken. While not requiring models of faulty behavior, fault localization may
become more focused and realistic when exploiting fault models.

One way to do this has been introduced in GDE+ [64] by associating models with
fault modes and physical negation axioms

¬ok(Ci) ⇒
�

j

faultji(Ci)

in order to express that the negation of the ok behavior in physical systems does not
lead to totally unrestricted behavior, but to a certain set of unintended behaviors that
can still be described. If the fault modes of some component Ci can be refuted by
the observations in conjunction with a mode assignment to other components, MA, or
directly, i.e. (MA = ∅), i.e. for all i

SD ∪ {MA ∧ faultji(Ci)} ∪ OBS � ⊥

then C can be exonerated in this context:

SD ∪ {MA} ∪ OBS � ok(Ci)

by means of the physical negation axiom. By adding meaningful fault models for the
components in our example (expressing “broken lights are never lit”, etc.) and the
physical negation rule, the only remaining fault localization will the plausible one.
However, if some exotic faults are ignored in our model, the proper fault localization
may be missed. For instance, if Wire1 were open, while Wire5 is open, but shorted to
source at the end towards the head lights, the fault localization {Wire1,Wire5} would
make sense. We may try to account for such unforeseen faults by introducing a fault
mode with unspecified behavior. But this could not be refuted and the exoneration not
be concluded, which means that fault localization would also be not affected by the use
of the other fault models. We need some additional concepts which will be discussed
in the following subsection.

As an alternative, Friedrich et al. [31] propose to represent situations that are phys-
ically impossible (under all modes) instead of the various faults (e.g., that head lights
without voltage are never lit).

With the introduction of fault models and, hence, the possibility of conflicts that
are not positive, the minimal fault localizations are no longer the generators of all fault
localizations. Intuitively, this is because a minimal fault localization may become in-
consistent if a fault mode of another component is added. In our example, the fault
localization {RLight, Starter, HLight} is a superset of {RLight, Starter}, but inconsis-
tent (because a fault in HLight directly contradicts the observations).

To obtain a generating set for the case of fault models, the concept of kernel diag-
nosis was introduced [19].



P. Struss 415

Definition 10.5 (Kernel diagnosis). A kernel diagnosis is a minimal partial mode
assignment MAk with the property that every mode assignment that extends it is con-
sistent with SD ∪ OBS, i.e.

for all consistent MA holds
if MA entails MAk
then MA is a diagnosis of SD ∪ OBS.

In other words, the modes of the components not mentioned in MAk do not mat-
ter. Obviously, all fault localizations are obtained from an extension of some kernel
diagnoses. Also, the kernel diagnoses can be characterized as prime implicants of all
minimal conflicts.

Fault identification

Besides helping to refine fault localization, fault models provide the basis for identi-
fying which particular component faults may be responsible for the disturbed system
behavior. If the list of behavior modes contains specific faults of a component (type),
then the diagnoses according to the definition given above are the answer to the task
of fault identification.

However, the inclusion of explicit fault models in SD is a qualitative jump from
a single system model (of the ok behavior) to a large space of models, correspond-
ing to all possible mode assignments. This is important from both a technical and an
application point of view.

Technically, it implies that many system models may have to be checked for con-
sistency with observations, and for conflict-driven approaches, it means that the space
of minimal conflicts grows. Fortunately, the application perspective implies that most
of the mode assignments are not interesting and many conflicts need not be discov-
ered. To most diagnosis applications, it is not interesting to characterize the space of
all diagnoses, but to compute the most relevant ones. This is because its purpose is
to provide information just enough to restore the functionality. Therefore, of course,
what makes a diagnosis relevant depends on the type of system and its application
context. But to be of practical interest, diagnostic theories and systems should provide
generic means to express some ranking of the expected diagnoses and algorithms to
effectively and efficiently compute the best ones under such a ranking. Unfortunately,
there have not been as many theoretical contributions to this important area as to the
logical characterization and approaches assuming exhaustive computation.

The applied principle of Occam’s razor, namely not to assume more components to
be broken than necessary, is usually a fundamental criterion we would like to preserve
for fault identification, as well.

Definition 10.6 (Minimal diagnosis). A diagnosis MA for SD ∪ OBS is a minimal
diagnosis, iff the corresponding fault localization

FAULTY := {Ci ∈ COMPS | ok(Ci) /∈ MA}

is minimal.

This set of minimal diagnoses may still be large and ignore additional ranking
criteria. Both a broken (open) light bulb and its pin being shorted to ground may



416 10. Model-based Problem Solving

explain why the bulb is not lit, but the shorted fault may be much more unlikely and,
hence, only considered if the other one has been ruled out. We can define such a
general preference on the modes of a component.

Definition 10.7 (Preference on modes and mode assignments). A mode preference for
Ci is a partial order “�” on modes(Ci):

�⊆modes(Ci)× modes(Ci),

where ok(Ci) is the maximal element and an unknown fault mode unknown(Ci), if
present, is the minimal element:

∀mj(Ci) ∈ modes(Ci) \ {ok(Ci)}: ok(Ci) > mj (Ci),

∀mj(Ci) ∈ modes(Ci) \ {unknown(Ci)}: mj(Ci) > unknown(Ci).

“>” is defined as

x > y :⇔ x � y ∧ ¬(y � x).

This induces a preference on mode assignments: for

MA = {mji (Ci)},

MA� = {m�
ji
(Ci)},

we define

MA � MA� :⇔ ∀i mji (Ci) � m�
ji
(Ci).

Definition 10.8 (Preferred diagnosis). A diagnosis MA is a preferred diagnosis, if
there is no diagnosis MA� that is strictly preferred over MA

∀MA� MA� � MA ⇒ MA� = MA.

Intuitively, the definition expresses, that a certain fault modemj(Ci) should appear
in a preferred diagnosisMA if

1. all mode assignments that are obtained by MA replacing mj(Ci) in MA by a
strictly preferred mode m�

j (Ci) > mj (Ci) are not a diagnosis, and, of course,

2. MA is a diagnosis.

In order to characterize preferred diagnoses, [24] uses default logic [61, 5]. A (normal)
default is an inference rule of the form

a : b/b

which expresses, intuitively, “If a is true, and it is consistent to assume b is true, then
b holds”. A default theory is a pair (D, P ), where P is a set of classical formulas and
D a set of defaults. Since defaults may exclude each other mutually, there are different
(maximal) sets of defaults applicable, which leads to different sets of conclusions,
called extensions.



P. Struss 417

For instance, assuming a certain mode of a component, we cannot associate another
mode of the same component that might also be consistent. Indeed, we can encode the
rule that mj(Ci) should be assumed only if all its strictly preferred predecessors

prej (Ci) :=
�
mk(Ci) | mk(Ci) > mj (Ci)

�

have been refuted, and if mj(Ci) can be consistently assumed as a default

def ij ≡
�

mk(Ci)∈prej (Ci )

¬mk(Ci) : mj(Ci)/mj (Ci).

Especially, the ok behavior will be assumed first:

: ok(Ci)/ok(Ci)

The following theorem [24] captures the intuition that these preference defaults deter-
mine the preferred diagnoses:

Theorem 10.4. Let DEF = {def ij } be the set of all preference defaults. MA is a
preferred diagnosis if

Cn(SD ∪ OBS ∪ MA)

is an extension of the default theory (DEF, SD ∪ OBS). Here, Cn(.) denotes the de-
ductive hull:

Cn(P ) := {p | P � p}.

The theorem provides the logical characterization of (preferred) diagnoses for fault
identification and contains as a special case, namely modes(Ci) = {ok(Ci),¬ok(Ci)},
the characterization for fault localizations given in [62]. The theory was implemented
as the Default-based Diagnosis Engine (DDE) [25] which generates the successor
mode assignments for the refuted diagnosis hypotheses according to the preference
relation and checks their consistency only if all strictly preferred diagnoses have been
refuted. This means, in particular, if an unknown fault is included, it will only be
considered if no other fault mode survives the consistency check, but its existence
prevents exoneration as performed in GDE+.

DDE’s preferences are local to each component and only an ordering. It does not
use preferences among modes of different components and, hence, does, for instance,
not order single faults involving different components. A refinement can be obtained
by exploiting a global scale for ranking of modes, such as failure probabilities. In
SHERLOCK [22], mode assignments are checked for consistency in the order of their
probability which is obtained from the probabilities of modes (assuming their inde-
pendence). Starting with a-priori probabilities, SHERLOCK recomputes probabilities
when new conflicts have been detected. Unknown faults can be included, usually with
low probability, and termination criteria specified, e.g., as a function of the probabil-
ities of the diagnoses obtained so far. Although there is no formal characterization, it
should be clear that SHERLOCK generates a subset of the preferred diagnoses if the
preference is the order induced by mode probabilities. The core of this technique is
fairly general and has been introduced as conflict-directed A* search [86].



418 10. Model-based Problem Solving

10.4.2 Computation of Diagnoses

Since diagnosis is formalized as finding a model that is consistent with the observa-
tions, one might (and some authors do) suggest using any (efficient) generic algorithm
that generates a solution for

SD ∪ {MA} ∪ OBS

such as constraint satisfaction algorithms [13, 63] and SAT-solvers. However, while
many such algorithms produce some single solution quite efficiently, their naive use
may ignore requirements and context of the real task. The same holds for the, usually
infeasible, attempt to compute the set of all diagnoses. Diagnosis in the real world is
not interested in a single arbitrary solution, but in finding a set of diagnoses that
fulfill some criteria dictated by the practical context of the task. Such criteria
vary and can be quite complex. Minimality (with respect to cardinality or set inclu-
sion) of diagnoses is only one example, which is independent of domain and task. In
reality, the relevance criteria for diagnoses are mainly determined by the ultimate ob-
jective, namely re-establishing the proper system behavior at minimal cost and risk,
and, hence, may vary with the means and restrictions for reaching the objective (see
the discussion in Section 10.6). Focusing on the most likely or “preferred” faults as
done in SHERLOCK [22] and GDE+ [24], respectively, reduces the risk of fixing the
wrong component and, thus, the average cost. In some applications, certain highly
critical faults may have to be explicitly ruled out (e.g., to select appropriate recovery
actions based on on-board diagnosis of vehicles).

Another important requirement in many applications is due to the fact that com-
puting diagnoses from observations is not a one-shot activity, but happens multiple
times in a process of gathering information through testing and observation (see Sec-
tion 10.5). This has to be reflected by the requirement for algorithms that support an
efficient incremental computation of diagnoses when the set of observations is ex-
tended.

The design of a diagnosis algorithm has to reflect a number of choices imposed by
the respective application:

• The task: fault localization vs. fault identification.

• The models: existence or non-existence of fault models.

• Fault models: existence or non-existence of an unknown fault (with unrestricted
behavior).

• The result: criteria for the relevance of diagnoses to be produced (rarely all).

In the theories presented above, the concept of conflicts played an important role in
characterizing the solution space. We discuss some aspects of exploiting conflicts in
some more detail.

Computing fault localizations/diagnoses from conflicts

Theorem 10.2 suggests a two-step computation: first compute all minimal (positive)
conflicts, then compute their prime implicants to obtain fault localizations. This is fea-
sible and useful, if only theOK behavior is modeled.GDE [20] is the archetype of this



P. Struss 419

solution. The presence of fault models modifies the set of minimal positive conflicts, if
the physical negation rule is applied (i.e. the set of fault models is considered complete
and does not contain an unknown fault as inGDE+ [64]). For instance, in our example:

Conflict3 ≡ ¬ok(HLight) ∨ ¬ok(Wire5) ∨ ¬ok(Wire6) ∨ ¬ok(RLight)

is reduced to

Conflict3 ≡ ¬ok(Wire5) ∨ ¬ok(Wire6) ∨ ¬ok(RLight)

by the non-positive conflict

¬broken(HLight)

(which is obtained from the observation that HLight is lit) and the physical negation
rule:

¬ok(HLight) ⇒ broken(HLight).

The introduction of fault models implies the step from a single system model (the OK
model) to a large set of models (for all mode assignments). This is a qualitative leap,
which usually makes a complete check of all mode assignments infeasible.

Computing kernel diagnoses

The concept of kernel diagnoses, introduced in Section 10.4.1, is attractive from a
theoretical point of view, because it provides a generator for the set of all diagnoses
in case of the existence of fault models. However, it does not offer the basis for any
practical solution, because it requires an unrestricted consistency check of mode as-
signments. Also, many of the kernel diagnoses may be completely irrelevant to any
practical consideration. We illustrate this by the following example. Consider, say, 17
“Equal components” Equali in series which have the modes

ok(Equali ) : ini = outi ,

neg(Equali ) : ini − 1 = outi ,

pos(Equali ) : ini + 1 = outi

and the observations

in1= 0,

out17= 1.

Then there exist 17 singleton fault localizations, namely {pos(Equali )}, which are the
interesting ones to focus on under practical considerations. The space of all fault local-
izations is given by all subsets of COMPS with odd cardinality. As a consequence, the
set of kernel diagnoses is identical to the set of all fault localizations, which means, in
particular, all of them are complete mode assignments. From a computational point of
view, the example also illustrates that the set of non-positive conflicts is large namely
the set of all subsets of COMPS with even cardinality and the empty set, and that de-
termining them requires checking all complete mode assignments (but then, you have
the fault localizations directly).

In summary, an exhaustive computation of conflicts rarely lends itself to a compu-
tational solution (except for fault localization with OK models only). However, there
is no interest in computing all diagnoses, anyway.



420 10. Model-based Problem Solving

Search for diagnoses and the exploitation of conflicts

The response to this insight is to organize the generation of relevant diagnoses as
search, instantiating and checking mode assignments only after checking those with
higher relevance. Given a criterion for (potentially dynamically) ordering mode as-
signments according to their importance, one could perform some best-first search in
the space of mode assignments in a hypothesize-and-test cycle in a straightforward
manner. However, (minimal) conflicts provide a powerful means to improve the effi-
ciency of the search. This is due to the fact that a model of a mode assignment that
does not satisfy all existing (minimal) conflicts does not need to be instantiated and
checked for consistency with the observations. Stated differently, after each detection
of a new (minimal) conflict, the search space can be pruned by eliminating all mode
assignments that imply the respective inconsistent partial mode assignment (i.e. the
negation of this conflict).

In GDE+ [24], the preference defaults serve two purposes: on the one hand, they
encode the ordering of the modes and ensure that a mode of a component is only con-
sidered for consistency checking in a context if all more preferred modes have been
refuted. On the other hand, it will not be checked, if it is already known to be inconsis-
tent because it is subsumed by some previously detected inconsistency. SHERLOCK
[22], which checks mode assignments according to their probabilities, also exploits
conflicts to prune the space of mode assignments. This principle has been generalized
to Conflict-directed A∗ [86] for cost functions satisfying certain criteria.

Determining (minimal) conflicts

Exploiting conflicts for computing fault localizations and pruning the search space re-
quires that the consistency check delivers more than a Yes/No answer for a complete
mode assignment. It has to identify partial mode assignments that generate the incon-
sistency, and the smaller they are, the stronger is the impact on the accuracy of the com-
puted fault localization and on search space pruning. The “classical” way of finding
conflicts (as in GDE, GDE+, and SHERLOCK) is by means of a propagation-based
predictor interfaced to some dependency-recording mechanism (e.g., exploiting an
Assumption-based Truth-Maintenance System, ATMS [14]). Whenever a contradic-
tion (two conflicting values of a variable) is detected, the underlying behavior modes
that derived it together can be determined. Incompleteness of the predictor may lead
to missing (minimal) conflicts and, hence, suboptimal fault localization (although the
proper one will never be falsely refuted). However, while this works for some systems,
such as combinatorial circuits, there is a vast space of system models for which prop-
agation is highly incomplete or does not derive anything (resistive electrical circuits,
hydraulic systems, . . .). In this case, other more complete algorithms for consistency
checking are needed, and if generic efficient ones are used (CSP, SAT, . . .), then their
utility depends on whether and to what extent they can deliver (minimal) conflicts.

Pre-compilation of models

If one does not use dependency recording or some equivalent technique, the alterna-
tive is to check partial mode assignments for consistency in order to find conflicts. But
this is a large space, and one would want to anticipate which assignments can possibly
lead to the detection of a conflict. This means to decompose the system into chunks



P. Struss 421

in a way that checking these respective partial mode assignments can possibly lead to
a conflict. The analysis needed for such an approach, which may be called conflict-
oriented model decomposition [56], has to reflect the structure of the system and the
set of observable variables. Intuitively, the task is to find sets of observations that parti-
tion the system model into subsystems that can become over-determined, which often
requires to make certain assumptions about the model (e.g., linear functions). There
are a number of caveats. Firstly, the approach is obviously only suited for applications
where the set of possible observables is fixed (and not too large), an assumption that
can be valid for online-diagnosis of monitored or controlled systems. Secondly, the
potential conflicts can comprise quite different subsets of components for different
mode assignments, and even for different states and inputs of the system. Performing
the analysis exhaustively for all cases, particularly under the presence of fault models
seems prohibitive. Hence, thirdly, if we use purely structurally oriented algorithms,
we may fail to find the minimal potential conflicts.

There are other proposals to compile system descriptions in order to achieve bet-
ter performance at diagnosis runtime. Ultimately, only the interdependencies between
observable variables and the mode assignments matter, whereas the overall system
model may contain many more intermediate and unobservable variables, especially
due to the fact that the model is a compositional one. A straightforward step is, there-
fore, to eliminate all unobservable variables from the model. This works best if the set
of observable variables is fixed (and small), as, for instance, in on-board diagnosis and
monitoring systems, where the set of observables is determined by the existing sensors
[26]. This has enabled the generation of a model-based on-board diagnostic system,
that runs on an actual control unit of a passenger vehicle [74]. Darwiche [10] proposes
to compile a system description into a special form (negation normal form) in order to
achieve better performance for diagnosis tasks.

Obviously, for all such solutions holds that the complexity of the task is shifted
into the compilation step which even may become intractable.

Hierarchical models

Another option is to represent the system to be diagnosed by a hierarchical model and
apply the described techniques at each level to those subsystems that have been de-
termined as suspects at the higher level. This keeps the number of components and,
hence, the size of mode assignments and conflicts small. (See, e.g., [48].) While a
solution along these lines is theoretically straightforward, in practice it comes at con-
siderable cost and raises some problems. Obviously, we need models of subsystems
above the level of elementary components. There are two ways to obtain them: au-
tomatically or “by hand”. The latter option, though feasible in some cases, increases
the modeling effort. The bad part is that only the models of the very bottom layers
can be expected to be reusable, the rest is likely to be system-specific. Therefore, in
most applications, the effort of creating models of higher-level components (which are
hardly re-usable) manually will probably kill the economic benefit of a model-based
solution. An automated solution is needed.

The reductionist approach implies that we can obtain the behavior models of the
subsystems in a bottom-up fashion as the composition of the models of its components,
which means we face the task of automated model compilation (e.g., by transforming
a constraint network to a single constraint relating state and interface variables of



422 10. Model-based Problem Solving

the aggregate and covering all observable variables). If we would like to exploit fault
models not only at the lowest level to improve fault localization, we have a complexity
problem, because we have to generate not only the ok model of the aggregate, but also
its fault models, which would mean compiling models of all or a selected set of mode
assignments. An option is to focus on single faults (or the most probable ones) and
capture the rest by an unknown fault mode of the aggregate. Still the result can be
many fault modes for the aggregate. Often, they can be conveniently summarized by
a smaller set of fault modes in a more abstract representation, but generating such
abstractions automatically is a serious challenge to automated modeling—or we are
back at manual modeling.

10.4.3 Solution Scope and Limitations of Component-Oriented
Diagnosis

Although what has been surveyed so far in this section has often been considered as
theories and solutions to the task of diagnosis based on first principles, it turns out
to be a very specific one. We need to be aware that there are a number of underlying
assumptions and limitations that confine the scope of applicability from a practical
perspective.

• Fixed, well-specified set of components: many systems in process industries
(e.g., in chemical plants) and, even more so, natural systems cannot be modeled
conveniently as a set of components.

• Known, fixed structure: For the types of systems just mentioned, this is also
not satisfied. And in some devices, we might have to consider the processed
objects as components, such as sheets in a copier.

• Well-designed system: This assumes the intended functionality (“GOALS”) is
implied by the system with correct components. This is even not given for many
carefully designed artifacts: often, the parameter tolerances of components in a
circuit may well allow an unintended behavior, which is just not happening due
to the statistical distribution of parameter deviations. And ecological systems are
not designed anyway and, hence, always require an explicit representation and
consideration of GOALS [41].

• Component faults only: Disturbances of the system behavior are always caused
by a fault of one of the known components. However, often, the cause of a
malfunction is due to some additional, unexpected object, substance, or agent
intruding the system.

• No structural faults: Even if the structure of the correct device is well-specified,
the fault may lie in a violation of this structure (e.g., a bridge fault) [16].

• “Crisp” faults: although the models of different faults may overlap, there is the
assumption that the presence of a fault is a yes/no decision. In order to incorpo-
rate degradation and “soft” faults, one would have to introduce thresholds that,
perhaps artificially, distinguish a tolerable degradation from a real fault.

But there are some non-assumptions, contrary to what is sometimes believed:



P. Struss 423

• Sometimes, it is believed that consistency-based diagnosis can only work with
specific modeling formalisms, e.g., models that are expressed in, or can
be transformed into, logical formulas, such as finite constraints. Engineering
models do not come as logical formulas. However, the principles underlying
consistency-based diagnosis are general. As discussed in Section 10.3, any mod-
eling formalism that is suited to capture the diagnosis-relevant behavior aspects
of component modes and that has some notion of and mechanisms for check-
ing the consistency of a model with observations can be used. This includes
numerical models and simulators, provided there is a way to avoid the creation
of spurious inconsistencies due to noise, model inaccuracy, measurement im-
precision, etc. Also, if computation is fixed to one direction (from “input” to
“output”), they have to reflect the available observations what makes the sys-
tem models specific and reduces their reusability, and they may suffer from
incompleteness regarding the detection of all conflicts (because this may require
inferences starting from outputs).

• In particular, it is often assumed that only static system behavior can be di-
agnosed. This is not true, since neither the theory nor the technical principles
prevent the use of models that describe the dynamic behavior and of observa-
tions that capture the system evolution over time. Still, the temporal dimension
introduces some additional problems and specific answers, which will be the
subject of the next section.

Furthermore, it should be pointed out that there is a useful generalization of the theory
and the techniques if we replace “behavior modes” by “states”, where a state is the
assignment of a value to a state variable of a component (in analogy to assigning a
particular mode to a component). This way, hypotheses not only about the occurrence
of faults, but also about the internal states of a system can be generated [84]. However,
there is no general preference criterion (like minimality for sets of faulty components)
for states, although, perhaps, for state changes.

10.4.4 Diagnosis across Time

If observations are available not just for one snapshot of system behavior, but for a
whole observation period, this may strengthen the basis for diagnosis, but also triggers
some special problems to solve. Extending the basic definitions appropriately is not too
difficult. First, we have a history or sequence of observations

OBSH = {OBSi} = {{obsij (ti )}}

related to a finite set of time points ti in some time interval of interest, ti ∈ Iω. Sec-
ondly, not only the behavior of the system to be diagnosed may evolve over time, but
also the behavior modes of components may change over time, i.e. faults may occur
and also disappear. Therefore, in the general case, a diagnostic hypothesis is no longer
one mode assignment, but a history of mode assignments

MH = {(MAk, Ik)},
�

k

Ik = Iω, MAk �= MAk+1,

where MAk is a mode assignment that holds for all time points in some interval Ik =
(tk, tk+1) ⊂ Iω, that is consistent with the observation history (see, e.g., [33]).



424 10. Model-based Problem Solving

Definition 10.9 (Consistency-based temporal diagnosis). A history of complete mode
assignments

MH = {(MAk, Ik)}

in Iω is a consistency-based temporal diagnosis for a system description SD and an
observation history

OBSH = {{obsij (ti )}}

in Iω if

SD ∪ MH ∪ OBSH � ⊥.

This concept of a temporal diagnosis subsumes the static version in the sense that
for each observation point, the mode assignment must be a diagnosis according to
Definition 10.2.

Definition 10.10 (State-based diagnosis). A mode history

MH = {(MAk, Ik)}

is a state-based diagnosis for

OBSH = {{obsij (ti )}}

if
for all ti holds
if ti ∈ Ik
then MAk is a diagnosis for SD and OBSi .

Lemma 10.1. If MH = {(MAk, Ik)} is a temporal diagnosis of SD and
OBSH = {{obsij (ti )}},
then
MH is a state-based diagnosis for SD and OBSH.

In other words, being a state-based diagnosis is a necessary condition for obtain-
ing a temporal diagnosis. Amazingly enough, it is also a sufficient condition for an
interesting and large class of systems and tasks, as discussed in the following.

Whether this holds strictly, depends also on the available observations, because
some sequence-constraints, i.e. restrictions on the possible transitions between states,
may compensate for limited observability. Let us illustrate this by a trivial example.
Assume we parked our car in a street in San Francisco with considerable and applied
the park brake. When we return 10 minutes later, we find the car is no longer at the
place where we left it, but 50 m down the street in front of a wall (with some dents). We
certainly suspect that the park brake did not do its job, despite the fact that the car was
at stand-still when we left, but also the car in front of the wall is perfectly consistent
with a well-functioning park brake. However, we can conclude that, since the positions
are different, there must have been an unobserved state in between, where the speed
of the car was non-zero which contradicts the OK mode of the park brake. This case



P. Struss 425

shows that the sequence-constraints can compensate for gaps in observations in two
ways: gaps in time (by conclusions for unobserved states) and regarding observable
variables (esp. derivatives, here: the speed).

Computation of temporal diagnoses

The example does not only illustrate that the sequence-constraints can be essential to
diagnosis, it also sheds a light on the implication for computational considerations;
We did not have to simulate the vehicle’s behavior under OK mode and the broken-
park-brake mode to obtain a conclusion.

Instead, we inferred the existence of a state with speed > 0, which directly contra-
dicts the OK model, while being consistent with the fault model. This illustrates: even
if we cannot drop the temporal aspects from the consistency check of different mode
assignmentsMAj

SD ∪ {MAj } ∪ OBSH,

which means

state-constraintsji ∪ sequence-constraints ∪ OBSH,

without loss, this still does not force us to simulate the model of every candidate mode
assignment MAj , which is likely to be impossible anyway (e.g., in our example, we
do not know when the car started to move and how). Instead, we can apply sequence-
constraints first, to complement the observed history by indirect observations

OBSH ∪ sequence-constraints � OBSHext

and then perform consistency checks of

state-constraintsji ∪ OBSHext.

The computational advantage of the second solution is tremendous, since we avoid
simulation of many fault hypotheses, apply sequence-constraints only once and per-
form cheaper consistency checks on states only. The most common application and
exploitation of this approach is the computation of derivatives from observations to
avoid simulation and obtain equivalent results (as analyzed and confirmed in [6] for
numerical models). In essence, the good message is: diagnosis of dynamic systems
does not require simulation.

If we perform state-based diagnosis of persistent faults as described above, then the
mode assignment in the temporal diagnosis has to be a prime implicant of the union of
all sets of conflicts detected at the various time points (or, rather, the minimal elements
of this union). Hence, diagnoses can be computed incrementally by adding newly
detected (minimal) conflicts for each observed snapshot. For systems that perform a
best-first search, such as SHERLOCK and DDE, the set of diagnoses obtained from
one snapshot (e.g., the most probable or the preferred diagnoses) forms the set of mode
assignments to be checked against the observations for the next snapshot. Whenever,
based on these checks, some diagnoses are refuted and new ones are generated, these
also ought to be checked against all previous snapshots.



426 10. Model-based Problem Solving

State-based vs. simulation-based diagnosis

When confronted with the necessity to diagnose a system whose behavior is observed
and changes over time, the immediate consequence seems to be that one has to sim-
ulate the behavior under different mode assignments and check for consistency with
the actual tracked behavior ([15] is an examples of such a solution). Triggered by the
observation that in applications of consistency-based diagnosis conflicts always were
generated from observations stemming from one snapshot [23], the analysis revealed
that the underlying reasons are quite fundamental and lead to a fairly general charac-
terization of preconditions for being able to refrain from simulation without affecting
the quality of the resulting diagnoses [71].

The key consideration is that many computational modeling formalisms decom-
pose a description of the temporal evolution of a system into a set of restrictions that
hold for the state at each time point and a part that restricts the set of possible se-
quences of such states:

model = state-constraints ∪ sequence-constraints

For instance, in a numerical simulation system, the former one is an ordinary differen-
tial equation, while the latter is incorporated in the integration algorithm. In this case,
the specificity of model of a particular mode (assignment) is captured by the first part
only, while the second part represents general laws that apply to all models, namely
the laws of continuity, derivatives, and integration, and is shared by all possible behav-
iors an their models. As a consequence, any observed behavior of a particular mode
assignment will be consistent with the model, if and only if it is consistent with its
state-constraints. This provides an intuition for why checking the individual obser-
vation snapshots for consistency with the state-constraints suffices for diagnosis, and
applying sequence-constraints and simulation can be avoided. However, if the obser-
vations have gaps, i.e., miss a state of the actual behavior, or the set of observable
variables is too small to reveal an inconsistency, then exploiting sequence-constraints
in simulation might compensate for it, because they could infer information about
an intermediate state or additional information about a partially observed state (e.g.,
about derivates). This consideration can be turned into a rigorous argument [71] and
a foundation for solutions of high importance to industrial applications, especially if
faults are persistent. Faults are persistent if they do not vanish without repair (such as
leakages or broken bulbs).

Definition 10.11 (Persistence of modes). A (fault) mode mji(Ci) is called persistent
if for all temporal diagnoses {(MAk, Ik)}

∃k� mji(Ci) ∈ MAk� ⇒ ∀k > k� mji(Ci) ∈ MAk

must hold.
It is called persistent in Iω if

∀k mji(Ci) ∈ MAk.

We prefer this definition over the one proposed by [60] who calls a behavior per-
sistent if the output of a component is a function of its inputs (and not of time), for



P. Struss 427

two fundamental reasons: Firstly, persistence is a property of a mode, rather than of
model as in [60]. Continuous models that reflect noise and uncertainty often cannot
be stated in terms of functions, and a qualitative model that is obtained by abstracting
a real-valued function is usually no longer a function. Secondly, there are only few
kinds of systems that can be modeled in a directional way.

In contrast, the condition concerning the commonality of sequence-constraints is
a property of the model.

Definition 10.12 (Homogeneity). A model library LIB is called homogeneous, if there
exists a set sequence-constraints that links states of the system at different time points
and is shared by all models, i.e. for all modes mji ,

modelji = state-constraintsji ∪ sequence-constraints,

and state-constraintsji contains only restrictions for each single time point.

If the above properties hold, then for persistent faults, being a state-based diagnosis
can be not only a necessary condition for a temporal diagnosis (Lemma 10.1) but also
a sufficient one [71], i.e. MH is a temporal diagnosis for SD and OBSH if and only if

MH = {(MA, Iω)}

and MA is a state-based diagnosis for SD and OBSH. Since the sequence-constraints
do not contribute to a consistency check at a single time point, MA is obtained as a
diagnosis for SD sequence-constraints and all OBSi .

The above considerations apply, in particular, if all modeled behaviors are continu-
ous. However, if the model contains discrete states and transitions between them, then
homogeneity is usually violated, because the possible transitions are specific to a par-
ticular behavior mode. For instance, transitions between states OPEN and CLOSED
do occur in the OK model, but not for a STUCK mode.

Even more fundamentally, the homogeneity property becomes obsolete, if the per-
sistence assumption is dropped. So far, we considered only models that describe the
component (system) behavior under each mode (assignment). In temporal diagnosis,
we may want or need to model also, in which ways mode changes occur. Most at-
tempts to do so make the assumption that this happens as a discrete change. Thus, the
evolution of system behavior may be described by state changes within a mode and
mode changes:

sequence-constraints = states-sequence-constraints

∪modes-sequence-constraints,

although many formalisms represent them in the same way, namely as discrete transi-
tions.

If we make a Markov assumption, then sequence-constraints become transition-
constraints, which restrict pairs of adjacent states.

Transition-based diagnosis

There are a number of approaches to incorporating transitions to fault modes in the
model, covering the spectrum from discrete-event models to models of continuous



428 10. Model-based Problem Solving

behavior. As basing such models on the concepts of states and transitions is natural,
most of them are some variant of finite state machines or similar formalisms. There
are many approaches, reflecting different types of systems, tasks, observations, tem-
poral information, etc. Here, we can only provide a preliminary formal account for the
common underlying ideas and refer to some specific instances. We represent a model
of the possible evolution of the behavior a component, Ci , as a tuple

model(Ci) = (Si, si,0, Ei, Ei,obs, Ti, Ti,F )

with

• a finite set of states, Si , which can represent operating modes under normal
behavior (e.g., a proper valve in its closed state) or faulty behavior (the valve
stuck closed),

• an initial state, si,0,

• a finite set of events,Ei , which may be exogenous influences, control commands
(external or internal ones), the occurrence of faults, alarms or other observables,
etc.,

• the observable events, Ei,obs ⊂ Ei , which exclude, at least, the events that
trigger fault transitions (otherwise, there is no diagnostic problem),

• a finite set of transitions, Ti , shifting the system from one state to the next
(deterministically or non-deterministically), based on the triggering event and
possibly generating an event:

Ti ⊂ Si × Ei × Si × Ei.

A transition t ∈ Ti may represent switches between operating modes, shifts to
a fault mode, but possibly also the return to a correct behavior in case of an
intermittent fault or due to some repair or reset action,

• the set of fault transitions, Ti,F ⊂ Ti , which correspond to the occurrence of
faults.

Such a model uses only the simplest representation of time, namely a (partial) ordering
of states. A formal specification of the semantics can be based on some temporal logic
containing a next operator [32]. Sometimes, metric temporal information (numerical
or qualitative) may be necessary and/or available.

Such component models fulfill the important requirement to be compositional.
We obtain a model of a system comprising a set of concurrently active components
COMPS = {Ci}

MODEL = (S, s0, E,Eobs, T , TF )

as a product of the component models, where

S = S1 × · · · × Sn,

s0 = (s1,0, . . . , sn,0),



P. Struss 429

E = P
��

Ei

�
,

Eobs = P
��

Ei,obs

�

(which means, only part of the composite event may be observable). The way tran-
sitions are specified may depend on different assumptions, especially about synchro-
nization of the local transitions.

A diagnosis is then, intuitively, some explanation of a sequence of observed events
in terms of a path through the finite state machine which generates this observable
trace and can be defined as follows.

Definition 10.13 (Transition-based diagnosis). Let

MODEL = (S, s0, E,Eobs, T , TF )

be the model of a system and

OBS = (OBS1, . . . ,OBSn) ∈ En
obs

be a sequence of observations.
A sequence of events

e = (e1, . . . , em) ∈ Em

is an extension of OBS, iff it contains OBS in the proper order, i.e.

(i) ∀k ∃j (k) ej (k) ∩
�

i Ei,obs = OBSk ,

(ii) k1 < k2 ⇒ j (k1) < j (k2);

e is a transition-based diagnosis of (MODEL,OBS) iff

(i) e is an extension of OBS,

(ii) ∃(s1, . . . , sm) ∈ Sm ∀1 < j < m (sj−1, ej , sj , ej+1) ∈ T .

Fault detection is performed, if every diagnosis contains some fault transition. Fault
identification corresponds to the subsequence of fault transitions in a diagnosis, and
fault localization is done by looking for the components where these fault transitions
occur. Like for the snapshot case, we can apply some minimality criteria for ranking
diagnoses and fault localizations. One could also recast the definition in terms of fault
events or fault states (in the latter case with a modified minimality criterion). There
are many directions for variations, specializations, and extensions of this perspective
on diagnosis across time.

Diagnosis with discrete-event models

[65] uses a deterministic finite state machine without emitted events and approaches
the diagnostic problem by compiling the original finite state machine into one that
contains only observable transitions and produces the same language in terms of ob-
servations, called diagnoser. Its states represent the respective sets of nodes in the
original model that can be reached via paths that contain also unobservable transitions,



430 10. Model-based Problem Solving

Figure 10.4: The system model (top) with observable transitions α, β, γ, δ, τ and the fault transition σFl.
The nodes of the diagnoser contain the potentially reached original states together with the faults on the
path (“Fl”) or “N” (i.e. no fault). From [65].

labeled with the fault transitions on these paths. This means that, after a sequence of
observations, the diagnoses can be read off of these labels (together with a prediction
of the possible current states of the system). Fig. 10.4 gives a simple example of a
finite state machine and its diagnoser.

Related work is described in [46] and [47]. [77] discusses links between this ap-
proach and diagnosability based on continuous models. When a system comprises
many components that operate concurrently, the explosion of the Cartesian product
of the states is an obvious problem and motivates a decentralized approach as in [54]
applied to telecommunication networks.



P. Struss 431

Diagnosis with hybrid models

The view on a system’s behavior as a sequence of state transitions lends itself to
modeling various kinds of systems including combinations of software and physi-
cal components. In this case, the (continuous) behavior during a state may have to
be modeled, as well, because it can be the cause of discrete changes. In Livingstone
[84], components are also modeled as a graph of transitions between states of the
component, which represent normal operating modes and fault modes. A component’s
behavior is characterized by a set of variables (physical quantities, commands, etc.).
States are characterized by constraints on these variables, actually the assignment of a
single value to some of the variables. As for the models of many of the consistency-
based diagnosis systems discussed earlier in this section, qualitative modeling [81, 35,
4] turns the representation of the continuous behavior into a finite one (e.g., in terms
of finite constraints or propositional logic).

A Livingstonemodel can be interpreted in the general framework outlined above in
the following way. A component Ci has an associated vector of variables vi with the
finite domain DOM(vi). The behaviors under the different states sij ∈ Si are specified
by constraints:

sij ⇒ Cij with Cij ⊂ DOM(vi).

Events Eij are also specified in terms of constraints on the variables:

Eij ⊂ DOM(vi)

and transitions move from states that fulfill the triggering conditions to states that sat-
isfy the resulting condition. In each state, besides a nominal transition, also a number
of fault transitions can occur non-deterministically. Again, the entire model can be un-
derstood as split into a set of state-constraints and transition-constraints, with some
non-determinism concerning the latter.

In order to form a system model, the composition of such component models hap-
pens at two levels. On the one hand, as usual, the interaction of components along
the system structure is represented by shared variables between component models.
They may correspond to physical quantities, such as pressure and flow, commands of
a controller, etc. On the other hand, states, events, and transitions are aggregated (in a
synchronous way).

Because events are specified as restrictions on variables, the observable ones cor-
respond directly to the snapshot observations (e.g., measurement of a set of variables)
discussed earlier. In contrast to the compilation of the transition system into the di-
agnoser, Livingstone generates diagnoses incrementally from snapshot to snapshot.
Because of the combinatorics of multiple transitions from each local state, complete
generation of all potential successor states is prohibitive for interesting applications.
Like SHERLOCK, Livingstone focuses on tracking the most likely paths, exploiting
the a posteriori probabilities of the transitions given the observations about the result-
ing state. The system and its predecessors were applied prototypically to spacecraft
self-diagnosis as a basis for self-reconfiguration [84].

10.4.5 Abductive Diagnosis

The concept of diagnosis, so far, is based on finding system models that do not con-
tradict the given observations. This may seem quite weak. In fact, if the system shows



432 10. Model-based Problem Solving

Figure 10.5: A fragment of a circuit with two parallel light bulbs.

some symptoms, we may want a diagnosis that provides a causal account for them.
This idea leads to a new logical definition of a diagnosis, which requires that a model
logically entails the given observations, rather than simply being consistent with them:

MODEL � OBS

[57]. However, we have to be cautious when using this definition of abductive diagno-
sis. For instance, if the observations include a command “CLOSE” to the switch in the
fragment of a circuit shown in Fig. 10.5, but bulb1 remains dark while bulb2 is lit, then
the single fault in bulb1 explains the observations of the bulbs, but we do not expect
it could provide a reason for switch.cmd = CLOSE. Intuitively, we want the system
response (the “output” variables) to be entailed, but not the exogenous features (the
“input” or independent variables). The most general definition reflecting this intention
is the following.

Definition 10.14 (Abductive diagnosis). Let MODELF be a model of a fault and
OBS = OBSC ∪ OBSA be a set of observations. MODELF is an abductive diagnosis
iff it is consistent with OBSC and entails OBSA:

MODELF ∪ OBSC � ⊥,

MODELF ∪ OBSC � OBSA.

A complete mode assignment MA is a component-oriented abductive diagnosis for a
system description SD and a set of observations OBS iff

SD ∪ {MA} ∪ OBSC � ⊥,

SD ∪ {MA} ∪ OBSC � OBSA.

Please, note that if OBSC refers to exogenous variables, the first condition is sat-
isfied by any valid model (as discussed in Section 10.3). Console and Torasso [9]
discuss the consequences of different possibilities to specify OBSC and OBSA. In our
example, we would choose

OBSC = {switch.cmd = CLOSE},

OBSA = {bulb1.light = OFF, bulb2.light = ON}.

Unfortunately, a single fault in bulb1 does not entail OBSA based on OBSC , because
there is no information about the voltage supply and is not found as an abductive
diagnosis, unless also the voltage supply is abduced.



P. Struss 433

Poole [57] raises the issue of how to represent the observations. Rather than treat-
ing them as a conjunction of inputs and outputs, we could try to find an explanation
for observations stating that the input implies the output. This means in our example,
we use

OBS = {switch.cmd = CLOSE⇒ (bulb1.light = OFF ∧ bulb2.light = ON)}

which would have to be entailed by an abductive diagnosis (which is again not the
case). Note that we (humans) can even obtain a diagnosis solely based on observation
of the outputs:

OBS = {bulb1.light = OFF, bulb2.light = ON}

and that consistency-based diagnosis with fault models produces the proper result.
Abductive diagnosis is attractive, because it provides a stronger notion of diagnosis

which seems to reflect the aspect of causality in our human conception of diagnosis.
However, apart from the fact that logical entailment is generally unrelated to causal-
ity, this stronger notion of diagnosis imposes stronger requirements on the model
and the possible inferences, as illustrated by the above example. When compared to
consistency-based diagnosis, the results are more sensitive to the particular represen-
tation and strength of the model and the observations. If an observation states that,
say, a flow at some point is positive, while a model can only predict a disjunction
flow = zero∨flow = positive (e.g., based on the model of a check valve), it would not
be an abductive diagnosis. If the domain of flow (both in the model and the observa-
tion) would contain only the values negative and non-negative, then this would yield
an abductive diagnosis. However, this coarser domain may then be too weak to derive
some other predictions.

Of course, consistency-based diagnosis depends on the strength of the model, as
well, and, in particular, on the granularity of the domains. This is because this can
render the model unable to detect some of the existing conflicts. However, it is still
guaranteed that the correct diagnosis (as a mode assignment) is never excluded. Such
a guarantee cannot be obtained for abductive diagnosis.

Depending on the available observations, an abductive diagnosis may include not
only the modes, but also the current state of the system and even numerical parameters
(as suggested by [57]) which makes the abduction task even harder for systems of an
interesting kind and size.

Abductive diagnosis seems to become feasible and provide some basis for meet-
ing our intuition behind an explanation, if the model has causal notion embedded (as
opposed to purely constraint- or equation-based behavior descriptions). In fact, many
of the examples used for explaining abductive techniques come as causal networks
that explicitly link faults to effects. As already discussed in Section 10.3, this kind
of system-specific diagnosis task compiled into a system model is a non-solution to
diagnostic applications (although in engineering practice, something similar is done
in constructing fault trees for safety analysis), because it violates genericity, com-
positionality, and reusability of the model. What is required is a modeling ontology
that captures causality and is compositional. As stated earlier, process-oriented mod-
eling [34, 35, 41] is a candidate. This also paves a way to overcome some of the
restrictive assumptions and limitations of component-oriented diagnosis discussed in
Section 10.4.1.



434 10. Model-based Problem Solving

Figure 10.6: The drinking water has a high iron concentration, because solid iron in the sediment was
re-dissolved into the water and transported to the tap.

10.4.6 Process-Oriented Diagnosis

In a simplified (though real) scenario of drinking water treatment (Fig. 10.6) [41],
a high concentration of dissolved iron is detected in the drinking water. Since it ex-
ceeds the legally allowed level, and there is no source of iron the operators are aware
of, this is a challenge for diagnosis. Human analysis yields to the following result:
there is solid iron in the sediment of the reservoir, which was not known before. When
the pH of the lower water layer, which is usually neutral, became acidic (most likely
caused by some algal bloom phenomenon), this started a chemical process of redis-
solving of iron into the water body. The dissolved iron ascended to the surface layers,
was captured with the raw water intake, and the treatment process did not reduce the
unexpectedly high concentrations of iron as required. While we would claim that the
case is clearly a diagnostic task, let us revisit the assumptions underlying component-
oriented diagnosis as discussed in Section 10.4.1.

• Fixed, well-specified set of components: although there are components, such
as pumps, containers, etc., the relevant diagnostic reasoning refers to biological,
chemical, and physical processes; it would not be convenient to consider algae,
water layers, etc. as components, and even if we do, solid iron was not a known
“component” of the system.

• Known, fixed structure: the system and its model does not have a static struc-
ture; rather, there is a dynamically changing pattern of active processes and
objects, substances, etc. appearing and disappearing.

• Well-designed system: although the treatment plant itself could be considered
as such, the notion makes no sense for the reservoir and the processes involved.
The GOALS are external to the model, and without making them explicit, there
is no inconsistency.

• Component faults only: obviously, algae are not a fault, even if their biomass
grows exponentially in an algal bloom period, nor is redissolving of iron un-
der acidic conditions a fault mode of something; it is simply natural. But it is
unwanted from the perspective of the violated GOALS.



P. Struss 435

• No structural faults: the nature of the disturbance is a structural change in the
system, triggering unforeseen processes.

• “Crisp” faults: even more than with respect to artifacts, healthiness of ecologi-
cal and biological systems, but also process plants is often expressed in terms of
a spectrum of degradation, rather than a qualitative behavior change. Of course,
in our example, the legal restrictions make it crisp.

Obviously, addressing such a diagnosis task in theory and implementation requires a
different formalization of modeling and the diagnosis task. However, what we stick
with is the idea that the answer to the diagnosis task is given by a model that is “com-
pliant” with the observations of system behavior.

The example suggests the use of process-oriented modeling. Collins [7] develops
the Process Diagnosis Engine (PDE) as abductive diagnosis on such a model. Heller
and Struss [41] present a theory of process-oriented consistency-based diagnosis, re-
alized as the Generalized Diagnosis Engine (G+DE).

In a nutshell (see [34, 35, 41] for details), a process is considered as some elemen-
tary phenomenon, which can be modeled independently of others and is, therefore,
suited to compositional modeling. This has two consequences: one is that a process
model has to state explicitly all preconditions for the process to occur by listing the
(typed) objects that interact in a particular configuration (structural-conditions) and
constraints on involved quantities (quantity-conditions). A process can create new
objects and relations between them (structural-effects) and affects quantities of the
participating objects (quantity-effects). The second consequence of the required com-
positionality is that quantity-effects cannot all be simply stated as constraints on the
quantities. This is because each (type of) process can only state a partial contribution
to some overall effect. For instance, the model of the iron-redissolving process can
only state that it adds to the concentration of dissolved iron in the water layer, but it
cannot claim that this concentration effectively increases, because in a particular sce-
nario, there may be other, counteracting, processes active that override the effect (e.g.,
oxidation of iron). In response to this, process-oriented modeling involves the concept
of influences that goes beyond mathematical modeling based on (differential) equa-
tions, constraints, or first order logic. If some variable x influences a variable y, say,
positively, written I+(x, y), this means basically that the derivative of y is a monotonic
function of x:

I+(x, y) ⇔ ∃f
dy

dt
= f (. . . , x, . . .) ∧

df

dx
> 0.

The actual value of dy
dt
can only be determined after all existing influences can be (e.g.,

linearly) combined. But this requires a closed-world assumption, which provides an
important hook for model revision during the search for a consistent model.

Thus, a process implies the effects, if the conditions are true:

structural-conditions ∧ quantity-conditions
⇒ structural-effects ∧ quantity-effects

How can we state the diagnosis problem, which we call situation assessment, because
there is not necessarily “something wrong”? We start with a partial description of a



436 10. Model-based Problem Solving

scenario in terms of objects, object relations, and variable values. This may include
real observations, OBS (e.g., measurements, such as “iron concentration above thresh-
old”) and assumptions, ASSM (e.g., assertions that usually hold, such as “pH neutral”).
The target is to construct process models that, based on propositions about structure
(objects and object relations) and quantities, are consistent with OBS and, if possi-
ble, with ASSM. Again, we apply Occam’s razor and prefer models that satisfy some
minimality criteria. There are two orthogonal dimensions:

• do not drop more assumptions than required to obtain a consistent model,

• do not introduce more unanticipated objects than necessary in order to derive an
explanation (why assume both solid iron in the sediment and iron in an affluent
to the reservoir?): the structural basis should not be larger than necessary.

We should be more precise about the latter criterion: what we would like to minimize
is the set of objects in the model that are not generated by some process, but are intro-
duced without further justification by the model. In our example, the dissolved iron is
an effect of the redissolving process, whereas the solid iron in the sediment does not
have an explanation in the model. Hence, the issue relates to the question of the model
boundaries: where should we stop to ask for reasons, because they are beyond what
is captured by the model library? In our case, iron in the tank requires a causal ex-
planation, whereas the existence of solid iron or algae does not. We characterize those
types of object that sit “on the boundary” of the model as introducible. Obviously, they
comprise those that never occur as a structural effect of a process in the library. But we
may want to regards additional ones as introducible for certain problems or scenarios.

Based on this, we can give an informal definition of a process-oriented diagnosis
(a formal account using default logic is described in [40]).

Definition 10.15 (Situation assessment). Let LIB be a process library, OBJ-INTRO
the set of introducible objects, OBJ-OBS and OBJ-ASSM the objects mentioned in
OBS and ASSM, respectively. A situation assessment for (LIB,OBS,ASSM) is a triple
(STRUCTURE,QUANT,ASSM-RETR); where STRUCTURE is a set of objects, and
relations, QUANT is a set of value assignments to quantities, and ASSM-RETR ⊂

ASSM a set of assumptions such that the resulting model is consistent with the obser-
vations and a subset of the assumptions:

(i) STRUCTURE ∪ QUANT ∪ LIB ∪ OBS ∪ (ASSM \ ASSM-RETR) � ⊥

The structure contains the observed objects and a subset of the assumed ones:

(ii) OBJ-OBS ⊂ STRUCTURE, OBJ-ASSM \ ASSM-RETR ⊂ STRUCTURE,

(iii) the model contains exactly the objects that are entailed by the introducible
objects, i.e. the introducibles themselves and the ones created by processes,

(iv) (STRUCTURE ∩ OBJ-INTRO) ∪ ASSM-RETR is a (with respect to set inclu-
sion) minimal set that satisfies (i) through (iii).

Different applications may require modifications to this definition which mini-
mizes the set of newly introduced objects and retracted assumptions, while introduced



P. Struss 437

Figure 10.7: The options for model revisions.

relations do not count. Also, the likelihood of the occurrence of objects may further
constrain the focus.

Regarding the implementation of a process-oriented diagnosis system, condition (i)
suggests that algorithms from component-oriented consistency-based diagnosis can be
applied: conflicts can be generated that contain user assumptions from ASSM and the
closed world assumptions underlying the influence resolution for quantities. We point
out that the latter introduce an element of abductive diagnosis: influence resolution
implies that the derivative of a variable is zero if there is no influence acting on this
variable. Therefore, if a change in a variable is observed (or postulated), any model that
contains no process influencing this variable will be inconsistent, and the closed-world
assumption for this variable occurs in a conflict. The same happens, of course, if the
known influences contradict the (direction of) change in a variable. A similar technique
can be used, if the deviation of some variable from an expected value is observed and
the model captures how such deviations can emerge and propagate through a system.
Resolving such conflicts and revising the model in a search process starts from the
retraction of these closed-world assumptions. While in component-oriented diagnosis
retraction of a mode assumption means switching to a different mode, retraction of
the closed-world assumption requires to find (additional) potential influences on this
variable. The search space for this revision is given by the process library: it contains
a finite set of processes that can possibly influence a variable of the respective type
associated with an object of the respective type. Extending the model by such a process
may lead to a new inconsistency, if its quantity conditions are not satisfied. Also, the
structural conditions need to be satisfied, and if they contain objects that are not yet
included in the model, then condition (iii) requires that they either be introducible or
explained by the structural effect of yet another process to be included. Also for this
revision, the processes in the library can be searched for the appropriate candidates.
Fig. 10.7 illustrates the search process. Compared to the component-oriented best-first
search algorithms, the minimality criterion is less effective in this case, because it
relates to the ultimate cause (the introducible objects), and a one-step look-ahead will
not help.



438 10. Model-based Problem Solving

The existing approaches along these lines (PDE [7], G+DE [41]) are performing
diagnosis in one snapshot. This is a serious limitation for many relevant diagnosis
problems, since the origin of some disturbance may already have ceased to exist, while
the effects persist. For instance, if we expect to detect a cause for the deviation in the
pH (e.g., algal bloom), the actual observation may state that there is none and render
such an explanation inconsistent.

Including the temporal dimension adds to the complexity issues of this approach
and, together with the demand for good search heuristics makes it a real challenge
to model-based diagnosis research. Any progress would contribute to a significant
extension of the application scope of model-based diagnosis.

10.4.7 Model-based Diagnosis in Control Engineering

There exists another research area also called “model-based fault diagnosis and isola-
tion”. It has emerged in control engineering, and, while sharing some basic common-
alities with model-based diagnosis in Artificial Intelligence, involves quite different
techniques. The common idea is to start diagnosis from the deviation of an observed
behavior from a model of correct behavior and to view a diagnostic hypothesis as a
model revision that removes this deviation. However, the techniques are purely math-
ematical, and the models used are usually numerical, non-compositional black-box
models with a fixed (mathematical) structure, lacking an explicit conceptual layer of
modeling and, hence, any symbolic reasoning and inferences. Partly, this reflects the
application domain of process control and the kind of models used for this purpose. As
a consequence, the kinds of faults that can be handled are limited to those that can be
expressed as a variation of the mathematical OK-model (e.g., parameter deviations).
Faults that modify the causal structure of the system and/or its mathematical structure
constitute a problem, as opposed to the model-based methods described in this chap-
ter. There are several attempts to compare, relate, and combine the different types of
model-based diagnosis [18, 42, 1, 53].

10.5 Test and Measurement Proposal, Diagnosability Analysis

Usually, a diagnosis based on some initial set of observations does not yield a unique
diagnosis result, even under certain preference criteria, such as minimality or likeli-
hood. If the model has been fully applied and cannot provide more diagnostic infor-
mation, the only source for further discrimination between the remaining diagnostic
hypotheses is additional observations of the system behavior. This means observing
additional variables and/or performing observations of the system in a different state
or with different input. Therefore, the test generation task can be stated as determining
which influences on the system and which observables promise information that re-
futes some of the current (diagnostic) hypotheses. A variant of this task is end-of-line
testing, i.e. performing tests of a manufactured product that are suited to confirm that
the product is not faulted. This may seem to be a different task, but it can only be
achieved by tests that are designed to refute all possible faults (since this is not feasi-
ble in reality a set of plausible faults has to be selected, e.g., single faults, or the most
probable ones). There is no way to confirm the presence of a particular behavior other
than refuting all competing behavior hypotheses.



P. Struss 439

10.5.1 Test Generation

The core problem is to determine tests for discriminating between two possible behav-
iors of a system, i.e. two models. A test has to specify

• how to stimulate the system and

• what to observe of the system’s response to this stimulus

in order to gain discriminating information. This requires fixing the possibilities of
influencing the system, called test inputs or stimuli in the following, and the potential
observations, OBS.

In the most general way, testing aims at finding out which model hypothesis out of a
set Hyp is correct (if any) by stimulating a system such that the available observations
of the system responses to the stimuli refute all but one hypotheses (or even all of
them). This is captured by the following definition.

Definition 10.16 (Discriminating test input). Let

TI = {ti} be the set of possible test inputs (stimuli),

OBS = {obs} the set of possible observations (system responses), and

Hyp = {modeli} a set of hypotheses.

ti ∈ TI is called a definitely discriminating test input for Hyp if

(i) ∀modeli ∈ Hyp ∃obs ∈ OBS, ti ∧ modeli ∧ obs � ⊥

and

(ii) ∀modeli ∈ Hyp ∀obs ∈ OBS
if ti ∧ modeli ∧ obs � ⊥

then ∀modelj �= modeli , ti ∧ modelj ∧ obs � ⊥.

ti is a possibly discriminating test input if

(ii�) ∀modeli ∈ Hyp ∃obs ∈ OBS such that
ti ∧ modeli ∧ obs � ⊥

and ∀modelj �= modeli , ti ∧ modelj ∧ obs � ⊥.

ti is a not discriminating otherwise.

In this definition, condition (i) expresses that there exists an observable system
response for each hypothesis under the test input. It also implies that test inputs are
consistent with all hypotheses, i.e., we are able to apply the stimulus, because it is
causally independent of the hypotheses. Regarding the model, this corresponds to the
requirement that it captures the behavior under each tuple in the Cartesian product
of the domains of exogenous variables, as discussed in Section 10.3. Condition (ii)
formulates the requirement that the resulting observation guarantees that at most one
hypothesis will not be refuted, while (ii�) states that each hypothesis may generate an
observation that refutes all others.

Usually, one stimulus is not enough to perform the discrimination task which mo-
tivates the following definition.



440 10. Model-based Problem Solving

Definition 10.17 (Discriminating test input set). {tik} = TI� ⊂ TI is called a discrim-
inating test input set for Hyp = {modeli}

if ∀modeli ,modelj with modeli �= modelj
∃tik ∈ TI�

such that tik is a (definitely or possibly) discriminating test input
for {modeli ,modelj }.
It is called definitely discriminating if all t ik have this property, and possibly dis-

criminating otherwise. It is called minimal if it has no proper subset TI�� ⊂ TI� which
is discriminating.

This defines what we would like to obtain. Actually computing solutions faces a
different dimension of complexity compared to diagnosis. In diagnosis, one obser-
vation of the system behavior in one situation (or a sequence of such situations) is
given and needs to be checked for consistency with various models. For test genera-
tion, the space of all situations and observations has to be searched in order to find
some that are inconsistent with at least one of the models. Intuitively, one would like
to identify the differences in the space of all possible behaviors under two or more
models. In contrast to consistency-based diagnostic reasoning which happens at the
conceptual level (e.g., component behavior modes in component-oriented diagnosis),
test generation has to analyze the behavior model itself, unless we apply an algorithm
that generates test inputs and then tests them for consistency with the models.

Test generation with relational models

In the following, we outline a fairly general approach that assumes that models are
represented as relations over a set of variables, but whose underlying ideas might be
adapted to other modeling formalisms. The approach covers models that are given
by equations and implemented by constraints. It is assumed that test inputs and ob-
servations can be described as value assignments to system variables. If the system
is modeled as an aggregate of components, the hypotheses to be tested are given by
(usually single) faults of components. If vCi is the vector of variables local to a com-
ponent Ci with a domain DOM(vCi), each possible behavior mode modeij of Ci has
an associated relation

Rij ⊆ DOM(vCi)

as a behavior model. A fault hypothesis in testing is then given by the join of the
relations that correspond to a particular assignment of modes,MA, to the components:

R(MA) = ��
modeij∈MA

Rij .

Once this relation is constructed, the component structure is no longer relevant. Hence,
we can choose a more general relational representation which covers testing of arbi-
trary hypotheses that can be stated in terms of a set of interrelated variables. This
includes tests that aim at identifying a state variable which is not directly observable,
testing applied to systems that are modeled in a process-oriented formalism, and the
design of experiments for checking different modeling hypotheses. Thus, the system
behavior is assumed to be characterized by a vector

vS = (v1, v2, v3, . . . , vn)



P. Struss 441

Figure 10.8: Discriminating inputs.

of system variables with domains

DOM(vS) = DOM(v1)× DOM(v2)× DOM(v3)× · · · × DOM(vn).

Then a hypothesis modeli ∈ Hyp is given as a relation

Ri ⊆ DOM(vS).

Observations are value assignments to a subvector of the variables, vobs, and also the
stimuli are described by assigning values to a vector vcause of susceptible (“causal” or
input) variables. We make the, not very restrictive, assumption that we always know
the applied stimulus which means the causal variables are a subvector of the observ-
able ones:

vcause ⊆ vobs ⊆ {vi}.

The basic idea underlying test generation [70] is then that the construction of test in-
puts is done by computing them from the observable differences of the relations that
represent the various hypotheses. Fig. 10.8 illustrates this. Firstly, for testing, only
the observables matter. Accordingly, Fig. 10.8 depicts only the projections, pobs(R1),
pobs(R2), of two relations,R1 andR2, (which are defined over a larger set of variables)
to the observable variables. The vertical axis represents the causal variables, whereas
the horizontal axis shows the other observable variables (which represent the observ-
able response of the system). To construct a (definitely) discriminating test input, we
have to avoid stimuli that can lead to the same observable system response for both
relations, i.e. stimuli that may lead to an observation in the intersection

(pobs(Ri) ∩ pobs(Rj ))

shaded in Fig. 10.8. These test inputs we find by projecting the intersection to the
causal variables:

pcause(pobs(Ri) ∩ pobs(Rj )).

The complement of this is the complete set of all test inputs that are guaranteed to
produce different system responses under the two hypotheses:

DTIij = DOM(vcause) \ pcause(pobs(Ri) ∩ pobs(Rj )).



442 10. Model-based Problem Solving

Lemma 10.2. If modeli = Ri , modelj = Rj , TI = DOM(vcause), and OBS =

DOM(vobs), then DTIij is the set of all definitely discriminating test inputs for
{modeli ,modelj }.

Please, note that we assume that the projections of Ri and Rj cover the entire
domain of the causal variables which corresponds to condition (i) in the definition of
the test input.

We only mention the fact, that, when applying tests in practice, one may have to
avoid certain stimuli because they carry the risk of damaging or destroying the system
or to create catastrophic effects as long as certain faults have not been ruled out. In
this case, the admissible test inputs are given by some set Radm ⊆ DOM(vcause), and
we obtain

DTIadm,ij = Radm \ pcause(pobs(Ri) ∩ pobs(Rj )).

In a similar way as DTIij , we can compute the set of test inputs that are guaranteed to
create indistinguishable observable responses under both hypotheses, i.e. they cannot
produce observations in the difference of the relations:

(pobs(Ri) \ pobs(Rj )) ∪ (pobs(Ri) \ pobs(Ri)).

Then the non-discriminating test inputs are

NTIij = DOM(vcause) \ pcause((pobs(Rj ) \ pobs(Ri))

∪ (pobs(Ri) \ pobs(Rj )))

All other test inputs may or may not lead to discrimination.

Lemma 10.3. The set of all possibly discriminating test inputs for a pair of hypotheses
{modeli ,modelj } is given by

PTIij = DOM(vcause) \ (NTIij ∪ DTIij ).

The 12 ∗ (n
2−n) sets DTIij for all pairs {modeli ,modelj }, i < j , provide the space

for constructing (minimal) discriminating test input sets.

Lemma 10.4. The (minimal) hitting sets of the set {DTIij } are the (minimal) definitely
discriminating test input sets.

Note that Lemma 10.4 has only the purpose to characterize all discriminating test
input sets. Since we need only one test input to perform the test, which can be com-
puted in linear time, we are not bothered by the complexity of computing all hitting
sets.

This way, the number of tests constructed can be less than 1
2 ∗ (n

2− n). If the tests
have a fixed cost associated, then the cheapest test set can be found among the minimal
sets. However, it is worth noting that the test input sets are the minimal ones that
guarantee the discrimination among the hypotheses in Hyp. In practice, only a subset
of the tests may have to be executed, because some of them refute more hypotheses



P. Struss 443

than guaranteed (because they are a possibly discriminating test for some other pair of
hypotheses) and render other tests unnecessary.

Note that the required operations on the relations are applied to the observable
variables only (including the causal variables). The projection of the entire relation
Ri to this space is a step of compiling the composite model to one that directly relates
the stimuli and the observable response. In some relevant applications, this space is
predefined and small. For instance, when testing of car subsystems exploits the on-
board actuators and sensors only, this may involve some 10–20 variables or so. The
entire workshop diagnosis task has more potential probing points, but still involves
only a small subset of the variables in the entire behavior relation Ri . Also note that
this compiled model can be re-used for diagnosis purposes. Such a compact model
may actually make the computation of the set {DTIij } feasible if, for instance, finite
relations representing qualitative models are used. [26] perform the computation on an
ordered multiple decision diagrams OMDD representation. However, the compilation
step can become expensive and practically infeasible. In cases where the complete
computation of {DTIij } is not possible, test generation can be done by search, and
Lemmata 10.2 and 10.4 describe the search space.

[49] assumes a model stated in first order logic, which leads to a characterization of
tests as prime implicants. In [80], sets of behaviors generated by qualitative simulation
of competing models are used to search for discriminating experiments.

Although the set of discriminating test inputs given by Lemma 10.4 is minimal,
the individual test inputs are not necessarily minimal in the sense that they are always
specified by the entire given set of observables, despite the fact that only a subset of
the stimuli and/or a subset of the other observables may suffice to produce the same
discrimination effect. This is important for applications, since both the production of
a stimulus and the performance of an observation are actions that determine the cost
of testing, and justifies spending computation time on the reduction of test inputs.
In [73], this is done by analysis and operations of the entire relations DTIij . Tests
as prime implicants in the work of [49] already include this minimization step, but
finding them is also exponential. But, again, under economic considerations, spending
even days of computation time pays off, if it saves only seconds for an individual
test that is carried out many times or if it allows workshop mechanics to avoid some
expensive experiments in diagnosis.

If hypotheses are given as models of mode assignments, the set of definitely dis-
criminating test inputs as defined above may be empty for two models, although
discrimination may be possible through several tests. This may occur when there are
internal states that cannot be observed or unambiguously inferred. As stated above,
the approach can be used for state identification, as well, and the solution to the prob-
lem is to make hypotheses about the (relevant) states explicit as a set Hypstate and
include their determination in the testing. Since the new set of hypotheses becomes
the Cartesian product

Hyp� = Hyp × Hypstate

this step increases the complexity of the task like the consideration of multiple faults
does. Obviously, the solution is based on an assumption of persistence of states during
testing.



444 10. Model-based Problem Solving

Intrusive testing and probing

The solutions outlined above ignore or, a least, do not explicitly treat, an important
feature of the real task in a practical context: unless we are using only pre-established
sensors that are reflected in the system model, performing a test involves often much
more than manipulating the input and/or state of the systems and some passive obser-
vation of its response. It may, temporarily or permanently, modify the structure of the
system and, hence, the model. Even simply opening an electrical circuit and attaching
a measurement device creates a new circuit. Other tests (e.g., in the medical domain)
may even modify the system structure in an irreversible way. Hence, we do not only
have to consider preparatory actions like removing a cover or lifting a vehicle, but
modifications that affect the behavior of the system and, hence, have to be reflected by
a change in the structure of its model. We will return to this issue in a broader context
in Section 10.6.

10.5.2 Entropy-based Test Selection

Achieving optimality with respect to the cost during repeated use of a set of tests also
requires to take into account the likelihood of different model hypotheses. This can
be reflected in the sequence of tests or by dynamically choosing a new test based on
the result of the previous one. If we assume that each hypothesis modeli ∈ Hyp has a
probability p(modeli ), then

H = −
�

modeli∈HYP

�
p(modeli ) · log

�
p(modeli )

��

is the entropy, a measure for the uncertainty in the information at this stage. In our
context, it can be understood as an estimation of the number of tests to be performed
in order to identify the true model. In the component-oriented case, the initial proba-
bilities could be computed as the product of the a priori probabilities of the respective
modes (under the condition that they are independent). When choosing the next test
input, ti ∈ TI, we would like to maximize the expected information gain

H −He(ti),

where the entropy after applying ti has to be estimated over all observations that can
possibly result from ti under the different hypotheses:

He(ti) = −
�

obs∈OBS(ti)

�

p(obs) ·
�

modeli∈HYP

�
p(modeli | obs, ti)

· log
�
p(modeli | obs, ti)

��
�

.

If a hypothesis modeli is specified by a relation Ri , then

OBS(ti) =
�

i

pobs(ti �� Ri).

Finally, we include the possibility that the observation after a applying a test input
under a hypothesis is not unique, but, instead, there is a probability distribution:

p(obs | modeli , ti).



P. Struss 445

After applying Bayes’ rule and some transformations [70], we derive the following

Probabilistic test selection strategy

In order to discriminate among hypotheses modeli ∈ Hyp, choose a test input ti and a
vector of observable variables vobs, such that

−
�

obs∈OBS(ti)

�
p(obs | ti) · log

�
p(obs | ti)

��

+
�

modeli∈HYP

�

p(modeli ) ·
�

obs∈OBS(ti)

�
p(obs | modeli , ti)

· log
�
p(obs | modeli , ti)

��
�

is maximal, where obs ∈ DOM(vobs) and the probabilities of observations are deter-
mined from hypothesis-specific distributions:

p(obs | ti) =
�

modeli∈HYP

�
p(obs | modeli , ti) · p(modeli )

�
.

There is an intuitive interpretation of the criterion used in the strategy: the first term
is the entropy of the observations given the test input, which is maximal if they are
equally distributed. The second term will be minimal if each model predicts unique
values. Together, this meets our intuition that says a test is most informative if it leads
to distinct values for the various hypotheses.

10.5.3 Probe Selection

The above strategy allows varying both, the input t i and the observable variables vobs.
On the one hand, this includes the situation where the set of observables is fixed (e.g.,
by the existing on-board sensors of a space craft). On the other hand, applying stimuli
to the system in order to gain diagnostically relevant information may not always be
possible (e.g., in plants under continuous operation or in natural systems), but infor-
mation may be obtained by measuring additional variables in the given situation. This
task which appears as probe selection, measurement proposal, and sensor placement
can be handled as a specialization of the above strategy, where the stimulus is fixed
and an informative set of observable variables has to be determined.

It can be seen as a generalization of the probe selection strategy inGDE [20], which
determines the best individual variable vobs to be measured, based on the assumption
that each hypothesis either implies a unique prediction of a value obsi ∈ DOM(vobs)

(defining the subsets HYPi) or no prediction at all (the subset HYPu), which is rea-
sonable for the implementation based on value propagation and dependency record-
ing. Furthermore, Kleer and Williams [20] use an equal distribution of values for
the hypotheses in HYPu, and, hence, estimates the probability of a measurement
obsi ∈ DOM(vobs) for vobs as

p(obsi ) = p(HYPi )+
1

m
· p(HYPu) where m =

�
�DOM(vobs)

�
�.



446 10. Model-based Problem Solving

This transforms the criterion in the strategy to the expression

�

obsi∈DOM(vobs)

�
p(obsi ) log

�
p(obsi )

��
+ p(Hu) · logm

which should be minimized to obtain the best next measurement. One should note
that even if no fault models are used, fault hypotheses do predict values based on the
models of the non-faulty components. If, as in GDE, an ATMS is used for recording
the dependency of predicted values on mode assignments this delivers the basis for
determining the sets HYPi and only the entropy computation has to be realized.

While probing helps, if the initial observations are not sufficiently discriminating,
the probe selection strategy can also be beneficial in the opposite case, namely when
there is an overwhelming amount of observations. [2] exploits it as a filter to extract
relevant information from a message burst caused by a disturbance in a power distrib-
ution network.

10.5.4 Diagnosability Analysis

The question whether and how faults can be detected or discriminated from each other
is relevant already during the design phase. If design for diagnosability and, in par-
ticular, placement of sensors for diagnostic purposes is a concern, variants of the
techniques described above can be applied. Also failure-modes-and-effects analysis
(FMEA) includes an analysis of the detectability of a fault. In this kind of analysis,
the consideration is usually not on actively influencing the system. Rather, we ex-
pect discriminability analysis to answer the question “For a particular design and
a chosen set of sensors, determine whether and under which circumstances the con-
sidered (classes of) faults considered can be distinguished from each other (based on
the sensor readings)”. Fault detectability can be seen as a special case, namely the
discrimination of faulty behaviors from the OK behavior.

Discriminability may depend on certain external conditions and internal states of
the system. For instance, a certain fault of a particular sensor may only show up in a
special temperature range, and a problem in the gear box may only affect driving in
2nd gear. If we replace the test inputs in the above definitions and algorithms by the set
of such possible conditions, the techniques for test generation can be re-used. In [26],
this is done using the relational behavior presentation. Detectability analysis has also
been treated for discrete-event models, by analyzing whether a fault transition results
in a visible trace different from OK behavior (within a certain number of transitions)
(see [65, 77]).

10.6 Remedy Proposal

So far, all the tasks considered were focused on obtaining and using information in
order to assess the behavior mode or state of systems, especially of systems whose
behavior deviates from the normal and intended one. However, this is never a goal in
itself, but only interesting as an input to some decision and action that requires this
information. Diagnosis is only relevant if it supports a decision (whether and) how to
re-establish the functionality of the misbehaving system, at least to a possible degree.



P. Struss 447

Actually, this purpose, which varies according to the type of system and the practi-
cal context of the task, ought to influence the nature of the expected diagnostic result
and also the diagnostic process itself. For instance, on-board diagnostics for a vehicle
subsystem should aim at the discrimination between classes of faults that, due to their
nature and criticality, require different immediate recovery and safety actions, whereas
off-board diagnosis of the same subsystem is focusing on discrimination between dif-
ferent suspect components in order to find the ones that need to be replaced. Usually,
there is no need for continued discrimination if this does not influence the choice of
the remedial action. Although this issue is both obvious and fundamental to diagnosis,
it has been mainly ignored in theoretical work, and there are (too) few contributions
to treating this means-end relationship in a general and systematic way [58].

In fact, in the context of real diagnosis work processes, the interdependency often
becomes even tighter, bidirectional and more complex, because the respective activ-
ities become intermingled: (partial) repair actions may be carried out to support the
overall diagnosis process. As pointed out earlier, the focus on fault localization in early
work on diagnosis can be explained by an (implicit) focus on replacement of com-
ponents as the remedial action. However, component replacement is but one special
instance of actions for moving a system back to a healthy state and, in fact, impossible
in some applications (e.g., space craft outside an orbit).

The diagnostic and testing theories and systems presented above are attempts to
automate reasoning tasks, namely to infer diagnoses from observations and to pro-
pose informative observations based on the previous results. However, in particular
in an industrial environment, in general, it is not these reasoning activities that are
expensive, but efforts spent on acting, such as de-assembling a device, installing mea-
surement equipment, and repairing the device. Compared to this, the time and cost
spent on thinking is often negligible, and the result of this thinking matters only if it
contributes to optimizing the overall workflow. The chance for diagnostic solutions to
be really employed in practice is heavily reduced if they are not designed and devel-
oped under this perspective. It should be noted, though, that the above considerations
apply only in a restricted way to on-board diagnostics, because they do not trigger
directly expensive human activities.

These considerations motivate work aiming at model-based generation of propos-
als for remedies, at an integrated perspective on diagnosis, testing, and applying reme-
dies, and at the integration of planning with model-based problem solving. Remedies
can involve a whole range of different actions that need to be reflected in model-based
systems in different:

• replacement of components that are suspect of failing usually leaves the struc-
ture of the device (and, hence, of the model) unchanged and simply changes
the behavior mode (if successful); however, sometimes, a component may be
replaced by one with different parameters or of a different type,

• reconfiguration exploits the structural redundancy of a device, which might
achieve the specified purpose in different ways and even under fault conditions.
Aircraft and space craft are equipped with redundant subsystems for critical
functions, and power networks are huge networks of switches that enable the
generation of different topologies with different paths between voltage sources
and sinks; since the components that modify the topology (switches, valves, etc.)



448 10. Model-based Problem Solving

are also components, the structure of the system (and of the model) remains
unchanged, only the states of these components are affected,

• modification of operating regions is based on a system property that allows
achieving certain goals with different settings of parameters and inputs; if one
out of three heating elements in a room is not working, you may compensate
for this by increasing the set point of the other two elements [79]; again, the
structure of the device and the model remains the same,

• modification of control affects a special component, software; this step may
correspond to implementing the previous two remedies, but it may also mean
switching to a different control regime (e.g., from closed-loop to open-loop con-
trol in the case a sensor is suspect, or a control unit on a vehicle may replace
an implausible value of one wheel speed sensor by some approximation gained
from the other three sensors),

• structural modifications cover a wide range, from inserting new components
(e.g., an electrical heating element) and establishing new connections (e.g., to
bridge a series of electrical connectors, one of which is open, by a cable) to
introducing ozone in a water treatment plant in order to trigger a process of
oxidation of dissolved metals in the water; all this clearly results in a model that
might be quite different from the designed or previous one. As stated above, also
measurement actions may affect the structure of the system.

Some of these actions require continuing the analysis after their performance with a
new model. But even those that do not, raise the question how they affect the state
of the system, i.e., about the persistence of what has been observed or inferred be-
fore. What remains true after replacing a capacitor in a circuit? Some of the measured
values may, others may not, and redoing all measurements may be a waste of efforts.
(Immediately) after adding ozone to the water, the iron concentration is still the same,
but its derivative is modified due to the oxidation process. This can be seen as an
instance of problems connected to reasoning about actions (see, e.g., [45]), but the
specific context (and the existence of a model) can offer special solutions.

10.6.1 Integration of Diagnosis and Remedy Actions

The discussion above shows that, rather than considering diagnosis in isolation (as in
Section 10.4), we need to model a process that

• integrates actions of testing and therapy and the inference of diagnostic hypothe-
ses based on the results of such actions,

• may change the system model dynamically,

• is guided by the goal of re-establishing the original or some weakened function-
ality of the system.

Thus, we have a task similar to diagnosis across time in the sense that a history of
possible diagnoses has to be maintained and updated over time. The difference is that
transitions may be due to actions, that they may affect the system structure, and that



P. Struss 449

the intended function of the system has to be modeled and reasoned about. Producing
a complete representation of all possible transitions, e.g., in terms of a finite state
machine, appears feasible only if there are no significant structural changes included
in the remedy actions, for instance, if only state changes, reset, or replacement actions
are available.

[30] proposed a general formalization of such an integrated process for component-
oriented diagnosis and repair, which also takes into account that actions may fail.
Slightly modifying and simplifying their proposal (assuming actions are instantaneous
and cannot fail), we obtain an extension of our Definition 10.8 (Temporal diagnosis).
We introduce an action history

AH =
�
(ACT l , tl)

�
, tl ∈ Iω

and a goal history

GOALH =
�
(GOALm, Im)

�
, Im ∈ Iω,

which allows us to express both ultimate and intermediate goals. For instance, during
the reconfiguration of a power transportation network, one has to avoid overload of
certain lines, and may also have to make sure that certain critical consumers are never
temporarily cut off from power supply. For replacement and reconfiguration, actions
modify the modes and states of components, and in the latter case, change the system
topology within the limits determined by the redundancy in the original structure.
While this leaves

SD = LIB ∪ STRUCTURE

unmodified and stable as in component-oriented diagnosis, the structure may also be
subject to modification by remedial (and also measurement) actions. In this case, an
extended system description SD has to comprise constraints on admissible structures.

The task is then to find a sequence of actions that is consistent with or achieves
GOAL or a set thereof.

Definition 10.18 (Remedy). An action history AH is a consistency-based remedy for
SD,OBSH,GOALSH and a mode history,MH if

SD ∪ MH ∪ AH ∪ OBSH ∪ GOALSH � ⊥

and an abductive remedy if

SD ∪ MH ∪ AH ∪ OBSH � GOALSH.

It is called a consistency-based (abductive) remedy of mode histories, {MHi} if it is a
remedy for each MHi .

The second part of the definition reflects the fact that one may want a remedy that
is known to work even though there is no unique diagnosis.

Unless there is a pre-specified set of repair plans to choose from, a planner is
needed to generate such plans, and probabilities and cost have to be considered when
selecting some optimized plan. While [75] present a cost function for a process in-
cluding measurement and replacement, [30] propose an estimation of costs of plans
for their approach that also takes into account down time of the system, which is a
major issue in several applications (e.g., power transportation systems).



450 10. Model-based Problem Solving

10.6.2 Component-oriented Reconfiguration

The idea of consistency-based diagnosis can be extended in a natural way to address
the reconfiguration problem (see, e.g., [8]). In diagnosis, we are searching for a (mini-
mal) revision,MA, of the mode assignmentMAOK that is consistent with observations:

SD ∪ {MA} ∪ OBS � ⊥,

where MA \ MAOK is minimal.
In analogy, we can consider the reconfiguration problem as a search for a (mini-

mal) revision of the actual states of the reconfigurable components that is consistent
with the behavior specification of the system, GOALS. More precisely, we assume that
there exists a subset COMPSR ⊆ COMPS of components that enable the modification
of the system topology (i.e. the interaction paths among the components) through ma-
nipulation of their states. Typical examples of such components are electrical switches
(e.g., breakers in a power network) and valves (e.g., in the propulsion system of a
space craft). In addition, there may be other components that can be (de-)activated,
such as power generators, pumps, etc.

To support reconfiguration, the diagnosis step has to produce not only consistent
mode assignments, MA, but also information about the states of the reconfigurable
components.

Definition 10.19 (State assignment). Let COMPS �
R ⊆ COMPSR ⊆ COMPS be a

subset of the reconfigurable components. Then
�

Ci∈COMPS �
R

sij (Ci), where sij ∈ states(Ci)

is a state assignment. It is called complete if COMPS �
R = COMPSR .

A diagnosis,MA, and a consistent (actual) state assignment SAA, i.e.

SD ∪ {MA} ∪ {SAA} ∪ OBS � ⊥

require reconfiguration if they are inconsistent with GOALS:

SD ∪ {MA} ∪ {SAA} ∪ OBS ∪ GOALS � ⊥.

If a replacement, self-healing, or reset of the broken components is not possible (i.e.
MA is fixed), reconfiguration looks for a different state assignment that removes the
inconsistency. The attempt to capture this intuition in a rigorous way, is not as straight-
forward as it appears at a first glance. The reason for this lies in the fact that modifying
the state assignment will also modify the values of variables (actually, that is the pur-
pose) and render observed variables obsolete in the goal situation. Some observed
values will persist, and their information may be essential for the achievement of the
goal. For instance, modifying switch positions in the power network affects voltages
and current on the connected lines, but not the output of the generators in the network,
and the observation of the latter can be essential for determining an appropriate recon-
figuration; after all, you do not want to connect a consumer to an inactive generator.



P. Struss 451

The problem is an instance of the frame problem that occurs in reasoning about
action and time. A general solution would have to be based on inferences that imple-
ment the idea that “only those observations persist that are not forced to change by
the reconfiguration”. There may be domain-specific solutions that are based on an a-
priori classification of persistent and non-persistent types of observations, as indicated
for the power network example. They could also be ontology-specific, as discussed
in Section 10.6.3. The following definition assumes that the set of persistent observa-
tions, OBSP , can be determined in some way.

Definition 10.20 (Consistency-based reconfiguration). Let MA be a diagnosis of SD
and OBS, OBSP ⊂ OBS its persistent subset, and SAA be the actual state assignment
such that

SD ∪ MA ∪ SAA ∪ OBS � ⊥.

A state assignment SAG that is consistent with SD, MA, OBSP and GOALS,

SD ∪ MA ∪ SAG ∪ OBSP ∪ GOALS � ⊥

is called a (consistency-based) reconfiguration for MA.
It is called minimal with respect to SAA, if

SAG \ SAA

is minimal with respect to set inclusion.
Let {MAi} be a set of diagnoses, and for each i0, SAM,i0 the maximal entailed

(partial) state assignment:

SD ∪ {MAi0} ∪ OBS � SAM,i0 .

SAG is called a reconfiguration for {MAi}, if it is a reconfiguration for each MAi .
It is called minimal, if

SAG \
�

i

SAM,i

is minimal.

There is no guarantee that, for a given diagnosis MA, a reconfiguration actually
exists. But it does exist if and only if

SD ∪ {MA} ∪ GOALS � ⊥

(provided SD contains the domain axioms for the states).
As already stated earlier in a more general way, what is really wanted is a guaran-

tee that the reconfiguration achieves the goals,

SD ∪ {MAi} ∪ {SAG} � GOALS

rather than being merely consistent with them. With both definitions, we may en-
counter problems in case of insufficient observations, an incomplete predictor and
consistency check, and a weak model. The latter case may occur, for example, due to



452 10. Model-based Problem Solving

the lack of expressiveness regarding causality. For instance, in a relational behavior
model, without further constructs, the observation of voltage being present may not
be distinguishable from stating the goal that voltage be present. The local model of an
open power line or breaker does not restrict the voltage on either side and may, hence,
be consistent with the goal of a voltage request of a consumer, if the causal aspect is
not represented that there has to be a source connected to produce it.

Incomplete information

The second part (on sets of diagnoses) of Definition 10.18 reflects one important mo-
tivation for the integration of diagnosis and repair, namely to avoid spending more
efforts on the diagnosis step (i.e. the identification of modes and states) than neces-
sary to determine appropriate remedies. There may be competing possible diagnoses
and limited information about the actual states of components, but a reconfiguration
might exist that can be shown to achieve the (or some) functionality again. For in-
stance, the messages transmitted to the operator of a power network will often not
enable him to localize the shorted component unambiguously, but nevertheless allow
him to re-establish power supply by a topology that does not rely on any of the suspect
components and, actually, he has to, within a minute or so. Later, of course, before
sending off the repair staff, one better determines the fault location as accurately as
possible, which may require more detailed (numerical) data and analysis.

These considerations mainly apply in case obtaining more discriminative observa-
tions requires costly actions. In on-board diagnosis, the set of available observations
is usually fixed and basically comes for free. As pointed out earlier, it may be case,
though, that the amount of data is overwhelming (but highly redundant) and require
computation for selecting the most informative bulk of data. In this case, which oc-
curs, for instance, in the power network application, the techniques for probe selection
(Section 10.5.3) can be exploited as a filter (see [2]).

Minimality and cost

The definition of a minimal reconfiguration captures the idea that a maximal number
of reconfigurable components should maintain their actual states. There can be many
reasons why this may not suffice to reflect practical requirements appropriately. First
of all, to select the best reconfiguration, costs of (types of) reconfiguration actions have
to be considered which may differ (e.g., changing a switch position vs. turning on a
new generator). Also one might prefer reversible actions over irreversible ones (such
as firing a pyro valve). Under the assumption that the cost of reconfiguration grows
monotonically with the set of actions, the set of minimal reconfigurations contains the
cheapest one(s).

Secondly, our definition does not exclude the reconfiguration of components with
an unknown state which could be problematic in specific cases. Thirdly, usually broken
components are not candidates for reconfiguration, unless they can be reset, and one
may want to ignore them.

Computation

The analogy between consistency-based reconfiguration and diagnosis expressed by
Definition 10.20 suggests how solutions to the characterization and computation of di-
agnoses may carry over to reconfiguration. If, for a given (set of) mode assignment(s)



P. Struss 453

and observations, a state assignment is inconsistent with GOALS, in any reconfigu-
ration at least one of the assigned states has to be modified. For instance, the set of
open switches that together isolate a consumer from the generators produce an incon-
sistency with the goal of supplying this customer, and at least one of them must be
closed. Reconfigurations can be calculated from such (minimal) “state conflicts”.

The computation of consistent mode and state assignments could be done jointly.
However, the minimality (or preference) of assignments will only apply to modes,
since, usually, there is no distinction between states that is analogous to “OK vs.
faulty” for modes.

Since the effect of a proposed state change has to be checked for consistency ex-
plicitly (changing the position of a switch may connect one consumer, but disconnect
another one, which causes an inconsistency regarding another goal), the problem is
equivalent to fault identification. Search heuristics and (cost-based) preferences are
important, and the problem has triggered the generalization of the algorithm used in
SHERLOCK (see Section 10.4.1) to “conflict-directed A* search” [86].

Reconfiguration planning

What we have defined as a reconfiguration, is, stated more precisely, the goal state of
the reconfiguration. In most cases, achieving this goal is not a straightforward task,
such as simply changing switch positions in an arbitrary order. The individual state
changes may require a sequence of low level actions. Often, there are constraints on
the order of the reconfiguration actions (e.g., first activate a generator, then change the
topology). Also, (temporary) state changes that are not directly implied by the goal re-
configuration may be required. This may result from intermediate goals, safety criteria
and restrictions. For instance, reconfiguration of a power network has to avoid states
that cause an overload to individual lines. It can be the case that a perfect goal state
cannot be achieved by a plan that respects all intermediate restrictions. As a result,
planning is needed to turn a computed reconfiguration into a sequence of executable
actions [3, 44].

10.6.3 Process-oriented Therapy Proposal

In contrast to component-oriented reconfiguration, which generates remedies exploit-
ing the given system structure, a process-oriented model supports a more general class
of therapies, which may include structural modifications of the system (model) [41,
72].

An appropriate treatment of the problem of an increased concentration of iron in
drinking water is to add some oxidizer, such as ozone or chlorine, in the plant. This
corresponds to an extension of the model: an object (substance) is added, triggering an
oxidation process, which in turn produces a (potentially) new structural element, iron
oxide, etc. Again, the search aims at a model that is consistent with therapy goals. In
contrast to diagnosis (situation assessment), the introducibles for the possible model
revisions are not origins of disturbances, but due to human intervention. The library
has to contain interventions. They can be modeled as processes with conditions that
simply correspond to the decision to perform the respective intervention. These “action
triggers” can syntactically be introduced as objects and are the introducibles for the
therapy search. The task of finding a therapy for a given situation assessment is then



454 10. Model-based Problem Solving

formalized as a search for a (minimal) set of “action triggers” that modify the model
such that it becomes consistent with (or entails) the therapy goals, GOALST . Again,
the question arises which part of the information about the current situation persists
and which one becomes obsolete due to the intervention. Process-oriented modeling
suggests a solution in which the stimulation of additional processes can only cause
continuous changes of quantities, i.e., the absolute values of quantities persists (and
so do the existing objects), but their derivatives may change. In the water treatment
scenario, the oxidizing process does not cause a discontinuous jump of the iron con-
centration below the threshold, but turns its derivative negative. In fact, this appears
to be a natural formulation of therapy goals in this context: if a quantity has an unde-
sired deviation, a goal is forcing its derivative to an opposite sign. For the assumptions
ASSM� in a situation assessment, their persistent part ASSM�

P needs to be determined.

Definition 10.21 (Process-oriented therapy). Let

SITP = (STRUCTURE,QUANTP ,ASSM�
P ) ∪ OBS

be the persistent part of a situation assessment and the observations.
A set of action triggers DEC is called a consistency-based therapy for SITP and a

set of therapy goals GOALST , if it is consistent with SITP and GOALST :

DEC ∪ SITP ∪ LIB ∪ GOALST � ⊥.

DEC is called a minimal therapy, if it is minimal with respect to set inclusion among
the set of therapies.

Specifying the therapy goals may not be as straightforward as it appears. On the
one hand, there are therapy goals related to the violated ones in the current situation
(“reduce the concentration of dissolved iron”). On the other hand, a therapy should
not sacrifice other goals, which are maintained in the current situation (for instance,
achieving a reduction of the iron concentration by stopping the pumps that transport
water into the plant is definitely in conflict with the maintenance of a certain amount
of supply to the city). Secondly, it may be impossible to achieve all therapy goals in
a single step, and, hence, one has to find a therapy that achieves a subset of them, a
maximal one, the most critical ones, etc. In this case, a trade-off needs to be found
between minimizing DEC and optimizing the set of satisfied goals.

Note that decisions need to specify a location for the respective intervention. For
instance, one needs to distinguish the (probably preferred) decision of adding an oxi-
dizer in the tank from the decision to do so in the reservoir. This can be achieved by
exploiting the spatial relations needed for located objects in general.

Finally, it has to be pointed out that the solution outlined here takes a static per-
spective on therapy (analogously to situation assessment) and does not address the task
of planning a sequence of interventions needed to ultimately achieve a set of goals.

10.7 Other Tasks

10.7.1 Configuration and Design

In the previous sections, we mainly looked at tasks that are concerned with some faulty
or unwanted behavior of a system. As we stated before, this reflects a major focus of



P. Struss 455

the field and also the fact that the existing solutions are the most advanced ones. At
a first glance, it may sound counterintuitive that handling the many ways in which
systems might fail should be easier to solve than, for instance, a design task, in which
commonly only the OK behavior is regarded. After all, in Section 10.2, we pointed out
the general common denominator of diagnosis and design: searching for a model that
is consistent with the observations or the goal specification, respectively. It is useful
to analyze the preconditions that make diagnosis manageable, in order to understand
what can make design hard in general or feasible in special cases. The main reasons
are probably the following: In component-oriented diagnosis

1. the structure of the system is usually fixed. The search space defined by the
considered fault modes of components and finite, although potentially huge.
(If the structure is subject to variation, e.g., due to unforeseen component in-
teractions or in process-oriented diagnosis, the task becomes more difficult to
solve),

2. there exists a good initial hypothesis (namely the OK mode assignment), and
the proper diagnosis is only a few revision steps away, due to a plausible mini-
mality criterion,

3. observations can effectively reduce the search space.

In contrast, design in the most general sense includes finding an appropriate struc-
ture, which turns the search space infinite in principle. This might be overcome when
there exists a good initial design hypothesis not too far from an existing solution.
This could even exist in innovative design, for instance, provided by analogy to a
solution in some other domain (based on the correspondence of mechanical, electri-
cal, hydraulic laws) [82, 83]. However, most real design tasks in industry are more
routine and often provide restrictions that allow for the exploitation of the diagnos-
tic techniques. In many situations, the structure of a solution is given as the one of a
similar device or a basic structure plus a limited set of possible modifications (vari-
ant design). Or the structure is fixed, and the task is to refine it by specialization of
the component types and connections and/or choice of parameters (configuration and
parametric design). However, systems supporting such tasks are usually not based
on explicit behavior models of the available component types. Instead, the require-
ments for achieving a certain functionality are directly expressed as interdependencies
among component types, parameters of components, restrictions on viable structures,
etc. A typical example, the configuration of telephone switching systems, is described
in [28]. A configuration CONF can be understood as a specification of the structure
and parameters of a system,

CONF = STRUCTURE ∪ PARS

(in the same sense as for diagnosis) that respects all general constraints in the re-
spective configuration domain, the domain description DD, and is consistent with a
specification of the configuration goals, CONFGOALS [29].



456 10. Model-based Problem Solving

Definition 10.22 (Configuration). CONF is a configuration for a domain description,
DD, and configuration goals, CONFGOALS, if

DD ∪ CONF ∪ CONFGOALS � ⊥.

This suggests the analogy to diagnosis and the general design task, but emphasizes
also that DD may not fully specify the structure (contrary to SD in diagnosis), which
becomes part of the solution to be generated.

Diagnostic techniques may be of help to generating designs in identifying the de-
sign decisions underlying the inconsistency of some intermediate design result with
the GOALS (in analogy to conflicts in diagnosis). This may support the human de-
signer in identifying decisions that need to be revised in order to approach a solution.

An example is work on the debugging of hardware designs in [37], which uses
a VHDL (Very High Speed Integrated Circuit Hardware Description Language) to
describe the design GOALS to be checked against the simulation of a layer in this
hierarchical description.

10.7.2 Failure-Modes-and-Effects Analysis

A subtask in the design process that can be supported by model-based systems is
failure-model-and-effects analysis (FMEA). The core of this task, which is widespread
and standardized to some extent in military, aeronautics, and automotive industries, is
to determine the impact each possible component fault may have on the functionality
and then to assess the severity and detectability, which, together with the fault proba-
bility, determines its criticality and the demand for potential design changes.

Model-based support is feasible, since the design is given and usually, the analysis
considers only single faults (or double faults if a single fault can be masked). As
another input to the analysis, the user can specify the relevant functions or directly
the unwanted violations of the functions, the effects, EFFECTS, as well as possibly a
set of different scenarios to which the analysis should be applied.

Given a library with fault models, a fault F causes the effect, EFFECT , in a sce-
nario, SCEN, if

SD ∪ {MAF } ∪ SCEN � EFFECT,

and may cause it if

SD ∪ {MAF } ∪ SCEN ∪ EFFECT � ⊥

(see [55]).
Alternatively, the model-based system can compute the behavior for the OK case

and derive effects as any deviation of the fault model with respect to some functionally
relevant variable [59].

10.7.3 Debugging and Testing of Software

At a first glance, it seems to be straightforward to apply the (component-oriented)
diagnosis techniques to a special class of artifacts, namely software, and, thus, provide
model-based tools for the debugging of programs. However, a proper analysis of the
task reveals that there are substantial differences compared to diagnosis of physical



P. Struss 457

devices. While there are straightforward and justified ways to consider a program to
be structured into components (modules, functions, procedures, lines of code, . . .),
a number of assumptions underlying most consistency-based diagnosis theories and
techniques (as discussed in Section 10.4.1) are violated in principle:

• Component faults only: A wrong behavior of a program often cannot be
blamed to any of the existing “components”, but may be caused by some miss-
ing step or computation.

• No structural faults: This is violated because of the fact stated above, but pos-
sibly even for a more fundamental bug in the overall structuring of the program.

• Well-designed system: This does not hold for principled reasons: after all, de-
bugging of a program becomes necessary because it is not well-designed!

While the physical device is assumed to have worked properly before some compo-
nent(s) broke, the program has never performed correctly (and never will).

Stated systematically, software debugging is not a special case of diagnosis, but an
instance of the task of identifying flaws in a design. This implies, in particular, that
the behavior specification contradicts the assumption that all system components are
OK, instead of being implied by it. As a consequence, the intended behavior, GOALS,
has to be made explicit and checked against the results produced by the program:

MODEL ∪ GOALS � ⊥.

The usual ways for capturing GOALS are by an explicit specification (as an abstract
representation of the intended behavior of the program) or, in a more fragmentary way,
by a set of tests (which define an input to the system and the expected output or a clas-
sification of the actual output as correct or incorrect). Any inconsistencies detected can
then be exploited by consistency-based techniques as for fault localization in physical
systems, but under caveats that stem from the potentially violated preconditions of
these techniques. It is not obvious that fault localization in this style delivers useful
results in case structural bugs are present in the program.

Performing fault localization requires an appropriate representation of the struc-
ture of the program. While the “components” in this structure could be directly given
by the code (lines of code, functions, . . .), the interaction among these components
(the “connections”) have to be generated exploiting the syntax and semantics of the
respective programming language. Further structuring (e.g., additional entities in a
hierarchy) may be gained from the specification or by abstraction from the code.

Fault models, which enabled fault identification and often tighter fault localization
in case of physical devices, are hard to obtain for software and can hardly be expected
to be exhaustive, except at a very abstract level of modeling. While in the physical
world, the behavior of a faulty (elementary) component is often fairly constrained and
predictable, the space of possible bugs in a program is spanned by the creativity of
programmers and, hence, practically infinite.

Despite and within these limitations, research on model-based debugging aids has
produced encouraging results if only for small programs [43, 50, 51, 85], and also
work on fault-model-based software testing is carried out [27].



458 10. Model-based Problem Solving

A related task is debugging of knowledge bases. In [29], consistency-based tech-
niques are applied to localize faults in a knowledge base for a configuration system.
Here, the GOALS are represented as a set of (positive and negative) examples.

10.8 State and Challenges

The field of model-based systems started off by building systems that exploited rea-
soning from first principles instead of purely experiential knowledge. In contrast to
work on diagnosis in engineering, which tends to be very domain or even device-
specific, it aimed at generic solutions and focused for a while on developing a rigorous
theoretical foundation [62, 19, 69, 24]. Basically, the main part of this work was com-
pleted more than ten years ago and is still quite well represented in [39].

While some work at the purely theoretical level has been continued until today, also
considerable attempts were made to apply theory and technology to serious real-life
and industrial problems during the last ten years or so (see [42, 78, 53, 59, 68, 74, 66,
84]. Most of them resulted in feasibility studies and (often quite advanced) prototypes,
but few solutions could be commercialized and used in every-day practice so far. The
industrial potential of model-based systems technology has been recognized and is
considered plausible. It offers

• a systematic way to generate and adapt solutions based on model libraries;

• model libraries as an important corporate knowledge repository whose elements
can be exploited and re-used during the entire life-cycle of a product;

• a reduction of manual work and a guaranteed coverage of a model-based solu-
tion;

• the enablement of system autonomy through self-diagnosis and self-reconfigura-
tion.

The existing theory and technology of model-based systems now needs to improve
the basis for a transfer into industrial applications. Some of the important issues are

• distributed/cooperative diagnosis if local diagnostic capabilities exist and need
to be designed, interfaced and exploited (highly relevant, for instance, in the
automotive industries);

• diagnosis of structural faults if unanticipated interactions occur (e.g., bridge
faults in circuits);

• diagnosis of non-component-oriented systems (for instance, for applications
in process industries or environmental/ecological applications);

• scaling up algorithms to handle large systems, for instance, by precompilation
steps.

However, the most essential current challenges appear to be the following.



P. Struss 459

Creation of a theory, methodology, and powerful tools to build libraries of
(diagnostic) models

Model-building is a distinctive feature of the technology. All projects that solved a
problem relevant to industrial practice had to build component models. However, to
our knowledge, none of them developed a serious library of behavior models that
could be easily reused in another project. Only few attempts have been made to
develop a theory of building diagnostic models (e.g., [69, 67]). Especially, a well-
founded theory and methodology for developing reusable model libraries is needed.
For industrial applications, the creation of such libraries is crucial. If generating a
system model cannot be done easily based on a library, the model-based diagnostic
algorithms may be rendered useless, because encoding diagnostics by hand may be
cheaper.

What is the problem? Usually, the models used for successful projects have some
specificities of the diagnostic task, domain, or even device compiled into them. While
this is justified and can even be essential for obtaining an efficient solution, it pre-
vents the reuse of the models even in similar applications where some of the modeling
assumptions do not hold. Including the most general descriptions, which cover all
potentially relevant features of a component’s behavior in the library can lead to over-
loaded models and useless predictions in each single application. For instance, a model
of a pipe in the air intake of a vehicle engine may need to include the oxygen con-
centration, whereas a pipe model in the exhaust system has to propagate emissions.
The model of a pipe that supplies a control valve with pressure, however, should do
just this, rather than involving the oxygen and CO2 concentration. Especially the field
of qualitative modeling is challenged to produce solutions that are of help for effec-
tively and efficiently producing libraries of reusable model fragments and generating
tailored system models using their fragments for industrial practice. Such solutions
also have to include a methodology and tools for the distributed production and main-
tenance of such libraries.

Furthermore, the challenge includes the problem of incorporating numerical dis-
tinctions and models. On the one hand, many diagnostic tasks require distinctions
between different modes based on numerical thresholds. This enforces numerical dis-
tinctions in model fragments that are not determined locally, but by a specific context,
the necessary distinctions in other component models, the structure, the precision of
observations, to name a few important factors. The second reason is that numerical
models of systems and components often do exist in industrial practice that can and
must be exploited and placed in a well-defined relation to the more abstract diagnostic
models.

Involving numerical models and modeling environments in model-based systems
solutions is important because they reflect current engineering practice and education,
which leads to the second major prerequisite for a systematic exploitation of model-
based technology in industry.

Creation of models of the problem solving tasks as work processes that enable
the integration of model-based systems into current practice and tool chains

The tasks addressed by model-based systems are not novel. Diagnosis, FMEA, test-
ing, etc. are existing activities of human experts, mainly engineers, often carried out



460 10. Model-based Problem Solving

in teams or collaboration and supported by a variety of (software) tools, such as CAD
tools, workshop testers, FMEA-editors. A model-based system is no solution, if it is
not a solution to effectively supporting these work processes in real practice. Hardly
any product offered by model-based technologies can claim to aim at the complete
automation of some task. And even if it does, it depends on appropriate input, a model
library being the minimum, and it has to deliver results in a way that supports in-
teraction with its environment, a physical system, human agents, or an organization.
Offering real support requires, among other issues,

• that the user concepts and perspectives on the system and the task are properly
reflected in the model-based system,

• that the required input to the system can (easily) be made available in practice
and the results are of a kind and form that can be further processed by other tools
and/or people,

• that the system actually addresses the difficult or costly steps in the workflow.

The last issue is crucial to the application of a technology. The model-based prob-
lem solvers of today are mostly concerned with the formalization and automation of
reasoning tasks (such as diagnosis in the above sense, test generation, etc.), but these
tasks are sometimes not too difficult or cheap. However, the actions involved in find-
ing and removing faults essentially determine the costs (and downtime). An automated
system for workshop diagnosis will only pay off, if it helps to generate good plans for
the required activities, which reduce the costs.

What is required is a scientific analysis and formalization of the tasks and the
concepts and activities of human organizations to master them. The field now needs
to move forward from developing abstract problem solving algorithms to developing
models of work processes the algorithms and problem solvers have to be embedded
in and to studying the practical context of developing model-based solutions and, in
particular model libraries.

Acknowledgements

I would like to thank for various kinds of support, especially Gautam Biswas, Jo-
han de Kleer, Oskar Dressler, Michael Esser, Alessandro Fraracci, Gerhard Friedrich,
Michael Gelfond, Dominik Goby, Lukas Kuhn, Markus Stumptner, Christian Unger,
Brian Williams, and Franz Wotawa. Special thanks to the editors of this handbook for
their efforts and their patience.

Bibliography

[1] G. Biswas, M.O. Cordier, J. Lunze, M. Staroswiecki, and L. Trave-Massuyes.
IEEE SMC Transactions, Part B, 34, 2005 (Special Volume on Diagnosis of Com-
plex Systems: Bridging the Methodologies of the FDI and DX Communities).



P. Struss 461

[2] A. Beschta, O. Dressler, H. Freitag, M. Montag, and P. Struss. A model-based
approach to fault localization in power transmission networks. Intelligent Systems
Engineering, 2, 1993.

[3] M. Balduccini and M. Gelfond. Diagnostic reasoning with a-Prolog. Theory and
Practice of Logic Programming, 3, 2003.

[4] B. Bredeweg and P. Struss (guest eds.). Qualitative reasoning. AI Magazine, 2004.
[5] G. Brewka, I. Niemela, and M. Truszczynski. Nonmonotonic reasoning. In V.

Lifschitz, B. Porter, and F. van Harmelen, editors. Handbook of Knowledge Rep-
resentation. Elsevier, 2007.

[6] M. Chantler, S. Daus, T. Vikatos, and G. Coghill. The use of quantitative dynamic
models and dependency recording engines. In 7th International Workshop on
Principles of Diagnosis (DX-96), 1996.

[7] J.W. Collins. Process-based diagnosis: An approach to understanding novel fail-
ures. PhD thesis, Institute for the Learning Sciences, Northwestern University,
1993.

[8] J. Crow and J. Rushby. Model-based reconfiguration: Toward an integration with
diagnosis. In Proceedings of AAAI-91, 1991.

[9] L. Console and P. Torasso. A spectrum of logical definitions of model-based di-
agnosis. Computational Intelligence, 7(3), 1991. Also in [39].

[10] A. Darwiche. Compiling devices: A structure-based approach. In Principles of
Knowledge Representation and Reasoning (KR 98), 1998.

[11] R. Davis. Expert systems: Where are we? and where do we go from here? Artifi-
cial Intelligence, 3(2), 1982.

[12] R. Davis. Diagnostic reasoning based on structure and behavior. Artificial Intelli-
gence, 1984. Also in [39].

[13] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.
[14] J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28, 1986.
[15] D. Dvorak and B.J. Kuipers. Model-based monitoring of dynamic systems. In

International Joint Conference on Artificial Intelligence, 1989.
[16] J. de Kleer. Modeling when connections are the problem. In Twentieth Interna-

tional Joint Conference on Artificial Intelligence, 2007.
[17] J.D. de Kleer and J.S. Brown. A qualitative physics based on confluences. Artifi-

cial Intelligence, 24, 1984. Also in [81].
[18] J. de Kleer and J. Kurien. Fundamentals of model-based diagnosis. In Proceed-

ings of SafeProcess03, 2003.
[19] J. de Kleer, A. Mackworth, and R. Reiter. Characterizing diagnoses and systems.

Artificial Intelligence, 56, 1992.
[20] J.D. de Kleer and B.C. Williams. Diagnosing multiple faults. Artificial Intelli-

gence, 31(1), 1987. Also in [39].
[21] J. de Kleer and B.C. Williams. Compiling devices: Locality in a TMS. In B. Falt-

ings and P. Struss, editors. Recent Advances in Qualitative Physics. MIT Press,
1992.

[22] J. de Kleer and B.C. Williams. Diagnosis with behavioral modes. In Proceedings
of the 11th International Joint Conference on Artificial Intelligence, 1993. Also
in [39].

[23] O. Dressler. On-line diagnosis and monitoring of dynamic systems based on qual-
itative models and dependency-based diagnostic engines. In Proceedings of the
European Conference on Artificial Intelligence, 1996.



462 10. Model-based Problem Solving

[24] O. Dressler and P. Struss. Back to defaults: Characterizing and computing diag-
noses as coherent assumption sets. In Proceedings of the European Conference
on Artificial Intelligence (ECAI-92), 1992.

[25] O. Dressler and P. Struss. Model-based diagnosis with the default-based diagnos-
tic engine: Effective control strategies that work in practise. In 11th European
Conference on Artificial Intelligence, 1994.

[26] O. Dressler and P. Struss. A toolbox integrating model-based diagnosability
analysis and automated generation of diagnostics. In Proceedings of the 14th In-
ternational Workshop on Principles of Diagnosis, June 2003.

[27] M. Esser and P. Struss. Fault-model-based test generation for embedded software.
In International Joint Conference on Artificial Intelligence, 2007.

[28] G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and M. Stumpt-
ner. Configuring large systems using generative constraint satisfaction. Intelligent
Systems Archive, 13(4), 1998.

[29] A. Felfernig, G. Friedrich, D. Jannach, and M. Stumptner. Consistency-based
diagnosis of configuration knowledge bases. Artificial Intelligence, 152, 2004.

[30] G. Friedrich, G. Gottlob, and W. Nejdl. Formalizing the repair process. In Pro-
ceedings of the 10th European conference on Artificial intelligence, 1992.

[31] G. Friedrich, G. Gottlob, and W. Nejdl. Physical impossibility instead of fault
models. In [39], 1992.

[32] M. Fisher. Temporal representation and reasoning. In V. Lifschitz, B. Porter,
and F. van Harmelen, editors. Handbook of Knowledge Representation. Elsevier,
2007.

[33] G. Friedrich and F. Lackinger. Diagnosing temporal misbehavior. In IJCAI-91,
1991.

[34] K. Forbus. Qualitative process theory. Artificial Intelligence, 24, 1984. Also in
[81].

[35] K. Forbus. Qualitative reasoning. In Handbook of Knowledge Representation.
Elsevier, 2008.

[36] B. Faltings and P. Struss. Recent Advances in Qualitative Physics. MIT Press,
1992.

[37] G. Friedrich, M. Stumptner, and F. Wotawa. Model-based diagnosis of hardware
designs. Artificial Intelligence, 3, 1999.

[38] R. Greiner, B.A. Smith, and R.W. Wilkerson. A correction to the algorithm in
Reiters theory of diagnosis. Artificial Intelligence, 41, 1989.

[39] W. Hamscher, J. de Kleer, and L. Console, editors. Readings in Model-based Di-
agnosis: Diagnosis of Designed Artifacts Based on Descriptions of their Structure
and Function. Morgan Kaufmann, 1992.

[40] U. Heller. Process-oriented consistency-based diagnosis-theory, implementation
and applications. PhD thesis, Akademische V.-G., 2001.

[41] U. Heller and P. Struss. Consistency-based problem solving for environmental de-
cision support. Computer-Aided Civil and Infrastructure Engineering, 17, 2002.

[42] G. Karsai, G. Biswas, S. Narasimhan, T. Szemethy, G. Peceli, G. Simon, and T.
Kovacshazy. Towards fault-adaptive control of complex dynamic systems. In T.
Samad and G. Balas, editors. Software-Enabled Control: Information Technolo-
gies for Dynamical Systems. Wiley–IEEE Press, 2003.



P. Struss 463

[43] D. Koeb and F. Wotawa. Fundamentals of debugging using a resolution calculus.
In International Conference on Fundamental Approaches to Software Engineer-
ing (FASE), LNCS, vol. 3922. Springer, 2006.

[44] P. Kim, B. Williams, and M. Abramson. Executing reactive, model-based pro-
grams through graph-based temporal planning. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, 2001.

[45] F. Lin. Situation calculus. In V. Lifschitz, B. Porter, and F. van Harmelen, editors.
Handbook of Knowledge Representation. Elsevier, 2007.

[46] G. Lamperti and M. Zanella. Diagnosis of Active Systems—Principles and Tech-
niques. Kluwer Academic Publisher, 2003.

[47] P. Mosterman and G. Biswas. A comprehensive methodology for building hybrid
models of physical systems. Artificial Intelligence, 121, 2000.

[48] I. Mozetic. Hierarchical model-based diagnosis. Int. J. of Man-Machine Studies,
35, 1991.

[49] S. McIlraith and R. Reiter. On tests for hypothetical reasoning. In [39], 1992.
[50] W. Mayer and M. Stumptner. Extending diagnosis to debug programs with ex-

ception. In IEEE Automated Software Engineering Conference, 2003.
[51] W. Mayer and M. Stumptner. Abstract interpretation of programs for model-

based debugging. In International Joint Conference on Artificial Intelligence
(IJCAI), 2007.

[52] P. Nayak. Automated Modeling of Physical Systems. Springer, 1995.
[53] S. Narasimhan and G. Biswas. Model-based diagnosis of hybrid systems. IEEE

Trans. on Systems, Man, and Cybernetics, Part A, 37(3), 2007.
[54] Y. Pencole and M.-O. Cordier. A formal framework for the decentralised diagno-

sis of large scale discrete event systems and its application to telecommunication
networks. Artificial Intelligence, 164, 2005.

[55] C. Picardi, L. Console, F. Berger, J. Breeman, T. Kanakis, J. Moelands, S. Col-
las, E. Arbaretier, N. De Domenico, E. Girardelli, O. Dressler, P. Struss, and
B. Zilbermann. AUTAS: a tool for supporting FMECA generation in aeronautic
systems. In Proceeding of the 16th European Conference on Artificial Intelli-
gence, 2004.

[56] B. Pulido and C.A. Gonzalez. Possible conflicts: a compilation technique for
consistency-based diagnosis. IEEE Transactions on Systems, Man and Cyber-
netics, Part B, 34(5), 2004.

[57] D. Poole. Normality and faults in logic-based diagnosis. In 11th International
Joint Conference on Artificial Intelligence, 1989. Also in [39].

[58] G. Provan and D. Pool. The utility of consistency-based diagnostic techniques. In
Proc. Second International Conference on Principles of Knowledge Representa-
tion and Reasoning, 1991.

[59] C. Price. Autosteve: Automated electrical design analysis. In Proceedings ECAI-
2000, 2000.

[60] O. Raiman, J. de Kleer, V. Saraswat, and M. Shirley. Characterizing non-
intermittent faults. In Proceedings of AAAI-91, 1991. Also in [39].

[61] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13, 1980.
[62] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1),

1987. Also in [39].
[63] F. Rossi, P. van Beek, and T. Walsh. Constraint programming. In Handbook of

Knowledge Representation. Elsevier, 2008.



464 10. Model-based Problem Solving

[64] P. Struss and O. Dressler. Physical negation—integrating fault models into the
general diagnostic engine. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-89), 1989.

[65] M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event
system. IEEE Transactions on Automatic Control, 43(7), 1998.

[66] P. Struss and C. Price. Model-based systems in the automotive industry. AI Mag-
azine, 24, 2004.

[67] M. Sachenbacher and P. Struss. Task-dependent qualitative domain abstraction.
Artificial Intelligence, 162, 2005.

[68] M. Sachenbacher, P. Struss, and R. Weber. Advances in design and implemen-
tation of OBD functions for diesel injection systems based on a qualitative ap-
proach to diagnosis. In SAE 2000 World Congress, Detroit, USA, 2000.

[69] P. Struss. What’s in SD? Towards a theory of modeling for diagnosis. In [39],
1992.

[70] P. Struss. Testing for discrimination of diagnoses. In 5th International Workshop
on Principles of Diagnosis, 1994.

[71] P. Struss. Fundamentals of model-based diagnosis of dynamic systems. In 15th
International Joint Conference on Artificial Intelligence, 1997.

[72] P. Struss. Artificial intelligence methods for environmental decision support. In
e-Environment: Progress and Challenge, 2004.

[73] P. Struss. Automated test reduction. In 19th Int. Workshop on Qualitative Rea-
soning. 16th International Workshop on Principles of Diagnosis, 2005.

[74] P. Struss. A model-based methodology for the integration of diagnosis and fault
analysis during the entire life cycle. In Proceedings Volume from the 6th IFAC
Symposium on Fault Detection, Supervision and Safety of Technical Processes
(Safeprocess06), 2006.

[75] Y. Sun and D. Weld. A framework for model-based repair. In Proceedings of
AAAI-93, 1993.

[76] M. Tiller. Introduction to Physical Modeling with MODELICA. The Springer
International Series in Engineering and Computer Science, vol. 615. Springer,
2001.

[77] L. Trave-Massuyes, M.O. Cordier, and X. Pucel. Comparing diagnosability in
CS and DES. In Proceedings Volume from the 6th IFAC Symposium on Fault
Detection, Supervision and Safety of Technical Processes (Safeprocess06), 2006.

[78] L. Trave-Massuyes and R. Milne. TIGERTM—gas turbine condition monitoring
using qualitative model-based diagnosis. IEEE Expert, 12(3), 1997.

[79] Y. Umeda, T. Tomiyama, H. Yoshikawa, and Y. Shimomura. A design methodol-
ogy for self-maintenance machines. IEEE Expert: Intelligent Systems and their
Applications Archive, 9(3), 1994.

[80] I. Vatcheva, O. Bernhard, H. de Jong, and N.J.I. Mars. Experiment selection for
the discrimination of semi-quantitative models of dynamical systems. Artificial
Intelligence, 170, 2006.

[81] D. Weld and J. de Kleer. Readings in Qualitative Reasoning about Physical Sys-
tems. Morgan Kaufmann, 1990.

[82] B.Williams. Interaction-based invention: Designing novel devices from first prin-
ciples. In Proceedings of the National Conference on Artificial Intelligence, 1990.

[83] B.Williams. Interaction-based invention: Designing novel devices from first prin-
ciples. In [36], 1992.



P. Struss 465

[84] B. Williams and P. Nayak. A model-based approach to reactive self-configuring
systems. In Proceedings of AAAI-96, 1996.

[85] F. Wotawa. On the relationship between model-based debugging and program
slicing. Artificial Intelligence, 135, 2002.

[86] B. Williams and R. Ragno. Conflict-directed A* and its role in model-based em-
bedded systems. Journal of Discrete Applied Math., 2003.



This page intentionally left blank


