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Chapter 6

Nonmonotonic Reasoning

Gerhard Brewka, Ilkka Niemelä,
Mirosław Truszczyński

6.1 Introduction

Classical logic is monotonic in the following sense: whenever a sentenceA is a logical
consequence of a set of sentences T , then A is also a consequence of an arbitrary
superset of T . In other words, adding information never invalidates any conclusions.

Commonsense reasoning is different. We often draw plausible conclusions based
on the assumption that the world in which we function and about which we reason
is normal and as expected. This is far from being irrational. To the contrary, it is the
best we can do in situations in which we have only incomplete information. However,
as unexpected as it may be, it can happen that our normality assumptions turn out to
be wrong. New information can show that the situation actually is abnormal in some
respect. In this case we may have to revise our conclusions.

For example, let us assume that Professor Jones likes to have a good espresso after
lunch in a campus cafe. You need to talk to her about a grant proposal. It is about
1:00 pm and, under normal circumstances, Professor Jones sticks to her daily routine.
Thus, you draw a plausible conclusion that she is presently enjoying her favorite drink.
You decide to go to the cafe and meet her there. As you get near the student center,
where the cafe is located, you see people streaming out of the building. One of them
tells you about the fire alarm that just went off. The new piece of information inval-
idates the normality assumption and so the conclusion about the present location of
Professor Jones, too.

Such reasoning, where additional information may invalidate conclusions, is called
nonmonotonic. It has been a focus of extensive studies by the knowledge representa-
tion community since the early eighties of the last century. This interest was fueled
by several fundamental challenges facing knowledge representation such as modeling
and reasoning about rules with exceptions or defaults, and solving the frame prob-
lem.
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Rules with exceptions

Most rules we use in commonsense reasoning—like university professors teach, birds
fly, kids like ice-cream, Japanese cars are reliable—have exceptions. The rules de-
scribe what is normally the case, but they do not necessarily hold without exception.
This is obviously in contrast with universally quantified formulas in first order logic.
The sentence

∀x
�
prof (x) ⊃ teaches(x)

�

simply excludes the possibility of non-teaching university professors and thus cannot
be used to represent rules with exceptions. Of course, we can refine the sentence to

∀x
��
prof (x) ∧ ¬abnormal(x)

�
⊃ teaches(x)

�
.

However, to apply this rule, say to Professor Jones, we need to knowwhether Professor
Jones is exceptional (for instance, professors who are department Chairs do not teach).
Even if we assume that the unary predicate abnormal(.) can be defined precisely,
which is rarely the case in practice as the list of possible exceptions is hard—if not
impossible—to complete, we will most often lack information to derive that Professor
Jones is not exceptional. We want to apply the rule even if all we know about Dr. Jones
is that she is a professor at a university. If we later learn she is a department Chair—
well, then we have to retract our former conclusion about her teaching classes. Such
scenarios can only be handled with a nonmonotonic reasoning formalism.

The frame problem

To express effects of actions and reason about changes in the world they incur, one
has to indicate under what circumstances a proposition whose truth value may vary, a
fluent, holds. One of the most elegant formalisms to represent change in logic, situation
calculus [89, 88, 112], uses situations corresponding to sequences of actions to achieve
this. For instance, the fact that Fred is in the kitchen after walking there, starting in
initial situation S0, is represented as

holds
�
in(Fred,Kitchen), do

�
walk(Fred,Kitchen), S0

��
.

The predicate holds allows us to state that a fluent, here in(Fred,Kitchen), holds in
a particular situation. The expression walk(Fred,Kitchen) is an action, and the ex-
pression do(walk(Fred,Kitchen), S0) is the situation after Fred walked to the kitchen,
while in situation S0.

In situation calculus, effects of actions can easily be described. It is more problem-
atic, however, to describe what does not change when an event occurs. For instance,
the color of the kitchen, the position of chairs, and many other things remain unaf-
fected by Fred walking to the kitchen. The frame problem asks how to represent the
large amount of non-changes when reasoning about action.

One possibility is to use a persistence rule such as: what holds in a situation typi-
cally holds in the situation after an action was performed, unless it contradicts the
description of the effects of the action. This rule is obviously nonmonotonic. Just
adding such a persistence rule to an action theory is not nearly enough to solve prob-
lems arising in reasoning about action (see Chapters 16–19 in this volume). However,
it is an important component of a solution, and so the frame problem has provided a
major impetus to research of nonmonotonic reasoning.
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About this chapter

Handling rules with exceptions and representing the frame problem are by no means
the only applications that have been driving research in nonmonotonic reasoning. Be-
lief revision, abstract nonmonotonic inference relations, reasoning with conditionals,
semantics of logic programs with negation, and applications of nonmonotonic for-
malisms as database query languages and specification languages for search problems
all provided motivation and new directions for research in nonmonotonic reasoning.

One of the first papers explicitly dealing with the issue of nonmonotonic reasoning
was a paper by Erik Sandewall [115] written in 1972 at a time when it was some-
times argued that logic is irrelevant for AI since it is not capable of representing
nonmonotonicity in the consequence relation. Sandewall argued that it is indeed possi-
ble, with a moderate modification of conventional (first order) logic, to accommodate
this requirement. The basic idea in the 1972 paper is to allow rules of the form

A and UnlessB ⇒ C

where, informally, C can be inferred if A was inferred and B cannot be inferred.
The 1972 paper discusses consequences of the proposed approach, and in particular
it identifies that it leads to the possibility of multiple extensions. At about the same
time Hewitt published his work on Planner [55], where he proposed using the thnot
operator for referring to failed inference.

In this chapter we give a short introduction to the field. Given its present scope, we
do not aim at a comprehensive survey. Instead, we will describe three of the major for-
malisms in more detail: default logic in Section 6.2, autoepistemic logic in Section 6.3,
and circumscription in Section 6.4. We will then discuss connections between these
formalisms. It is encouraging and esthetically satisfying that despite different origins
and motivations, one can find common themes.

We chose default logic, autoepistemic logic, and circumscription for the more
detailed presentation since they are prominent and typical representatives of two or-
thogonal approaches: fixed point logics and model preference logics. The former are
based on a fixed point operator that is used to generate—possibly multiple—sets of
acceptable beliefs (called extensions or expansions), taking into account certain con-
sistency conditions. Nonmonotonicity in these approaches is achieved since what is
consistent changes when new information is added. Model preference logics, on the
other hand, are concerned with nonmonotonic inference relations rather than forma-
tion of belief sets. They select some preferred or normal models out of the set of all
models and define nonmonotonic inference with respect to these preferred (normal)
models only. Here nonmonotonicity arises since adding new information changes the
set of preferred models: models that were not preferred before may become preferred
once we learn new facts.

Preference logics and their generalizations are important not only as a broad
framework for circumscription. They are also fundamental for studies of abstract non-
monotonic inference relations. In Section 6.5, we discuss this line of research in more
detail and cover such related topics as reasoning about conditionals, rational closure,
and system Z.

In the last section of the chapter, we discuss the relationship between the major ap-
proaches, and present an overview of some other research directions in nonmonotonic
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reasoning. By necessity we will be brief. For a more extensive treatment of non-
monotonic reasoning we refer the reader to the books (in order of appearance) [43,
11, 78, 85, 25, 2, 16, 17, 80].

6.2 Default Logic

Default reasoning is common. It appears when we apply the Closed-World Assump-
tion to derive negative information, when we use inference rules that admit exceptions
(rules that hold under the normality assumption), and when we use frame axioms
to reason about effects of actions. Ray Reiter, who provided one of the most robust
formalizations of default reasoning, argued that understanding default reasoning is of
foremost importance for knowledge representation and reasoning. According to Reiter
defaults are meta-rules of the form “in the absence of any information to the contrary,
assume . . . ” and default reasoning consists of applying them [111].

Usual inference rules sanction the derivation of a formula whenever some other
formulas are derived. In contrast, Reiter’s defaults require an additional consistency
condition to hold. For instance, a default rule normally, a university professor teaches
is represented in Reiter’s default notation as

prof (x) : teaches(x)

teaches(x)
.

It states that if prof (J ) is given or derived for a particular ground term J (which may
represent Prof. Jones, for instance) and teaches(J ) is consistent (there is no informa-
tion that ¬teaches(J ) holds), then teaches(J ) can be derived “by default”. The key
question of course is: consistent with what? Intuitively, teaches(J ) has to be consis-
tent with the whole set of formulas which one can “reasonably” accept based on the
available information. Reiter’s far-reaching contribution is that he made this intuition
formal. In his approach, depending on the choice of applied defaults, different sets
of formulas may be taken as providing context for deciding consistency. Reiter calls
these different sets extensions.

One can use extensions to define a skeptical inference relation (a formula is skep-
tically entailed by a default theory if it belongs to all of its extensions), or a credulous
inference relation (a formula is credulously entailed by a default theory if it belongs
to at least one of its extensions). In many applications such as diagnosis, planning
and, more generally in all the situations where defaults model constraints, the exten-
sions themselves are of interest as they represent different solutions to a problem (see
Chapter 7 on Answer Sets in this volume).

6.2.1 Basic Definitions and Properties

In default logic, what we are certain about is represented by means of sentences of
first-order logic (formulas without free variables). Defeasible inference rules which
specify patterns of reasoning that normally hold are represented as defaults. Formally,
a default d is an expression

(6.1)
A : B1, . . . , Bn

C
,
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whereA,Bi , and C are formulas in first order logic. In this notation,A is the prerequi-
site, B1, . . . , Bn are consistency conditions or justifications, and C is the consequent.
We denote A, {B1, . . . , Bn} and C by pre(d), just(d), and cons(d), respectively. To
save space, we will also write a default (6.1) as A : B1, . . . , Bn/C.

Definition 6.1. A default theory is a pair (D,W), where W is a set of sentences in
first order logic and D is a set of defaults.

A default is closed if its prerequisite, justifications, and consequent are sentences.
Otherwise, it is open. A default theory is closed if all its defaults are closed; other-
wise, it is open. A default theory determines its Herbrand universe. We will interpret
open defaults as schemata representing all of their ground instances. Therefore, open
default theories are just a shorthand notation for their closed counterparts and so, in
this chapter, the term default theory always stands for a closed default theory.1

Before we define extensions of a default theory (D,W) formally, let us discuss
properties we expect an extension E of (D,W) to satisfy.

1. Since W represents certain knowledge, we want W to be contained in E, that
is, we require thatW ⊆ E.

2. We want E to be deductively closed in the sense of classical logic, that is, we
want Cn(E) = E to hold, where |= is the classical logical consequence relation
and Cn(E) = {A | E |= A} denotes the set of logical consequences of a set of
formulas E.

3. We use defaults to expand our knowledge. Thus, E should be closed under
defaults in D: whenever the prerequisite of a default d ∈ D is in E and all its
justifications are consistent with E, the consequent of the default must be in E.

These three requirements do not yet specify the right concept of an extension. We
still need some condition of groundedness of extensions: each formula in an extension
needs sufficient reason to be included in the extension. Minimality with respect to the
requirements (1)–(3) does not do the job. Let W = ∅ and D = {� : a/b}. Then
Cn({¬a}) is a minimal set satisfying the three properties, but the theory (D,W) gives
no support for ¬a. IndeedW = ∅ and the only default in the theory cannot be used to
derive anything else but b.

The problem is how to capture the inference-rule interpretation we ascribe to de-
faults. It is not a simple matter to adjust this as defaults have premises of two different
types and this has to be taken into account. Reiter’s proposal rests on an observation
that given a set S of formulas to use when testing consistency of justifications, there
is a unique least theory, say Γ (S), containing W , closed under classical provability
and also (in a certain sense determined by S) under defaults. Reiter argued that for a
theory S to be grounded in (D,W), S must be precisely what (D,W) implies, given
that S is used for testing the consistency of justifications, and used this property to
define extensions [111].

1We note, however, that Reiter treats open defaults differently and uses a more complicated method to
define extensions for them. A theory of open default theories was developed by [73]. Some problems with
the existing treatments of open defaults are discussed in [5].
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Definition 6.2 (Default logic extension). Let (D,W) be a default theory. The opera-
tor Γ assigns to every set S of formulas the smallest set U of formulas such that:

1. W ⊆ U ,

2. Cn(U) = U ,

3. if A : B1, . . . , Bn/C ∈ D, U |= A, S �|=¬Bi , 1 � i � n, then C ∈ U .

A set E of formulas is an extension of (D,W) if and only if E = Γ (E), that is, E is a
fixed point of Γ .

One can show that such a least set U exists so the operator Γ is well defined.
It is also not difficult to see that extensions defined as fixed points of Γ satisfy the
requirements (1)–(3).

In addition, the way the operator Γ is defined also guarantees that extensions are
grounded in (D,W). Indeed, Γ (S) can be characterized as the set of all formulas that
can be derived from W by means of classical derivability and by using those defaults
whose justifications are each consistent with S as additional standard inference rules
(once every justification in a default d turns out to be consistent with S, the default
d starts to function as the inference rule pre(d)/ cons(d), other defaults are ignored).
This observation is behind a quasi-inductive characterization of extensions, also due
to Reiter [111].

Theorem 6.1. Let (D,W) be a default theory and S a set of formulas. Let

E0 = W, and for i � 0

Ei+1 = Cn(Ei) ∪

{C | A : B1, . . . , Bn/C ∈ D,Ei |= A, S �|=¬Bi, 1 � i � n}.

Then Γ (S) =
�∞
i=0Ei . Moreover, a set E of formulas is an extension of (D,W) if

and only if E =
�∞
i=0Ei .

The appearance of E in the definition of Ei+1 is what renders this alternative
definition of extensions non-constructive. It is, however, quite useful. Reiter [111]
used Theorem 6.1 to show that every extension of a default theory (D,W) can be
represented as the logical closure of W and the consequents of a subset of defaults
from D.

Let E be a set of formulas. A default d is generating for E if E |= pre(d) and, for
every B ∈ just(d), E �|=¬B. If D is a set of defaults, we write GD(D,E) for the set
of defaults in D that are generating for E.

Theorem 6.2 (Generating defaults). LetE be an extension of a default theory (D,W).
Then E = Cn(W ∪ {cons(d) | d ∈ GD(D,E)}).

This result is fundamental for algorithms to compute extensions. We will come
back to this issue later. For now, we will restrict ourselves to a few examples. Let

D1 =
�
prof (x) : teaches(x)/teaches(x)

�
,
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W1 =
�
prof (J )

�
.

We recall that we interpret an open default as the set of its ground instantiations. Since
there is only one constant (J ) in the theory, the corresponding closed default theory is

D�
1 =

�
prof (J ) : teaches(J )/teaches(J )

�
,

W1 =
�
prof (J )

�
.

By Theorem 6.2 an extension is the deductive closure of W and some of the avail-
able default consequents. Hence, there are only two candidates for an extension here,
namely S1 = Cn({prof (J )}) and S2 = Cn({prof (J ), teaches(J )}). We can now use
Theorem 6.1 to compute Γ (S1). Clearly, E0 = Cn(W1). Since teaches(J ) is consis-
tent with S1 andE0 |= prof (J ),E1 = Cn({prof (J ), teaches(J )}). Moreover, for every
i > 2, Ei = E1. Thus, Γ (S1) = Cn({prof (J ), teaches(J )}). Since teaches(J ) /∈ S1,
S1 �= Γ (S1) and so, S1 is not an extension of (D1,W1) (nor of (D

�
1,W1)). On the

other hand, the same argument shows that Γ (S2) = Cn({prof (J ), teaches(J )}). Thus,
S2 = Γ (S2), that is, S2 is an extension of (D1,W1) (and also (D

�
1,W1)).

Now let us consider a situation when Professor J is not a typical professor.

D2 = D1,

W2 =
�
prof (J ), chair(J ),∀x.(chair(x) ⊃ ¬teaches(x))

�
.

As before, there are two candidates for extensions, namely S1 = Cn(W2) and
S2 = Cn(W2 ∪ {teaches(J )}). This time S2 is inconsistent and one can compute,
using Theorem 6.1, that Γ (S2) = Cn(W2). Thus, S2 is not a fixed point of Γ and
so not an extension. On the other hand, Γ (S1) = Cn(W2) and so S1 is an extension
of (D2,W2). Consequently, this default theory supports the inference that Professor J
does not teach (as it should).

Finally, we will consider what happens if the universally quantified formula
fromW2 is replaced by a corresponding default rule:

D3 =
�
prof (x) : teaches(x)/teaches(x), chair(x) : ¬teaches(x)/¬teaches(x)

�
,

W3 =
�
prof (J ), chair(J )

�
.

The corresponding closed default theory has two defaults: prof (J ) : teaches(J )/
teaches(J ) and chair(J ) : ¬teaches(J )/¬teaches(J ). Thus, there are now four can-
didates for extensions:

Cn
�
{prof (J ), chair(J )}

�
,

Cn
�
{prof (J ), chair(J ), teaches(J )}

�
,

Cn
�
{prof (J ), chair(J ),¬teaches(J )}

�
,

Cn
�
{prof (J ), chair(J ), teaches(J ),¬teaches(J )}

�
.

In each case, one can compute the value of the operator Γ and check the condition for
an extension. In this example, the second and third theories happen to be extensions.
Since the theory offers no information whether Professor J is a typical professor or
a typical chair (she cannot be both as this would lead to a contradiction), we get two
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extensions. In one of them Professor J is a typical professor and so teaches, in the
other one she is a typical chair and so, does not teach.

Default theories can have an arbitrary number of extensions, including having no
extensions at all. We have seen examples of default theories with one and two exten-
sions above. A simple default theory without an extension is

�
{� : ¬a/a},∅

�
.

If a deductively closed set of formulas S does not contain a, then S is not an extension
since the default has not been applied even though ¬a is consistent with S. In other
words, Γ (S) will contain a and thus Γ (S) �= S. On the other hand, if S contains a,
then Γ (S) produces a set not containing a (more precisely: the set of all tautologies)
since the default is inapplicable with respect to S. Again S is not an extension.

Theorem 6.2 has some immediate consequences.

Corollary 6.3. Let (D,W) be a default theory.

1. If W is inconsistent, then (D,W) has a single extension, which consists of all
formulas in the language.

2. If W is consistent and every default in D has at least one justification, then
every extension of (D,W) is consistent.

We noted that the minimality with respect to the requirements (1)–(3) we discussed
prior to the formal definition of extensions does not guarantee groundedness. It turns
out that the type of groundedness satisfied by extensions ensures their minimality and,
consequently, implies that they form an antichain [111].

Theorem 6.4. Let (D,W) be a default theory. If E is an extension of (D,W) and
E� is a theory closed under classical consequence relation and defaults in D such
that E� ⊆ E, then E� = E. In particular, if E and E� are extensions of (D,W) and
E ⊆ E�, then E = E�.

6.2.2 Computational Properties

The key reasoning problems for default logic are deciding sceptical and credulous
inference and finding extensions. For first-order default logic these problems are not
even semi-decidable [111]. This is different from classical first order logic which is
semi-decidable. Hence, automated reasoning systems for first order default logic can-
not provide a similar level of completeness as classical theorem provers: a formula
can be a (nonmonotonic) consequence of a default theory but no algorithm is able to
establish this. This can be compared to first order theorem proving where it can be
guaranteed that for each valid formula a proof is eventually found.

Even in the propositional case extensions of a default theory are infinite sets of
formulas. In order to handle them computationally we need characterizations in terms
of formulas that appear in (D,W). We will now present two such characterizations
which play an important role in clarifying computational properties of default logic
and in developing algorithms for default reasoning.
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We will write Mon(D) for the set of standard inference rules obtained by dropping
justifications from defaults in D:

Mon(D) =

�
pre(d)

cons(d)

�
�
�
� d ∈ D

�

.

We define CnMon(D)(.) to be the consequence operator induced by the classical con-
sequence relation and the rules in Mon(D). That is, if W is a set of sentences,
CnMon(D)(W) is the closure of W with respect to classical logical consequence and
the rules Mon(D) (the least set of formulas containingW and closed under the classi-
cal consequence relation and the rules in Mon(D)).

The first characterization of extensions is based on the observation that extensions
can be described in terms of their generating defaults (Theorem 6.2). The details can
be found in [85, 114, 5]. We will only state the main result. The idea is to project the
requirements we impose on an extension to a set of its generating defaults. Thus, a set
of generating defaults should be grounded in W , which means that for every default
in this set the prerequisite should be derivable (in a certain specific sense) from W .
Second, the set of generating defaults should contain all defaults that apply.

Theorem 6.5 (Extensions in terms of generating defaults). A set E of formulas is an
extension of a default theory (D,W) if and only if there is a set D� ⊆ D such that
E = Cn(W ∪ {cons(d) | d ∈ D�}) and

1. for every d ∈ D�, pre(d) ∈ CnMon(D�)(W),

2. for all d ∈ D: d ∈ D� if and only if pre(d) ∈ Cn(W ∪ {cons(d) | d ∈ D�}) and
for all B ∈ just(d), ¬B /∈ Cn(W ∪ {cons(d) | d ∈ D�}).

The second characterization was introduced in [98] and is focused on justifications.
The idea is that default rules are inference rules guarded with consistency conditions
given by the justifications. Hence, it is the set of justifications that determines the
extension and the rest is just a monotonic derivation.

We denote by just(D) the set of all justifications in the set of defaults D. For a set
S of formulas we define

Mon(D, S) =
�
pre(d)/ cons(d) | d ∈ D, just(d) ⊆ S

�

as the set of monotonic inference rules enabled by S. A set of justifications is called full
with respect to the default theory if it consists of the justifications which are consistent
with the consequences of the monotonic inference rules enabled by the set.

Definition 6.3 (Full sets). For a default theory (D,W), a set of justifications
S ⊆ just(D) is (D,W)-full if the following condition holds: for every B ∈ just(D),
B ∈ S if and only if ¬B /∈ CnMon(D,S)(W).

For each full set there is a corresponding extension and for each extension a full
set that induces it.
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Theorem 6.6 (Extensions in terms of full sets). Let (D,W) a default theory.

1. If S ⊆ just(D) is (D,W)-full, then CnMon(D,S)(W) is an extension of (D,W).

2. If E is an extension of (D,W), then S = {B ∈ just(D) | ¬B /∈ E} is (D,W)-
full and E = CnMon(D,S)(W).

Example 6.1. Consider the default theory (D3,W3), where

D3 =
�
prof (J ) : teaches(J )/teaches(J ),

chair(J ) : ¬teaches(J )/¬teaches(J )
�
,

W3 =
�
prof (J ), chair(J )

�
.

The possible (D3,W3)-full sets are the four subsets of {teaches(J ),¬teaches(J )}. It is
easy to verify that from these only {teaches(J )} and {¬teaches(J )} satisfy the fullness
condition given in Definition 6.3. For instance, for S = {¬teaches(J )}

Mon(D3, S) =

�
chair(J )

¬teaches(J )

�

and CnMon(D3,S)(W3) = Cn({prof (J ), chair(J ),¬teaches(J )}). As required we have
¬¬teaches(J ) /∈ CnMon(D3,S)(W3) and ¬teaches(J ) ∈ CnMon(D3,S)(W3).

The finitary characterization of extensions in Theorems 6.5 and 6.6 reveal impor-
tant computational properties of default logic. A direct consequence is that proposi-
tional default reasoning is decidable and can be implemented in polynomial space.
This is because the characterizations are based on classical reasoning which is decid-
able in polynomial space in the propositional case.

In order to contrast default logic more sharply to classical logic we consider a (hy-
pothetical) setting where we have a highly efficient theorem prover for propositional
logic and, hence, are able to decide classical consequences of a set of formulasW and
inference rules R, that is CnR(W), efficiently. Theorems 6.5 and 6.6 suggest that even
in this setting constructing an extension of a propositional default theory involves a
non-trivial search problem of finding a set of generating defaults or a full set. How-
ever, the characterizations imply an upper bound on the computational complexity of
propositional default reasoning showing that it is on the second level of the polyno-
mial hierarchy.2 It turns out this is a tight upper bound as deciding extension existence
and credulous inference are actuallyΣP

2 -complete problems and sceptical inference is

ΠP
2 -complete [51, 127].
The completeness results imply that (propositional) default reasoning is strictly

harder than classical (propositional) reasoning unless the polynomial hierarchy col-
lapses which is regarded unlikely. This means that there are two orthogonal sources
of complexity in default reasoning. One source originates from classical logic on top
of which default logic is built. The other source is related to nonmonotonicity of de-
fault rules. These sources are independent of each other because even if we assume

2For an introduction to computational complexity theory and for basic definitions and results on poly-
nomial hierarchy, see, for example, [46, 103].
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that we are able to decide classical consequence in one computation step, decid-
ing a propositional default reasoning problem remains on the difficulty level of an
NP/co-NP-complete problem and no polynomial time algorithms are known even
under this assumption. Hence, it is highly unlikely that general default logic can be
implemented on top of a classical theorem prover with only a polynomial overhead.

In order to achieve tractable reasoning it is not enough to limit the syntactic form of
allowed formulas because this affects only one source of complexity but also the way
default rules interact needs to be restricted. This is nicely demonstrated by complexity
results on restricted subclasses of default theories [60, 126, 8, 100]. An interesting
question is to find suitable trade-offs between expressive power and computational
complexity. For example, while general default logic has higher computational com-
plexity, it enables very compact representation of knowledge which is exponentially
more succinct than when using classical logic [50].

A number of decision methods for general (propositional) default reasoning have
been developed. Methods based on the characterization of extensions in terms of gen-
erating defaults (Theorem 6.2) can be found, for example, in [85, 5, 114, 30], and in
terms of full sets (Theorem 6.6) in [98]. There are approaches where default reasoning
is reduced into another problem like a truth maintenance problem [59] or a constraint
satisfaction problem [8]. An interesting approach to provide proof theory for default
reasoning based on sequent calculus was proposed in [18, 19]. More details on au-
tomating default reasoning can be found also in [36].

Notice that for general default reasoning it seems infeasible to develop a fully goal-
directed procedure, that is, a procedure which would examine only those parts of the
default theory which are somehow syntactically relevant to a given query. This is be-
cause extensions are defined with a global condition on the whole theory requiring that
each applicable default rule should be applied. There are theories with no extensions
and in the worst case it is necessary to examine every default rule in order to guarantee
the existence of an extension. For achieving a goal-directed decision method, one can
consider a weaker notion of extensions or syntactically restricted subclasses of default
theories such as normal defaults (see below) [117, 118].

6.2.3 Normal Default Theories

By restricting the form of defaults one obtains special classes of default theories. One
of the most important of them is the class of normal default theories, where all defaults
are of the form

A : B

B
.

The distinguishing feature of normal default theories is that they are guaranteed to
have extensions and extensions are determined by enumerations of the set of defaults.
Let (D,W) be a normal default theory (as always, assumed to be closed) and let
D = {d1, d2, . . .}.

1. We define E0 = Cn(W);

2. Let us assume Ei has been defined. We select the first default d = A : B/B in
the enumeration such that Ei |= A, Ei �|=B and Ei �|=¬B and define Ei+1 =
Cn(Ei ∪ {B}). If no such default exists, we set Ei+1 = Ei .
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Theorem 6.7. Let (D,W) be a normal default theory. Then, for every enumeration
D = {d1, d2, . . .}, E =

�∞
i=1 Ei is an extension of (D,W) (where Ei are sets

constructed above). Furthermore, for every extension E of (D,W) there is an enu-
meration, which yields sets Ei such that E =

�∞
i=1Ei .

Theorem 6.7 not only establishes the existence of extensions of normal default
theories but it also allows us to derive several properties of extensions. We gather
them in the following theorem.

Theorem 6.8. Let (D,W) be a normal default theory. Then,

1. if W ∪ {cons(d) | d ∈ D} is consistent, then Cn(W ∪ {cons(d) | d ∈ D}) is a
unique extension of (D,W);

2. if E1 and E2 are extensions of (D,W) and E1 �= E2, then E1 ∪E2 is inconsis-
tent;

3. if E is an extension of (D,W), then for every set D� of normal defaults, the
normal default theory (D ∪D�,W) has an extension E� such that E ⊆ E�.

The last property is often called the semi-monotonicity of normal default logic. It
asserts that adding normal defaults to a normal default theory does not destroy existing
extensions but only possibly augments them.

A default rule of the form

� : B1, . . . , Bn

C

is called prerequisite-free. Default theories possessing only prerequisite-free normal
defaults are called supernormal. They are closely related to a formalism for non-
monotonic reasoning proposed by Poole [107] and so, are sometimes called Poole
defaults. We will not discuss Poole’s formalism here but only point out that the con-
nection is provided by the following property of supernormal default theories.

Theorem 6.9. Let (D,W) be a supernormal default theory such thatW is consistent.
Then, E is an extension of (D,W) if and only if E = Cn(W ∪ {cons(d) | d ∈ C}),
where C is a maximal subset of D such that W ∪ {cons(d) | d ∈ C} is consistent.
In particular, if E is an extension of (D,W), then for every d ∈ D, cons(d) ∈ E or
¬ cons(d) ∈ E.

Normal defaults are sufficient for many applications (cf. our discussion of CWA
below). However, to represent more complex default reasoning involving interactions
among defaults, non-normal defaults are necessary.

6.2.4 Closed-World Assumption and Normal Defaults

The Closed-World Assumption (or CWA, for short) was introduced by Reiter in [110]
in an effort to formalize ways databases handle negative information. It is a defeasible
inference rule based on the assumption that a setW of sentences designed to represent
an application domain determines all ground atomic facts that hold in it (closed-world



G. Brewka, I. Niemelä, M. Truszczyński 251

assumption). Taking this assumption literally, the CWA rule infers the negation of
every ground atom not implied byW . Formally, for a setW of sentences we define

CWA(W) = W ∪ {¬a | a is a ground atom andW �|= a}.

To illustrate the idea, we will consider a simple example. Let GA be the set of all
ground atoms in the language and letW ⊆ GA. It is easy to see that

CWA(W) = W ∪ {¬a | a ∈ GA \W }.

In other words, CWA derives the negation of every ground atom not in W . This is
precisely what happens when databases are queried. If a fact is not in the database
(for instance, there is no information about a direct flight from Chicago to Dallas at
5:00 pm on Delta), the database infers that this fact is false and responds correspond-
ingly (there is no direct flight from Chicago to Dallas at 5:00 pm on Delta).

We note that the database may contain errors (there may in fact be a flight from
Chicago to Dallas at 5:00 pm on Delta). Once the database is fixed (a new ground
atom is included that asserts the existence of the flight), the derivation sanctioned pre-
viously by the CWA rule, will not longer be made. It is a classic example of defeasible
reasoning!

In the example above, CWA worked precisely as it should, and resulted in a con-
sistent theory. In many cases, however, the CWA rule is too strong. It derives too many
facts and yields an inconsistent theory. For instance, if W = {a ∨ b}, where a, b are
two ground atoms, then

W �|= a and W �|= b.

Thus, CWA(W) = {a ∨ b,¬a,¬b} is inconsistent. The question whether CWA(W)

is consistent is an important one. We note a necessary and sufficient condition given
in [85].

Theorem 6.10. Let W be a set of sentences. Then CWA(W) is consistent if and only
ifW has a least Herbrand model.

IfW is a set of ground atoms (the case discussed above) or, more generally, a con-
sistent Horn theory, thenW has a least Herbrand model. Thus, we obtain the following
corollary due to Reiter [110].

Corollary 6.11. IfW is a consistent Horn theory, then CWA(W) is consistent.

The main result of this section shows that CWA can be expressed by means of su-
pernormal defaults under the semantics of extensions. For a ground atom a we define
a supernormal default

cwa(a) =
� : ¬a

¬a

and we set

DCWA =
�
cwa(a) | a ∈ GA

�
.

We have the following result [85].
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Theorem 6.12. LetW be a set of sentences.

1. If CWA(W) is consistent, then Cn(CWA(W)) is the unique extension of the de-
fault theory (DCWA,W).

2. If (DCWA,W) has a unique consistent extension, then CWA(W) is consistent
and Cn(CWA(W)) is this unique extension of (DCWA,W).

6.2.5 Variants of Default Logic

A number of modifications of Reiter’s default logic have been proposed in the lit-
erature which handle several examples differently. We present some of them briefly
here.

To guarantee existence of extensions, Lukaszewicz [77] has defined a default logic
based on a two-place fixed point operator. The first argument contains the believed for-
mulas, the second is used to keep track of justifications of applied defaults. A default is
only applied if its consequent does not contradict the justification of any other applied
default. Then, E is an extension if and only if there is a set SE such that (E, SE) is a
fixed point. Lukaszewicz showed that, in his logic, both existence of extensions and
semi-monotony are satisfied.

In [22], a cumulative version of default logic is presented. The basic elements of
this logic are so-called assertions of the form (p,Q), in which p is a formula, andQ
the set of consistency conditions needed to derive p. A default can only be applied in
an extension if its justifications are jointly consistent with the extension and with all
justifications of other applied defaults. The logic is called cumulative as the inference
relation it determines satisfies the property of Cumulativity [79], now more commonly
called Cautious Monotony (cf. Section 6.5).

Joint consistency is also enforced in variants of default logic called constrained
default logics, which have been proposed independently by [116] and [31] (see also
[32]). The major difference between cumulative default logic and these two variants
is that the latter work with standard formulas and construct an additional single set
containing all consistency conditions of applied defaults, whereas cumulative default
logic keeps track of this information in the assertions.

A number of researchers have investigated default theories with preferences among
the defaults, e.g., [85, 6, 23, 113, 26]. For a comparison of some of these approaches
the reader is referred to [119]. Finally, [23] contains an approach in which reasoning
not only with, but also about priorities is possible. In this approach, the preference in-
formation is represented in the logical language and can thus be derived and reasoned
upon dynamically. This makes it possible to describe conflict resolution strategies
declaratively and has interesting applications, for instance, in legal reasoning.

6.3 Autoepistemic Logic

In this section, we discuss autoepistemic logic, one of the most studied and influen-
tial nonmonotonic logics. It was proposed by Moore in [92, 93] in a reaction to an
earlier modal nonmonotonic logic of McDermott and Doyle [91]. Historically, au-
toepistemic logic played a major role in the development of nonmonotonic logics of
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belief. Moreover, intuitions underlying autoepistemic logic and studied in [47] moti-
vated the concept of a stable model of a logic program [49]3 as discussed in detail in
the next chapter of the Handbook.

6.3.1 Preliminaries, Intuitions and Basic Results

Autoepistemic logic was introduced to provide a formal account of a way in which
an ideally rational agent forms belief sets given some initial assumptions. It is a for-
malism in a modal language. In our discussion we assume implicitly a fixed set At of
propositional variables. We denote by LK the modal language generated from At by
means of boolean connectives and a (unary) modal operator K . The role of the modal
operator K is to mark formulas as “believed”. That is, intuitively, formulas KA stand
for “A is believed”. We refer to subsets of LK as modal theories. We call formulas in
LK that do not contain occurrences of K modal-free or propositional. We denote the
language consisting of all modal-free formulas by L.

Let us consider a situation in which we have a rule that Professor Jones, being a
university professor, normally teaches. To capture this rule in modal logic, we might
say that if we do not believe that Dr. Jones does not teach (that is, if it is possible
that she does), then Dr. Jones does teach. We might represent this rule by a modal
formula.4

(6.2)Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ .

Knowing only prof J (Dr. Jones is a professor) a rational agent should build a belief
set containing teachesJ . The problem is to define the semantics of autoepistemic logic
so that indeed it is so.

We see here a similarity with default logic, where the same rule is formalized by a
default

(6.3)prof (J ) : teaches(J )/teaches(J )

(cf. Section 6.2.1). In default logic, given W = {prof (J )}, the conclusion teaches(J )
is supported as ({prof (J ) : teaches(J )/teaches(J )},W) has exactly one extension and
it does contain teaches(J ).

The correspondence between the formula (6.2) and the default (6.3) is intuitive and
compelling. The key question is whether formally the autoepistemic logic interpreta-
tion of (6.2) is the same as the default logic interpretation of (6.3). We will return to
this question later.

Before we proceed to present the semantics of autoepistemic logic, we will make a
few comments on (classical) modal logics—formal systems of reasoning with modal
formulas. This is a rich area and any overview that would do it justice is beyond the

3We note however, that default logic also played a role in the development of the stable-model semantics
[13] and, in fact, the default-logic connection of stable models ultimately turned out to be more direct [82,
15, 14].

4To avoid problems with the treatment of quantifiers, we restrict our attention to the propositional case.
Consequently, we have to list “normality” rules explicitly for each object in the domain rather than use
schemata (formulas with variables) to represent concisely families of propositional rules, as it is possible
in default logic. The “normality” rule in our example concerns Professor Jones only. If there were more
professors in our domain, we would need rules of this type for each of them.
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scope of this chapter. For a good introduction, we refer to [28, 57]. Here we only
mention that many important modal logics are defined by a selection of modal axioms
such K, T, D, 4, 5, etc. For instance, the axioms K, T, 4 and 5 yield the well-known
modal logic S5. The consequence operator for a modal logic S , say CnS , is defined
syntactically in terms of the corresponding provability relation.5

For the reader familiar with Kripke models [28, 57], we note that the consequence
operator CnS can often be described in terms of a class of Kripke models, say C:
A ∈ CnS(E) if and only if for every Kripke model M ∈ C such that M |=K E,
M |=K A, where |=K stands for the relation of satisfiability of a formula or a set
of formulas in a Kripke model. For instance, the consequence operator in the modal
logic S5 is characterized by universal Kripke models. This characterization played a
fundamental role in the development of autoepistemic logic. To make our chapter self-
contained, rather than introducing Kripke models formally, we will use a different but
equivalent characterization of the consequence operator in S5 in terms of possible-
world structures, which we introduce formally later in the text.

After this brief digression we now come back to autoepistemic logic. What is an
ideally rational agent or, more precisely, which modal theories could be taken as belief
sets of such agents? Stalnaker [125] argued that to be a belief set of an ideally rational
agent a modal theory E ⊆ LK must satisfy three closure properties.

First, E must be closed under the propositional consequence operator. We will
denote this operator by Cn.6 Thus, the first property postulated by Stalnaker can be
stated concisely as follows:

(B1) Cn(E) ⊆ E.

We note that modal logics offer consequence operators which are stronger than the
operator Cn. One might argue that closure under one of these operators might be a
more appropriate for the condition (B1). We will return to this issue in a moment.

Next, Stalnaker postulated that theories modeling belief sets of ideally rational
agents must be closed under positive introspection: if an agent believes in A, then the
agent believes she believes A. Formally, we will require that a belief set E satisfies:

(B2) if A ∈ E, then KA ∈ E.

Finally, Stalnaker postulated that theories modeling belief sets of ideally rational
agents must also be closed under negative introspection: if an agent does not believe
A, then the agent believes she does not believe A. This property is formally captured
by the condition:

(B3) if A /∈ E, then ¬KA ∈ E.

Stalnaker’s postulates have become commonly accepted as the defining properties
of belief sets of an ideally rational agent. Thus, we refer to modal theories satisfying
conditions (B1)–(B3) simply as belief sets. The original term used by Stalnaker was a
stable theory.We choose a different notation since in nonmonotonic reasoning the term

5Proofs in a modal logic use as premises given assumptions (if any), instances of propositional tautolo-
gies in the language LK , and instances of modal axioms of the logic. As inference rules, they use modus
ponens and the necessitation rule, which allows one to conclude KA once A has been derived.

6When applying the propositional consequence operator to modal theories, as we do here, we treat
formulas KA as propositional variables.
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stable is now most commonly associated with a class of models of logic programs, and
there are fundamental differences between the two notions.

Belief sets have a rich theory [85]. We cite here only two results that we use later in
the chapter. The first result shows that in the context of the conditions (B2) and (B3)
the choice of the consequence operator for the condition (B1) becomes essentially
immaterial. Namely, it implies that no matter what consequence relation we choose
for (B1), as long as it contains the propositional consequence relation and is contained
in the consequence relation for S5, we obtain the same notion of a belief set.

Proposition 6.13. If E ⊆ LK is a belief set, then E is closed under the consequence
relation in the modal logic S5.

The second result shows that belief sets are determined by their modal-free formu-
las. This property leads to a representation result for belief sets.

Proposition 6.14. Let T ⊆ L be closed under propositional consequence. Then E =
CnS5(T ∪ {¬KA | A ∈ L \ T }) is a belief set and E ∩ L = T . Moreover, if E is
a belief set then T = E ∩ L is closed under propositional consequence and E =
CnS5(T ∪ {¬KA | A ∈ L \ T }).

Modal nonmonotonic logics are meant to provide formal means to study mecha-
nisms by which an agent forms belief sets starting with a set T of initial assumptions.
These belief sets must contain T but may also satisfy some additional properties.
A precise mapping assigning to a set of modal formulas a family of belief sets is
what determines a modal nonmonotonic logic.

An obvious possibility is to associate with a set T ⊆ LK all belief sets E such
that T ⊆ E. This choice, however, results in a formalism which is monotone. Namely,
if T ⊆ T �, then every belief set for T � is a belief set for T . Consequently, the set
of “safe” beliefs—beliefs that belong to every belief set associated with T—grows
monotonically as T gets larger. In fact, this set of safe beliefs based on T coincides
with the set of consequences of T in the logic S5. As we aim to capture nonmonotonic
reasoning, this choice is not of interest to us here.

Another possibility is to employ a minimization principle. Minimizing entire belief
sets is of little interest as belief sets are incomparable with respect to inclusion and so,
each of them is inclusion-minimal. Thus, this form of minimization does not eliminate
any of the belief sets containing T , and so, it is equivalent to the approach discussed
above.

A more interesting direction is to apply the minimization principle to modal-free
fragments of belief sets (cf. Proposition 6.14, which implies that there is a one-to-
one correspondence between belief sets and sets of modal-free formulas closed under
propositional consequence). The resulting logic is in fact nonmonotonic and it received
some attention [54].

The principle put forth by Moore when defining the autoepistemic logic can be
viewed as yet another form of minimization. The conditions (B1)–(B3) imply that
every belief set E containing T satisfies the inclusion

Cn
�
T ∪ {KA | A ∈ E} ∪ {¬KA | A /∈ E}

�
⊆ E.
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Belief sets, for which the inclusion is proper, contain beliefs that do not follow from
initial assumptions and from the results of “introspection” and so, are undesirable.
Hence, Moore [93] proposed to associate with T only those belief setsE, which satisfy
the equality:

(6.4)Cn
�
T ∪ {KA | A ∈ E} ∪ {¬KA | A /∈ E}

�
= E.

In fact, when a theory satisfies (6.4), we no longer need to assume that it is a belief
set—(6.4) implies that it is.

Proposition 6.15. For every T ⊆ LK , if E ⊆ LK satisfies (6.4), then E satisfies
(B1)–(B3), that is, it is a belief set.

Moore called belief sets defined by (6.4) stable expansions of T . We will refer to
them simply as expansions of T , dropping the term stable due to the same reason as
before. We formalize our discussion in the following definition.

Definition 6.4. Let T be a modal theory. A modal theory E is an expansion of T if E
satisfies the identity (6.4).

Belief sets have an elegant semantic characterization in terms of possible-world
structures. Let I be the set of all 2-valued interpretations (truth assignments) of At.
Possible-world structures are subsets of I. Intuitively, a possible-world structure col-
lects all interpretations that might be describing the actual world and leaves out those
that definitely do not.

A possible-world structure is essentially a Kripke model with a total accessibility
relation [28, 57]. The difference is that the universe of a Kripke model is required to
be nonempty, which guarantees that the theory of the model (the set of all formulas
true in the model) is consistent. Some modal theories consistent with respect to the
propositional consequence relation determine inconsistent sets of beliefs. Allowing
possible-world structures to be empty is a way to capture such situations and differen-
tiate them from those situations, in which a modal theory determines no belief sets at
all.

Possible-world structures interpret modal formulas, that is, assign to them truth
values.

Definition 6.5. Let Q ⊆ I be a possible-world structure and I ∈ I a two-valued
interpretation. We define the truth functionHQ,I inductively as follows:

1. HQ,I (p) = I (p), if p is an atom.

2. HQ,I (A1∧A2) = true ifHQ,I (A1) = true andHQ,I (A2) = true. Otherwise,
HQ,I (A1 ∧ A2) = false.

3. Other boolean connectives are treated similarly.

4. HQ,I (KA) = true, if for every interpretation J ∈ Q, HQ,J (A) = true. Oth-
erwise,HQ,I (KA) = false.
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It follows directly from the definition that for every formula A ∈ LK , the truth
value HQ,I (KA) does not depend on I . It is fully determined by the possible-world
structure Q and we will denote it by HQ(KA), dropping I from the notation. Since
Q determines the truth value of every modal atom, every modal formula A is either
believed (HQ(KA) = true) or not believed inQ (HQ(KA) = false). In other words,
the epistemic status of every modal formula is well defined in every possible-world
structure.

The theory of a possible-world structureQ is the set of all modal formulas that are
believed inQ. We denote it by Th(Q). Thus, formally,

Th(Q) =
�
A | HQ(KA) = true

�
.

We now present a characterization of belief sets in terms of possible-world struc-
tures, which we promised earlier.

Theorem 6.16. A set of modal formulas E ⊆ LK is a belief set if and only if there is
a possible-world structureQ ⊆ I such that E = Th(Q).

Expansions of a modal theory can also be characterized in terms of possible-world
structures. The underlying intuitions arise from considering a way to revise possible-
world structures, given a set T of initial assumptions. The characterization is also due
to Moore. Namely, for every modal theory T , Moore [92] defined an operator DT on
P(I) (the space of all possible-world structures) by setting

DT (Q) =
�
I | HQ,I (A) = true, for every A ∈ T

�
.

The operatorDT specifies a process to revise belief sets encoded by the corresponding
possible-world structures. Given a modal theory T ⊆ LK , the operator DT revises
a possible-world structure Q with a possible-world structure DT (Q). This revised
structure consists of all interpretations that are acceptable given the current structure
Q and the constraints on belief sets encoded by T . Specifically, the revision consists
precisely of those interpretations that make all formulas in T true with respect toQ.

Fixed points of the operator DT are of particular interest. They represent “stable”
possible-world structures (and so, belief sets)—they cannot be revised any further.
This property is behind the role they play in the autoepistemic logic.

Theorem 6.17. Let T ⊆ LK . A set of modal formulas E ⊆ LK is an expansion of T
if and only if there is a possible-world structure Q ⊆ I such that Q = DT (Q) and
E = Th(Q).

This theorem implies a systematic procedure for constructing expansions of finite
modal theories (or, to be more precise, possible-world structures that determine ex-
pansions). Let us continue our “Professor Jones” example and let us look at a theory

T = {prof J ,Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ }.

There are two propositional variables in our language and, consequently, four propo-
sitional interpretations:

I1 = ∅ (neither prof J nor teachesJ is true),



258 6. Nonmonotonic Reasoning

I2 = {prof J },

I3 = {teachesJ },

I4 = {prof J , teachesJ }.

There are 16 possible-world structures one can build of these four interpretations.
Only one of them, though, Q = {prof J , teachesJ }, satisfies DT (Q) = Q and so,
generates an expansion of T . We skip the details of verifying it, as the process is
long and tedious, and we present a more efficient method in the next section. We note
however, that for the basic “Professor Jones” example autoepistemic logic gives the
same conclusions as default logic.

We close this section by noting that autoepistemic logic can also be obtained as
a special case of a general fixed point schema to define modal nonmonotonic logics
proposed by McDermott [90]. In this schema, we assume that an agent uses some
modal logic S (extending propositional logic) to capture her basic means of inference.
We then say that a modal theory E ⊆ LK is an S-expansion of a modal theory T if

(6.5)E = CnS
�
T ∪ {¬KA | A /∈ E}

�
.

In this equation, CnS represents the consequence relation in the modal logic S . If E
satisfies (6.5), then E is closed under the propositional consequence relation. More-
over, E is closed under the necessitation rule and so, E is closed under positive
introspection. Finally, since {¬KA | A /∈ E} ⊆ E, E is closed under negative in-
trospection. It follows that solutions to (6.5) are belief sets containing T . They can
be taken as models of belief sets of agents reasoning by means of modal logic S and
justifying what they believe on the basis of initial assumptions in T and assumptions
about what not to believe (negative introspection). By choosing different monotone
logics S , we obtain from this schema different classes of S-expansions of T .

If we disregard inconsistent expansions, autoepistemic logic can be viewed as a
special instance of this schema, with S = KD45, the modal logic determined by the
axioms K, D, 4 and 5 [57, 85]. Namely, we have the following result.

Theorem 6.18. Let T ⊆ LK . If E ⊆ LK is consistent, then E is an expansion of T if
and only if E is a KD45-expansion of T , that is,

E = CnKD45
�
T ∪ {¬KA | A /∈ E}

�
.

6.3.2 Computational Properties

The key reasoning problems for autoepistemic logic are deciding skeptical inference
(whether a formula is in all expansions), credulous inference (whether a formula is in
some expansion), and finding expansions. Like default logic, first order autoepistemic
logic is not semi-decidable even when quantifying into the scope of the modal operator
is not allowed [94]. If quantifying-in is allowed, the reasoning problems are highly
undecidable [63].

In order to clarify the computational properties of propositional autoepistemic
logic we present a finitary characterization of expansions based on full sets [94, 95].
A full set is constructed from the KA and ¬KA subformulas of the premises and it
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serves as the characterizing kernel of an expansion. An overview of other approaches
to characterizing expansions can be found in [95].

The characterization is based on the set of all subformulas of the form KA in a set
of premises T . We denote this set by SfK(T ). We stress that in the characterization
only the classical consequence relation (Cn) is used whereKA formulas are treated as
propositional variables and no modal consequence relation is needed. To simplify the
notation, for a set T of formulas we will write ¬T as a shorthand for {¬F | F ∈ T }.

Definition 6.6 (Full sets). For a set of formulas T , a set S ⊆ SfK(T ) ∪ ¬ SfK(T ) is
T -full if and only if the following two conditions hold for every KA ∈ SfK(T ):

• A ∈ Cn(T ∪ S) if and only if KA ∈ S.

• A /∈ Cn(T ∪ S) if and only if ¬KA ∈ S.

In fact, for a T -full set S, the classical consequences of T ∪ S provide the modal-
free part of an expansion. As explained in Proposition 6.14 this uniquely determines
the expansion. Here we give an alternative way of constructing an expansion from a
full set presented in [95] which is more suitable for automation. For this we employ
a restricted notion of subformulas: Sf

p
K(F ) is the set of primary subformulas of F ,

i.e., all subformulas of the form KA of F which are not in the scope of another K
operator in F . For example, if p and q are atomic, Sf

p
K(K(¬Kp → q) ∧ K¬q) =

{K(¬Kp → q),K¬q}. The construction uses a simple consequence relation |=K

which is given recursively on top of the classical consequence relation Cn. It turns
out that this consequence relation corresponds exactly to membership in an expansion
when given its characterizing full set.

Definition 6.7 (K-consequence). Given a set of formulas T and a formula F ,

T |=K F if and only if F ∈ Cn(T ∪ SBT (F ))

where SBT (F ) = {KA ∈ Sf
p
K(F ) | T |=K A} ∪ {¬KA ∈ ¬ Sf

p
K(F ) | T �|=K A}.

For an expansion E of T , there is a corresponding T -full set
�
KF ∈ E | KF ∈ SfK(T )

�
∪

�
¬KF ∈ E | KF ∈ SfK(T )

�

and for a T -full set S,

{F | T ∪ S |=K F }

is an expansion of T . In fact it can be shown [95] that there is a one-to-one correspon-
dence between full sets and expansions.

Theorem 6.19 (Expansions in terms of full sets). Let T be a set of autoepistemic
formulas. Then a function SET defined as

SET (S) = {F | T ∪ S |=K F }

gives a bijective mapping from the set of T -full sets to the set of expansions of T and
for a T -full set S, SET (S) is the unique expansion E of T such that S ⊆ {KF | F ∈
E} ∪ {¬KF | F /∈ E}.
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Example 6.2. Consider our “Professor Jones” example and a set of formulas

T = {prof J ,Kprof J ∧ ¬K¬teachesJ ⊃ teachesJ }.

Now SfK(T ) = {Kprof J ,K¬teachesJ } and there are four possible full sets:

{¬Kprof J ,¬K¬teachesJ }, {Kprof J ,¬K¬teachesJ },

{¬Kprof J ,K¬teachesJ }, {Kprof J ,K¬teachesJ }.

It is easy to verify that only S1 = {Kprof J ,¬K¬teachesJ } satisfies the conditions
in Definition 6.6, that is, prof ∈ Cn(T ∪ S1) and ¬teachesJ /∈ Cn(T ∪ S1). Hence,
T has exactly one expansion SET (S1) which contains, for instance, KKprof J and
¬K¬KteachesJ as T ∪ S1 |=K KKprof J and T ∪ S1 |=K ¬K¬KteachesJ hold.

Example 6.3. Consider a set of formulas

T � = {Kp ⊃ p}.

Now SfK(T
�) = {Kp} and there are two possible full sets: {¬Kp} and {Kp} which

are both full. For instance, p ∈ Cn(T � ∪ {Kp}). Hence, T � has exactly two expansions
SET �({¬Kp}) and SET �({Kp}).

The finitary characterization of expansions in Theorem 6.19 implies that propo-
sitional autoepistemic reasoning is decidable and can be implemented in polynomial
space. This is because the conditions on a full set and on membership of an arbitrary
autoepistemic formula in an expansion induced by a full set are based on the classical
propositional consequence relation which is decidable in polynomial space.

Similar to default logic, deciding whether an expansion exists and credulous infer-
ence are ΣP

2 -complete problems and sceptical inference is Π
P
2 -complete for autoepis-

temic logic as well as for many other modal nonmonotonic logics [51, 94, 95, 121].
This implies that modal nonmonotonic reasoning is strictly harder than classical rea-
soning (unless the polynomial hierarchy collapses) and achieving tractability requires
substantial restrictions on how modal operators can interact [83, 84]. For more infor-
mation on automating autoepistemic reasoning, see for instance [97, 36].

6.4 Circumscription

6.4.1 Motivation

Circumscription was introduced by John McCarthy [86, 87]. Many of its formal as-
pects were worked out by Vladimir Lifschitz who also wrote an excellent overview
[74]. We follow here the notation and terminology used in this overview article.

The idea underlying circumscription can be explained using the teaching profes-
sors example discussed in the introduction. There we considered using the following
first order formula to express professors normally teach:

∀x
�
prof (x) ∧ ¬abnormal(x) ⊃ teaches(x)

�
.

The problem with this formula is the following: in order to apply it to Professor Jones,
we need to prove that Jones is not abnormal. In many cases we simply do not have
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enough information to do this. Intuitively, we do not expect objects to be abnormal—
unless we have explicit information that tells us they indeed are abnormal. Let us
assume there is no reason to believe Jones is abnormal. We implicitly assume—in
McCarthy’s words: jump to the conclusion—¬abnormal(Jones) and use it to conclude
teaches(Jones).

What we would like to have is a mechanism which models this form of jump-
ing to conclusions. Note that what is at work here is a minimization of the extent
of the predicate abnormal: we want as few objects as possible—given the available
information—to satisfy this predicate. How can this be achieved?

The answer provided by circumscription has a syntactical and a corresponding
semantical side. From the syntactical point of view, circumscription is a transformation
(more precisely, a family of transformations) of logical formulas. Given a sentence
A representing the given information, circumscription produces a logically stronger
sentence A∗. The formulas which follow from A using circumscription are simply the
formulas classically entailed by A∗. In our example, A contains the given information
about professors, their teaching duties, and Jones. In addition to this information, A∗

also expresses that the extent of abnormal is minimal. Note that in order to express
minimality of a predicate one has to quantify over predicates. For this reason A∗ will
be a second order formula.

Semantically, circumscription gives up the classical point of view that all models
of a sentence A have to be regarded as equal possibilities. In our example, different
models of A may have different extents for the predicate abnormal (the set of objects
belonging to the interpretation of abnormal) even if the domain of the models is the
same. It is natural to consider models with fewer abnormal objects—in the sense of
set inclusion—as more plausible than those with more abnormal objects. This induces
a preference relation on the set of all models. The idea now is to restrict the definition
of entailment to the most preferred models only: a formula f is preferentially entailed
by A if and only if f is true in all maximally preferred models of A.

We will see that this elegant model theoretic construction captures exactly the syn-
tactic transformation described above.

6.4.2 Defining Circumscription

For the definition of circumscription some abbreviations are useful. Let P and Q be
two predicate symbols of the same arity n:

P = Q abbreviates ∀x1 · · · xn((P (x1, . . . , xn) ≡ Q(x1, . . . , xn)),

P � Q abbreviates ∀x1 · · · xn((P (x1, . . . , xn) ⊃ Q(x1, . . . , xn)),

P < Q abbreviates (P � Q) ∧ ¬(P = Q).

The formulas express: P and Q have the same extent, the extent of P is a subset of
the extent ofQ, and the extent of P is a proper subset of the extent ofQ, respectively.

Definition 6.8. Let A(P ) be a sentence containing a predicate symbol P . Let p be a
predicate variable of the same arity as P . The circumscription of P in A(P ), which
will be denoted by CIRC[A(P );P ], is the second order sentence

A(P ) ∧ ¬∃p
�
A(p) ∧ p < P

�
.
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Table 6.1. Examples of circumscribing P

A(P ) CIRC[A(P );P ]

P(a) ∀x(P (x) ≡ x = a)

P (a) ∧ P(b) ∀x(P (x) ≡ (x = a ∨ x = b))

P (a) ∨ P(b) ∀x(P (x) ≡ (x = a)) ∨ ∀x(P (x) ≡ (x = b))

¬P(a) ∀x¬P(x)
∀x(Q(x) ⊃ P(x)) ∀x(Q(x) ≡ P(x))

By A(p) we denote here the result of uniformly substituting predicate constant P
in A(P ) by variable p. Intuitively, the second order formula ¬∃p[A(p) ∧ p < P ]
says: it is not possible to find a predicate p such that

1. p satisfies what is said in A(P ) about P , and

2. the extent of p is a proper subset of the extent of P .

In other words: the extent of P is minimal subject to the condition A(P ).
Table 6.1 presents some simple formulas A(P ) together with the result of circum-

scribing P in A(P ). The examples are taken from [74].
Although it gives desired results in simple cases, this form of circumscription is

not yet powerful enough for most applications. It allows us to minimize the extent of
a predicate, but only if this does not change the interpretation of any other symbol in
the language. In the Professor Jones example, for instance, minimizing the predicate
abnormal alone is not sufficient to conclude teaches(Jones). To obtain this conclu-
sion, we have to make sure that the extent of teaches is allowed to change during
the minimization of abnormal. This can be achieved with the following more general
definition:

Definition 6.9. Let A(P,Z1, . . . , Zm) be a sentence containing the predicate con-
stant P and predicate/function constants Zi . Let p, z1, . . . , zm be predicate/function
variables of the same type and arity as P,Z1, . . . , Zm. The circumscription of P
in A(P,Z1, . . . , Zm) with varied Z1, . . . , Zm, denoted CIRC[A(P,Z1, . . . , Zm);P ;
Z1, . . . , Zm], is the second order sentence

A(P,Z1, . . . , Zm) ∧ ¬∃pz1 . . . zm
�
A(p, z1, . . . , zm) ∧ p < P

�
.

A further generalization where several predicates can be minimized in parallel is
also very useful. Whenever we want to represent several default rules, we need dif-
ferent abnormality predicates ab1, ab2 etc., since being abnormal with respect to one
default is not necessarily related to being abnormal with respect to another default.

We first need to generalize the abbreviations P = Q, P � Q and P < Q to the
case where P and Q are sequences of predicate symbols. Let P = P1, . . . , Pn and
Q = Q1, . . . ,Qn, respectively:

P = Q abbreviates P1 = Q1 ∧ · · · ∧ Pn = Qn,

P � Q abbreviates P1 � Q1 ∧ · · · ∧ Pn � Qn,

P < Q abbreviates P � Q ∧ ¬(P = Q).
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Here is the generalized definition:

Definition 6.10. Let P = P1, . . . , Pk be a sequence of predicate constants, Z =
Z1, . . . , Zm a sequence of predicate/function constants. Furthermore, let A(P,Z) be
a sentence containing the predicate constants Pi and predicate/function constants Zj .
Let p = p1, . . . , pk and z = z1, . . . , zm be predicate/function variables of the same
type and arity as P1, . . . , Pk , respectively, Z1, . . . , Zm. The (parallel) circumscription
of P in A(P,Z) with varied Z, denoted CIRC[A(P,Z);P ;Z], is the second order
sentence

A(P,Z) ∧ ¬∃pz
�
A(p, z) ∧ p < P

�
.

Predicate and function constants which are neither minimized nor varied, i.e., nei-
ther in P nor in Z, are called fixed.

6.4.3 Semantics

Circumscription allows us to minimize the extent of predicates. This can be elegantly
described in terms of a preference relation on the models of the circumscribed sen-
tence A. Intuitively, we prefer a model M1 over a model M2 whenever the extent of
the minimized predicate(s) P is smaller in M1 than in M2. Of course, M1 can only
be preferred over M2 if the two models are comparable: they must have the same
universe, and they have to agree on the fixed constants.

In the following, for a structure M we use |M| to denote the universe of M and
M�C� to denote the interpretation of the (individual/function/predicate) constant C
inM .

Definition 6.11. Let M1 and M2 be structures, P a sequence of predicate constants,
Z a sequence of predicate/function constants.M1 is at least as P ;Z-preferred asM2,
denotedM1 �P ;Z M2, whenever the following conditions hold:

1. |M1| = |M2|,

2. M1�C� = M2�C� for every constant C which is neither in P nor in Z,

3. M1�Pi� ⊆ M2�Pi� for every predicate constant Pi in P .

The relation �P ;Z is obviously transitive and reflexive. We say a structure M is
�P ;Z-minimal within a set of structuresM whenever there is no structure M � ∈ M
such that M � <P ;Z M . Here <P ;Z is the strict order induced by �P ;Z: M � <P ;Z M

if and only ifM � �P ;Z M and notM �P ;Z M �.
The following proposition shows that the P ;Z-minimal models of A capture ex-

actly the circumscription of P in A with varied Z:

Proposition 6.20. M is a model of CIRC[A;P ;Z] if and only ifM is �P ;Z-minimal
among the models of A.

It should be pointed out that circumscription may lead to inconsistency, even if
the circumscribed sentence A is consistent. This happens whenever we can find a bet-
ter model for each model, implying that there is an infinite chain of more and more
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preferred models. A discussion of conditions under which consistency of circumscrip-
tion is guaranteed can be found in [74]. For instance, it is known that CIRC[A;P ;Z]
is consistent whenever A is universal (of the form ∀xA where x is a tuple of object
variables and A is quantifier-free) and Z does not contain function symbols.

6.4.4 Computational Properties

In circumscription the key computational problem is that of sceptical inference, i.e.,
determining whether a formula is true in all minimal models. However, general first
order circumscription is highly uncomputable [120]. This is not surprising as circum-
scription transforms a first order sentence into a second order formula and it is well
known that second order logic is not even semi-decidable. This means that in order to
compute circumscription we cannot just use our favorite second order prover—such
a prover simply cannot exist. We can only hope to find computational methods for
certain special cases of first order formulas.

We first discuss techniques for computing circumscriptive inference in the first
order case and then present a finitary characterization of minimal models which illus-
trates computational properties of circumscription.

Methods for computing circumscription can be roughly categorized as follows:

• guess and verify: the idea is to guess right instances of second order variables to
prove conjectures about circumscription. Of course, this is a method requiring
adequate user interaction, not a full mechanization,

• translation to first order logic: this method is based on results depending on
syntactic restrictions and transformation rules,

• specialized proof procedures: these can be modified first order proof procedures
or procedures for restricted second order theories.

As an illustration of the guess and verify method consider the Jones example again.
Abbreviating abnormal with ab we have

A(ab, teaches) = prof (J ) ∧ ∀x(prof (x) ∧ ¬ab(x) ⊃ teaches(x)).

We are interested in CIRC[A(ab, teaches); ab; teaches] which is

A(ab, teaches) ∧ ¬∃pz
�
A(p, z) ∧ p < ab

�
.

By simple equivalence transformations and by spelling out the abbreviation p < ab

we obtain

A(ab, teaches) ∧ ∀pz
�
A(p, z) ∧ ∀x(p(x) ⊃ ab(x)) ⊃ ∀x(ab(x) ⊃ p(x))

�
.

If we substitute the right predicate expressions for the now universally quantified pred-
icate variables p and z, we can indeed prove teaches(J ). By a predicate expression we
mean an expression of the form λx1, . . . , xn.F where F is a first order formula. Ap-
plying this predicate expression to n terms t1, . . . , tn yields the formula obtained by
substituting all variables xi in F uniformly by ti .

In our example we guess that no object is ab, that is we substitute for p the ex-
pression λx.false. Similarly, we guess that professors are the teaching objects, i.e.,
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we substitute for z the expression λx.prof (x). The resulting first order formula (after
simple equivalence transformations) is

A(ab, teaches) ∧
�
prof (J ) ∧ ∀x(prof (x) ⊃ prof (x)) ∧

∀x(false ⊃ ab(x)) ⊃ ∀x(ab(x) ⊃ false)
�
.

It is easy to verify that the first order formula obtained with these substitutions indeed
implies teaches(J ). In cases where derivations are more difficult one can, of course,
use a standard first order theorem prover to verify conjectures after substituting predi-
cate expressions.

For the second method, the translation of circumscription to first order logic, a
number of helpful results are known. We cannot go into much detail here and refer the
reader to [74] for an excellent overview. As an example of the kind of results used we
present two useful propositions.

Let A(P ) be a formula and P a predicate symbol occurring in A. A formula A,
without any occurrence of ⊃ and ≡, is positive/negative in P if all occurrences of P
in A(P ) are positive/negative. (We recall that the occurrence of a predicate symbol
P in a formula A(P ) without occurrences of ⊃ and ≡ is positive if the number of its
occurrences in the range of the negation operator is positive. Otherwise, it is negative.)

Proposition 6.21. Let B(P ) be a formula without any occurrences of ⊃ and ≡. If
B(P ) is negative in P , then CIRC[A(P )∧B(P );P ] is equivalent to CIRC[A(P );P ]∧
B(P ).

Proposition 6.22. Let A(P,Z) be a formula without any occurrences of ⊃ and ≡. If
A(P,Z) is positive in P , then CIRC[A(P,Z);P ;Z] is equivalent to

A(P,Z) ∧ ¬∃xz
�
P(x) ∧ A(λy.(P (y) ∧ x �= y), z)

�
.

Here x and y stand for n-tuples of distinct object variables, where n is the arity of
predicate symbol P . As a corollary of these propositions we obtain that CIRC[A(P )∧
B(P );P ] is equivalent to a first order formula whenever A(P ) is positive and B(P )
negative in P (assuming A(P ) and B(P ) do not contain ⊃ and ≡).

Apart from translations to first order logic, translations to logic programming have
also been investigated [48].

Several specialized theorem proving methods and systems have been developed
for restricted classes of formulas. Among these we want to mention Przymusin-
ski’s MILO-resolution [109], Baker and Ginsberg’s argument based circumscriptive
prover [7], the tableaux based method developed by Niemelä [99], and two algorithms
based on second order quantifier elimination: the SCAN algorithm [45, 102] and the
DLS algorithm [37].

We now turn to the question how minimal models, the key notion in circum-
scription, can be characterized in order to shed light on computational properties of
circumscription and its relationship to classical logic. We present a characterization of
minimal models where the minimality of a model can be determined independently of
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other models using a test for classical consequence. We consider here parallel predi-
cate circumscription in the clausal case and with respect to Herbrand interpretations
and a characterization proposed in [99]. A similar characterization but for the propo-
sitional case has been used in [41] in the study of the computational complexity of
propositional circumscription.

Definition 6.12 (Grounded models). Let T be a set of clauses and let P and R be
sets of predicates. A Herbrand interpretation M is said to be grounded in �T , P,R�
if and only if for all ground atoms p(�t) such that p ∈ P , M |= p(�t) implies p(�t) ∈
Cn(T ∪ N�P,R�(M)) where

N�P,R�(M) =
�
¬q(�t) | q(�t) is a ground atom, q ∈ P ∪ R,M �|= q(�t)

�
∪

�
q(�t) | q(�t) is a ground atom, q ∈ R,M |= q(�t)

�
.

Theorem 6.23 (Minimal models). Let T be a set of clauses and let P and Z be the
sets of minimized and varied predicates, respectively. A Herbrand interpretation M
is a �P ;Z-minimal model of T if and only if M is a model of T and grounded in
�T , P,R� where R is the set of predicates in T that are in neither P nor Z.

Example 6.4. Let T = {p(x)∨¬q(x)} and let the underlying language have only one
ground term a. Then the Herbrand base is {p(a), q(a)}. Consider the sets of minimized
predicates P = {p} and varied predicates Z = ∅. Then the set of fixed predicates R =
{q}. Now the Herbrand interpretation M = {p(a), q(a)}, which is a model of T , is
grounded in �T , P,R� because N�P,R�(M) = {q(a)} and p(a) ∈ Cn(T ∪N�P,R�(M))

holds. Hence, M is a minimal model of T . If Z = {q}, then R = ∅ and M is not
grounded in �T , P,R� because N�P,R�(M) = ∅ and p(a) /∈ Cn(T ∪ N�P,R�(M)).
Thus, if p is minimized but q is varied,M is not a minimal model of T .

Theorem 6.23 implies that circumscriptive inference is decidable in polynomial
space in the propositional case. Like for default logic, it is strictly harder than clas-
sical propositional reasoning unless the polynomial hierarchy collapses as it is ΠP

2 -
complete [40, 41]. For tractability considerable restrictions are needed [27].

6.4.5 Variants

Several variants of circumscription formalizing different kinds of minimization have
been developed. For instance, pointwise circumscription [71] allows us to minimize
the value of a predicate for each argument tuple separately, rather than minimizing the
extension of the predicate. This makes it possible to specify very flexible minimization
policies. Autocircumscription [105] combines minimization with introspection.

We will focus here on prioritized circumscription [70]. In many applications some
defaults are more important than others. In inheritance hierarchies, for instance, a de-
fault representing more specific information is intuitively expected to “win” over a
conflicting default: if birds normally fly, penguins normally do not, then one would
expect to conclude that a penguin does not fly, although it is a bird. This can be mod-
eled by minimizing some abnormality predicates with higher priority than others.
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Prioritized circumscription splits the sequence P of minimized predicates into
disjoint segments P 1, . . . , P k . Predicates in P 1 are minimized with highest priority,
followed by those in P 2, etc. Semantically, this amounts to a lexicographic compari-

son of models. We first compare two modelsM1 andM2 with respect to�P 1,Z , where
Z are the varied symbols. If the models are incomparable, or if one of the models is

strictly preferred (<P 1,Z holds), then the relationship between the models is estab-

lished and we are done. IfM1 =P 1,Z M2, we go on with �P 2,Z , etc.
The prioritized circumscription of P 1, . . . , P k in A with varied Z is denoted

CIRC[A;P 1 > · · · > Pk;Z].

We omit its original definition and rather present a characterization based on a result
in [70] which shows that prioritized circumscription can be reduced to a sequence of
parallel circumscriptions:

Proposition 6.24. CIRC[A;P 1 > · · · > Pk;Z] is equivalent to the conjunction of
circumscriptions

k�

i=1

CIRC[A;P i;P i+1, . . . , P k, Z].

6.5 Nonmonotonic Inference Relations

Having discussed three specific nonmonotonic formalisms in considerable detail, we
will now move on to an orthogonal theme in nonmonotonic reasoning research: an
abstract study of inference relations associated with nonmonotonic (defeasible) rea-
soning. Circumscription fits in this theme quite well—it can be viewed as an example
of a preferential model approach, yielding a preferential inference relation. However,
as we mention again at the end of this chapter, it is not so for default and autoepistemic
logics. In fact, casting these two and other fixed point logics in terms of the semantic
approach to nonmonotonic inference we are about to present is one of major problems
of nonmonotonic reasoning research.

Given what we know about the world, when could a formula B reasonably be
concluded from a formula A? One “safe” answer is provided by the classical concept
of entailment. Let T be a set of first order logic sentences (an agent’s knowledge about
the world). The agent classically infers a formula B if B holds in every model of T in
which A holds.

However, the agent’s knowledge of the world is typically incomplete, and so, infer-
ence relations based on formalisms of defeasible reasoning are of significant interest,
too. Under circumscription, the agent might infer B from A if B holds in every
minimal model of T , in which A holds, A �∼T ,circ B. In default logic, assuming the
knowledge of the world is given in terms of a set D of defaults, the agent might infer
B from A, A �∼D B, if B is in every extension of the default theory (D, {A}).

These examples suggest that inference can be modeled as a binary relation on L.
The question we deal with in this section is: which binary relations on L are inference
relations and what are their properties?
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In what follows, we restrict ourselves to the case when L consists of formulas of
propositional logic. We use the infix notation for binary relations and write A �∼B

to denote that B follows from A, under a concept of inference modeled by a binary
relation �∼ on L.

6.5.1 Semantic Specification of Inference Relations

Every propositional theory T determines a set of its models, Mod(T ), consisting
of propositional interpretations satisfying T . These interpretations can be regarded
as complete specifications of worlds consistent with T or, in other words, possible
given T .

An agent whose knowledge is described by T might reside in any of these worlds.
Such an agent may decide to infer B ∈ L from A ∈ L, written A �T B, if in every
world in which A holds, B holds, as well. This approach sanctions only the most
conservative inferences. They will hold no matter what additional information about
the world an agent may acquire. Inference relations of the form�T are important. They
underlie classical propositional logic and are directly related to the logical entailment
relation |=. Indeed, we have that A �T B if and only if T ,A |= B.

The class of inference relations of the form �T has a characterization in terms of
abstract properties of binary relations on L. The list gives some examples of properties
of binary relations relevant for the notion of inference.

Monotony if A ⊃ B is a tautology and B �∼C, then A �∼C,

Right Weakening if A ⊃ B is a tautology and C �∼A, then C �∼B,

Reflexivity A �∼A,

And if A �∼B and A �∼C, then A �∼B ∧ C,

Or if A �∼C and B �∼C, then A ∨ B �∼C.

It turns out that these properties provide an alternative (albeit non-constructive)
specification of the class of relations of the form �T . Namely, we have the following
theorem [64].

Theorem 6.25. A binary relation on L is of the form �T if and only if it satisfies the
five properties given above.

Due to the property of Monotony, inference relations �T do not give rise to defea-
sible arguments. To model defeasible arguments we need less conservative inference
relations. To this end, one may relax the requirement that B must hold in every world
in which A holds. In commonsense reasoning, humans often differentiate between
possible worlds, regarding some of them as more typical or normal than others. When
making inferences they often consider only those worlds that are most typical given
the knowledge they have. Thus, they might infer B from A if B holds in every most
typical world in which A holds (and not in each such world).

Preferential models [64] provide a framework for this general approach. The key
idea is to use a strict partial order,7 called a preference relation, to compare worlds

7A binary relation that is irreflexive and transitive.
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with respect to their “typicality”, with more typical worlds preferred to less typical
ones. Given a strict partial order ≺ on a set W , an element w ∈ W is ≺-minimal if
there is no element w� ∈ W such that w� ≺ w.

In the following definition, we use again the term a possible-world structure. This
time, however, we use it to denote a slightly broader class of objects than sets of
interpretations.

Definition 6.13. A general possible-world structure is a tuple �W, v�, where W is a
set of worlds and v is a function mapping worlds to interpretations.8 If A is a formula,
we define

W(A) =
�
w ∈ W | v(w) |= A

�
.

A preferential model is a tuple W = �W, v,≺�, where �W, v� is a general possible-
world structure and ≺ is a strict partial order on W satisfying the following smooth-
ness condition: for every sentence A and for every w ∈ W(A), w is ≺-minimal in
W(A) or there is w� ∈ W(A) such that w� ≺ w and w� is a ≺-minimal element
ofW(A).

The set W(A) gathers worlds in which A holds. Minimal elements in W(A) can
be viewed as most typical states where A holds. The smoothness condition guarantees
that for every world w ∈ W(A) which is not most typical itself, there is a most typical
state inW(A) that is preferred to w.

Preferential models formalize the intuition of reasoning on the basis of most pre-
ferred (typical) models only and allow us to specify the corresponding concept of
inference.

Definition 6.14. IfW is a preferential model (with the ordering≺), then the inference
relation determined by W , �∼W , is defined as follows: for A,B ∈ L, A �∼W B if B
holds in every ≺-minimal world inW(A).

We call inference relations of the form �∼W , where W is a preferential model,
preferential. In general, they do not satisfy the property of Monotony.

Propositional circumscription is an example of this general method of defining
inference relations. Let I stand for the set of all interpretations of L. Furthermore, let
P and Z be two disjoint sets of propositional variables in the language. We note that
the relation <P ;Z satisfies the smoothness condition. Thus, �I, v,<P ;Z�, where v is
the identity function, is a preferential model. Moreover, it defines the same inference
relation as does circumscription.

Shoham’s preference logic [123] is another specialization of the preferential model
approach. As in circumscription, the set of worlds consists of all interpretations of L
but an arbitrary strict partial order satisfying the smoothness condition9 can be used.

Preference logics are very close to preferential models. However, allowing multi-
ple worlds with the same interpretation (in other words, using general possible-world

8Typically,W is assumed to be nonempty. This assumption is not necessary for our considerations here
and so we do not adopt it.

9In the original paper by Shoham, a stronger condition of well-foundedness was used.
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structures rather than possible-world structures) is essential. The resulting class of in-
ference relations is larger (we refer to [25] for an example).

Can preferential relations be characterized by means of meta properties? The an-
swer is yes but we need two more properties of binary relations �∼ on L:

Left Logical Equivalence if A and B are logically equivalent and A �∼C,

then B �∼C

Cautious Monotony if A �∼B and A �∼C, then A ∧ B �∼C

We have the following theorem [64].

Theorem 6.26. A binary relation �∼ on L is a preferential inference relation if and
only if it satisfies Left Logical Equivalence, Right Weakening, Reflexivity, And, Or and
Cautious Monotony.

We note that many other properties of binary relations were considered in an effort
to formalize the concept of nonmonotonic inference. Gabbay [44] asked about the
weakest set of conditions a binary relation should satisfy in order to be a nonmonotonic
inference relation. The result of his studies as well as of Makinson [79] was the notion
of a cumulative inference relation. A semantic characterization of cumulative relations
exists but there are disputes whether cumulative relations are indeed the right ones.
Thus, we do not discuss cumulative inference relations here.

Narrowing the class of orders in preferential models yields subclasses of pref-
erential relations. One of these subclasses is especially important for nonmonotonic
reasoning. A strict partial order ≺ on a set P is ranked if there is a function l from P

to ordinals such that for every x, y ∈ P , x ≺ y if and only if l(x) < l(y).

Definition 6.15. A preferential model �W, v,≺� is ranked if ≺ is ranked.

We will call inference relations defined by ranked models rational. It is easy to
verify that rational inference relations satisfy the property of Rational Monotony:

Rational Monotony if A ∧ B � �∼C and A � �∼¬B, then A � �∼C.

The converse is true, as well. We have the following theorem [68].

Theorem 6.27. An inference relation is rational if and only if it is preferential and
satisfies Rational Monotony.

6.5.2 Default Conditionals

Default conditionals are meant to model defeasible statements such as university pro-
fessors normally give lectures. Formally, a default conditional is a syntactic expres-
sion A �∼B, with an intuitive reading “if A then normally B”. We denote the operator
constructing default conditionals with the same symbol �∼ we used earlier for infer-
ence relations. While it might be confusing, there are good reasons to do so and they
will become apparent as we proceed. It is important, however, to keep in mind that in
one case, �∼ stands for a constructor of syntactic (language) expressions, and in the
other it stands for a binary (inference) relation.
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Given a set K of default conditionals, when is a default conditional A �∼B a con-
sequence ofK? When is a formula A a consequence ofK? Somewhat disappointingly
no single commonly accepted answer has emerged. We will now review one of the
approaches proposed that received significant attention. It is based on the notion of a
rational closure developed in [67, 68] and closely related to the system Z [104].

Let K be a set of default conditionals. The set of all default conditionals implied
by K should be closed under some rules of inference for conditionals. For instance,
we might require that if A and B are logically equivalent and A �∼C belongs to a
closure of K , B �∼C belongs to the closure of K , as well. This rule is nothing else
but Left Logical Equivalence, except that now we view expressions A �∼B as default
conditionals and not as elements of an inference relation. In fact, modulo this cor-
respondence (a conditional A �∼B versus an element A �∼B of an binary relation),
several other rules we discussed in the previous section could be argued as possible
candidates to use when defining a closure of K .

Based on this observation, we postulate that a closure of K should be a set of
conditionals that corresponds to an inference relation. The question is, which inference
relation extendingK should one adopt as the closure ofK . If one is given a preferential
model whose inference relation extendsK , this inference relation might be considered
as the closure ofK . This is not a satisfactory solution as, typically, all we have isK and
we would like to determine the closure on the basis of K only. Another answer might
be the intersection of all preferential relations extending K . The resulting relation
does not in general satisfy Rational monotony, a property that arguably all bona fide
nonmonotonic inference relations should satisfy. Ranked models determine inference
relations that are preferential and, moreover, satisfy Rational Monotony. However,
the intersection of all rational extensions of K coincides with the intersection of all
preferential extensions and so, this approach collapses to the previous one.

If the closure of K is not the intersection of all rational extensions, perhaps it is
a specific rational extension, if there is a natural way to define one. We will focus
on this possibility now. Lehmann and Magidor [68] introduce a partial ordering on
rational extensions of a set of conditional closures of K . In the case when this order
has a least element, they call this element the rational closure of K . They say that
A �∼B is a rational consequence of K if A �∼B belongs to the rational closure of K .
They say that A is a rational consequence of K if the conditional true �∼A is in the
rational closure of K .

There are sets of conditionals that do not have the rational closure. However, [68]
show that in many cases, including the case whenK is finite, the rational closure exists.
Rather than discuss the ordering of rational extensions that underlies the definition of
a rational closure, we will now discuss an approach which characterizes it in many
cases when it exists.

A formula A is exceptional for K , if true �∼¬A belongs to the preferential exten-
sion of K , that is, if ¬A is true in every minimal world of every preferential model
ofK . A default conditional is exceptional forK , if its antecedent is exceptional forK .
By E(K) we denote the set of all default conditionals inK that are exceptional for K .

Given K , we define a sequence of subsets of K as follows: C0 = K . If τ = η + 1
is a successor ordinal, we define Cτ = E(Cη). If τ is a limit ordinal, we define Cτ =�
η<τ Cη.
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The rank r(A) of a formula A is the least ordinal τ such that A is not exceptional
for Cτ . If for every ordinal τ , A is exceptional for Cτ , A has no rank.

A formula A is inconsistent with K if for every preferential model of K and every
world w in the model, w |= ¬A.

A set of conditionals K is admissible if all formulas that have no rank are incon-
sistent for K . Admissible sets of default conditionals include all finite sets.

Theorem 6.28. If K is admissible, then its rational closure K̄ exists. A default condi-
tional A �∼B ∈ K̄ if and only if A ∧ ¬B has no rank, or if A and A ∧ ¬B have ranks
and r(A) < r(A ∧ ¬B).

6.5.3 Discussion

Properties of inference relations can reveal differences between nonmonotonic for-
malisms. Earlier in this section, we showed how circumscription or default logic can
be used to specify inference relations. The relation determined by circumscription is a
special case of a preferential inference relation and so, satisfies all properties of prefer-
ential relations. The situation is different for the inference relation defined by a set of
defaults. Let us recall that B can be inferred fromA with respect to a setD of defaults,
A �∼D B, if B is in every extension of the default theory (D, {A}).

The inference relation �∼D , where D consists of normal defaults, in general does
not satisfy the properties Or and Cautious Monotony. For instance, let D = {A :
C/C,B : C/C}. Then we have A �∼D C and B �∼D C, but not A ∨ B �D C. The
reason, intuitively, is that none of the defaults can be applied if only the disjunction of
prerequisites is given.

An example for the violation of cumulativity due to Makinson [79] is given by
D = {� : A/A,A ∨ B : ¬A/¬A}. We have � �∼D A and thus � �∼D A ∨ B, but not
A∨B �D A. The reason is that the default theory (D, {A∨B}) has a second extension
containing ¬A.

Contrary to normal defaults, supernormal defaults satisfy both Cautious Monotony
and Or [35], as they happen to be preferential.

Finally, we conclude this section with a major unresolved problem of non-
monotonic reasoning. Nonmonotonicity can be achieved through fixed point con-
structions and this approach leads to such formalisms as default and autoepistemic
logics. On the other hand, interesting nonmonotonic inference relations can be de-
fined in terms of preferential models. What is missing is a clear link between the two
approaches. An open question is: can nonmonotonic inference relations defined by de-
fault logic (or other fixed point system) be characterized in semantic terms along the
lines of preferential models?

6.6 Further Issues and Conclusion

In this section we discuss the relationship between the major approaches we presented
earlier. We first relate default logic and autoepistemic logic (Section 6.6.1), then de-
fault logic and circumscription (Section 6.6.2). Finally, we give pointers to some other
approaches which we could not present in more detail in this chapter (Section 6.6.3).
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6.6.1 Relating Default and Autoepistemic Logics

A basic pattern of nonmonotonic reasoning is: “in the absence of any information
contradicting B, infer B”. Normal defaults are designed specifically with this reason-
ing pattern in mind: it is modeled by the normal default : B

B
. McDermott and Doyle

[91] suggested that in modal nonmonotonic systems this reasoning pattern should be
represented by the modal formula ¬K¬B ⊃ B (or using a common abbreviation M
for ¬K¬, which can be read as “consistent” or “possible”: MB ⊃ B). Even though
the modal nonmonotonic logic of [91] was found to have counterintuitive properties
and was abandoned as a knowledge representation formalism, the connection between
a default : B

B
and a modal formula MB ⊃ B was an intriguing one and prompted

extensive investigations. Since autoepistemic logic emerged in the mid 1980s as the
modal nonmonotonic logic of choice, these investigations focused on relating default
and autoepistemic logics.

Building on the suggestion of McDermott and Doyle, Konolige [61] proposed to
encode an arbitrary default

d =
A : B1, . . . , Bk

C

with a modal formula

T (d) = KA ∧ ¬K¬B1 ∧ · · · ∧ ¬K¬Bk ⊃ C,

and to translate a default theory Δ = (D,W) into a modal theory T (Δ) = W ∪
{T (d) | d ∈ D}.

The translation seems to capture correctly the intuitive reading of a default: if A
is known and all Bi are possible (none is contradicted or inconsistent) then infer C.
There is a problem, though. Let us consider a default theory Δ = ({d},∅), where

d =
A : B

A
.

Konolige’s translation represents Δ as a modal theory

T (Δ) = {KA ∧ ¬K¬B ⊃ A}.

Using methods we presented earlier in this chapter one can verify that Δ has exactly
one extension, Cn(∅), while T (Δ) has two expansions, CnS5(∅) and CnS5({A}). It
follows that Konolige’s translation does not yield a connection between the two logics
that would establish a one-to-one correspondence between extensions and expansions.
Still several interesting properties hold.

First, as shown in [81], for prerequisite-free default theories, Konolige’s translation
does work! We have the following result.

Theorem 6.29. LetΔ be a default theory such that each of its defaults is prerequisite-
free. Then, a propositional theory E is an extension of Δ if and only if the belief set
determined by E (cf. Proposition 6.14) is an expansion of T (Δ). Conversely, a modal
theory E� is an expansion of T (Δ) if and only if the modal-free part of E�, E� ∩ L, is
an extension of Δ.
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Second, under Konolige’s translation, extensions are mapped to expansions (al-
though, as our example above shows—the converse fails in general).

Theorem 6.30. Let Δ be a default theory. If a propositional theory E is an extension
of Δ, then CnS5(E) is an expansion of T (Δ).

Despite providing evidence that the two logics are related, ultimately, Konolige’s
translation does not properly match extensions with expansions. The reason boils
down to a fundamental difference between extensions and expansions. Both exten-
sions and expansions consist only of formulas that are justified (“grounded”) in default
and modal theories, respectively. However, expansions allow for self-justifications
while extensions do not. The difference is well illustrated by the example we used
before. The belief set determined by {A} (cf. Proposition 6.14) is an expansion of the
theory {KA ∧ ¬K¬B ⊃ A}. In this expansion, A is justified through the formula
KA ∧ ¬K¬B ⊃ A by means of a circular argument relying on believing in A (since
there is no information contradicting B, the second premise needed for the argument,
¬K¬B, holds). Such self-justifications are not sanctioned by extensions: in order to
apply the default A:B

A
we must first independently deriveA. Indeed, one can verify that

the theory Cn({A}) is not an extension of ({A:B
A

},∅).
This discussion implies that extensions and expansions capture different types of

nonmonotonic reasoning. As some research suggests default logic is about the modal-
ity of “knowing” (no self-supporting arguments) and autoepistemic logic is about the
modality of “believing” (self-supporting arguments allowed) [75, 122].

Two natural questions arise. Is there a default logic counterpart of expansions,
and is there an autoepistemic logic counterpart of extensions? The answer in each
case is positive. Denecker et al. [34] developed a uniform treatment of default and
autoepistemic logics exploiting some basic operators on possible-world structures that
can be associated with default and modal theories. This algebraic approach (developed
earlier in more abstract terms in [33]) endows each logic with both expansions and
extensions in such a way that they are perfectly aligned under Konolige’s translation.
Moreover, extensions of default theories and expansions of modal theories defined by
the algebraic approach of [34] coincide with the original notions defined by Reiter
and Moore, respectively, while expansions of default theories and extensions of modal
theories defined in [34] fill in the gaps to complete the picture.

A full discussion of the relation between default and autoepistemic logic is beyond
the scope of this chapter and we refer to [34] for details. Similarly, we only briefly
note other work attempting to explain the relationship between the two logics. Most
efforts took as the starting point the observation that to capture a default logic within a
modal system, a different modal nonmonotonic logic or a different translation must be
used. Konolige related default logic to a version of autoepistemic logic based on the
notion of a strongly grounded expansion [61]. Marek and Truszczyński [82] proposed
an alternative translation and represented extensions as expansions in a certain modal
nonmonotonic logic constructed followingMcDermott [90]. Truszczyński [128] found
that the Gödel translation of intuitionistic logic to modal logic S4 could be used to
translate the default logic into a nonmonotonic modal logic S4 (in fact, he showed that
several modal nonmonotonic logics could be used in place of nonmonotonic S4).
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Gottlob [52] returned to the original problem of relating default and autoepistemic
logics with their original semantics. He described a mapping translating default theo-
ries into modal ones so that extensions correspond precisely to expansions. This trans-
lation is not modular. The autoepistemic representation of a default theory depends on
the whole theory and cannot be obtained as the union of independent translations of
individual defaults. Thus, the approach of Gottlob does not provide an autoepistemic
reading of an individual default. In fact, in the same paper Gottlob proved that a mod-
ular translation from default logic with the semantics of extensions to autoepistemic
logic with the semantics of expansions does not exist. In conclusion, there is no modal
interpretation of a default under which extensions would correspond to expansions.

6.6.2 Relating Default Logic and Circumscription

The relationships between default logic and circumscription as well as between au-
toepistemic logic and circumscription have been investigated by a number of re-
searchers [42, 43, 58, 72, 62]. Imielinski [58] points out that even normal default rules
with prerequisites cannot be translated modularly into circumscription. This argument
applies also to autoepistemic logic and thus circumscription cannot modularly capture
autoepistemic reasoning [96].

On the other hand, circumscription is closely related to prerequisite-free normal
defaults. For example, it is possible to capture minimal models of a set of formulas
using such rules. The idea is easy to explain in the propositional case. Consider a set
of formulas T and sets P and Z of minimized and varied atoms (0-ary predicates),
respectively, and let R be the set of fixed atoms (those not in P or Z). Now �P ;Z-
minimal models of T can be captured by the default theory (MIN(P ) ∪ FIX(R), T )
where the set of defaults consists of

MIN(P ) =

�
� : ¬A

¬A

�
�
�
� A ∈ P

�

,

FIX(R) =

�
� : ¬A

¬A

�
�
�
� A ∈ R

�

∪

�
� : A

A

�
�
�
� A ∈ R

�

.

Now a formula F is true in every �P ;Z-minimal model of T if and only if F
is in every extension of the default theory (MIN(P ) ∪ FIX(R), T ). The idea here is
that defaults MIN(P ) minimize atoms in P and defaults FIX(R) fix atoms in R by
minimizing each atom and its complement.

The same approach can be used for autoepistemic logic as prerequisite-free default
theories can be translated to autoepistemic logic as explained in Section 6.6.1. How-
ever, capturing first order circumscription is non-trivial and the results depend on the
treatment of open defaults (or quantification into the scope of K operators in the case
of autoepistemic logic). For example, Etherington [42] reports results on capturing cir-
cumscription using default logic in the first order case but without any fixed predicates
and with a finite, fixed domain. Konolige [62] shows how to encode circumscription
in the case of non-finite domains using a variant of autoepistemic logic which allows
quantification into the scope of K operators.
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6.6.3 Further Approaches

Several other formalizations of nonmonotonic reasoning have been proposed in the
literature. Here we give a few references to those we consider most relevant but could
not handle in more detail.

• Possibilistic logics [38] assign degrees of necessity and possibility to sentences.
These degrees express the extent to which these sentences are believed to be
necessarily or possibly true, respectively. One of the main advantages of this
approach is that it leads to a notion of graded inconsistency which allows non-
trivial deductions to be performed from inconsistent possibilistic knowledge
bases. The resulting consequence relation is nonmonotonic and default rules
can be conveniently represented in this approach [10].

• Defeasible logic, as proposed by Nute [101] and further developed by Anto-
niou and colleagues [4, 3], is an approach to nonmonotonic reasoning based
on strict and defeasible rules as well as defeaters. The latter specify excep-
tions to defeasible rules. A preference relation among defeasible rules is used to
break ties whenever possible. An advantage of defeasible logic is its low com-
plexity: inferences can be computed very efficiently. On the other hand, some
arguably intuitive conclusions are not captured. The relationship between de-
feasible logic and prioritized logic programs under well-founded semantics is
discussed in [24].

• Inheritance networks are directed graphs whose nodes represent propositions
and a directed (possibly negated) link between two nodes A and B stands for
“As are normally (not) Bs” (some types of networks also distinguish between
strict and defeasible links). The main goal of approaches in this area is to cap-
ture the idea that more specific information should win in case of a conflict.
Several notions of specificity have been formalized, and corresponding notions
of inference were developed. Reasoning based on inheritance networks is non-
monotonic since new, possibly more specific links can lead to the retraction of
former conclusions. [56] gives a good overview.

• Several authors have proposed approaches based on ranked knowledge bases,
that is, sets of classical formulas together with a total preorder on the formulas
[21, 9]. The preorder represents preferences reflecting the willingness to stick
to a formula in case of conflict: if two formulas A and B lead to inconsistency,
then the strictly less preferred formula is given up. If they are equally preferred,
then different preferred maximal consistent subsets (preferred subtheories in the
terminology of [21]) of the formulas will be generated. There are different ways
to define the preferred subtheories. Brewka [21] uses a criterion based on set
inclusion, Benferhat and colleagues [9] investigate a cardinality based approach.

• When considering knowledge-based agents it is natural to assume that the
agent’s beliefs are exactly those beliefs which follow from the assumption that
the knowledge base is all that is believed. Levesque was the first to capture this
notion in his logic of only-knowing [69]. The main advantage of this approach
is that beliefs can be analyzed in terms of a modal logic without requiring addi-
tional meta-logical notions like fixpoints and the like. The logic uses two modal



G. Brewka, I. Niemelä, M. Truszczyński 277

operators,K for belief andO for only knowing. Levesque showed that his logic
captures autoepistemic logic. In [65] the approach was generalized to capture
default logic as well. [66] presents a sound and complete axiomatization for the
propositional case. Multi-agent only knowing is explored in [53].

• Formal argument systems (see, for instance, [76, 124, 106, 39, 20, 129, 1, 130,
12]) model the way agents reason on the basis of arguments. In some approaches
arguments have internal structure, in others they remain abstract entities whose
structure is not analyzed further. In each case a defeat relation among arguments
plays a central role in determining acceptable arguments and acceptable beliefs.
The approaches are too numerous to be discussed here in more detail. We refer
the reader to the excellent overview articles [29] and [108].

With the above references to further work we conclude this overview chapter on for-
malizations of general nonmonotonic reasoning. As we said in the introduction, our
aim was not to give a comprehensive overview of all the work that has been done
in the area. We decided to focus on the most influential approaches, thus providing
the necessary background for several of the other chapters of this Handbook. Indeed,
the reader will notice that the topic of this chapter pops up again at various places
in this book—with a different, more specialized focus. Examples are the chapters on
Answer Sets (Chapter 7), Model-based Problem Solving (Chapter 10), and the various
approaches to reasoning about action and causality (Chapters 16–19).
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